/* $OpenBSD: sshkey.c,v 1.21 2015/08/19 23:19:01 djm Exp $ */ /* * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. * Copyright (c) 2008 Alexander von Gernler. All rights reserved. * Copyright (c) 2010,2011 Damien Miller. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* MIN MAX */ #include #include #ifdef WITH_OPENSSL #include #include #include #endif #include "crypto_api.h" #include #include #include #include #include #include #include "ssh2.h" #include "ssherr.h" #include "misc.h" #include "sshbuf.h" #include "rsa.h" #include "cipher.h" #include "digest.h" #define SSHKEY_INTERNAL #include "sshkey.h" #include "match.h" /* openssh private key file format */ #define MARK_BEGIN "-----BEGIN OPENSSH PRIVATE KEY-----\n" #define MARK_END "-----END OPENSSH PRIVATE KEY-----\n" #define MARK_BEGIN_LEN (sizeof(MARK_BEGIN) - 1) #define MARK_END_LEN (sizeof(MARK_END) - 1) #define KDFNAME "bcrypt" #define AUTH_MAGIC "openssh-key-v1" #define SALT_LEN 16 #define DEFAULT_CIPHERNAME "aes256-cbc" #define DEFAULT_ROUNDS 16 /* Version identification string for SSH v1 identity files. */ #define LEGACY_BEGIN "SSH PRIVATE KEY FILE FORMAT 1.1\n" static int sshkey_from_blob_internal(struct sshbuf *buf, struct sshkey **keyp, int allow_cert); /* Supported key types */ struct keytype { const char *name; const char *shortname; int type; int nid; int cert; }; static const struct keytype keytypes[] = { { "ssh-ed25519", "ED25519", KEY_ED25519, 0, 0 }, { "ssh-ed25519-cert-v01@openssh.com", "ED25519-CERT", KEY_ED25519_CERT, 0, 1 }, #ifdef WITH_OPENSSL { NULL, "RSA1", KEY_RSA1, 0, 0 }, { "ssh-rsa", "RSA", KEY_RSA, 0, 0 }, { "ssh-dss", "DSA", KEY_DSA, 0, 0 }, { "ecdsa-sha2-nistp256", "ECDSA", KEY_ECDSA, NID_X9_62_prime256v1, 0 }, { "ecdsa-sha2-nistp384", "ECDSA", KEY_ECDSA, NID_secp384r1, 0 }, { "ecdsa-sha2-nistp521", "ECDSA", KEY_ECDSA, NID_secp521r1, 0 }, { "ssh-rsa-cert-v01@openssh.com", "RSA-CERT", KEY_RSA_CERT, 0, 1 }, { "ssh-dss-cert-v01@openssh.com", "DSA-CERT", KEY_DSA_CERT, 0, 1 }, { "ecdsa-sha2-nistp256-cert-v01@openssh.com", "ECDSA-CERT", KEY_ECDSA_CERT, NID_X9_62_prime256v1, 1 }, { "ecdsa-sha2-nistp384-cert-v01@openssh.com", "ECDSA-CERT", KEY_ECDSA_CERT, NID_secp384r1, 1 }, { "ecdsa-sha2-nistp521-cert-v01@openssh.com", "ECDSA-CERT", KEY_ECDSA_CERT, NID_secp521r1, 1 }, #endif /* WITH_OPENSSL */ { NULL, NULL, -1, -1, 0 } }; const char * sshkey_type(const struct sshkey *k) { const struct keytype *kt; for (kt = keytypes; kt->type != -1; kt++) { if (kt->type == k->type) return kt->shortname; } return "unknown"; } static const char * sshkey_ssh_name_from_type_nid(int type, int nid) { const struct keytype *kt; for (kt = keytypes; kt->type != -1; kt++) { if (kt->type == type && (kt->nid == 0 || kt->nid == nid)) return kt->name; } return "ssh-unknown"; } int sshkey_type_is_cert(int type) { const struct keytype *kt; for (kt = keytypes; kt->type != -1; kt++) { if (kt->type == type) return kt->cert; } return 0; } const char * sshkey_ssh_name(const struct sshkey *k) { return sshkey_ssh_name_from_type_nid(k->type, k->ecdsa_nid); } const char * sshkey_ssh_name_plain(const struct sshkey *k) { return sshkey_ssh_name_from_type_nid(sshkey_type_plain(k->type), k->ecdsa_nid); } int sshkey_type_from_name(const char *name) { const struct keytype *kt; for (kt = keytypes; kt->type != -1; kt++) { /* Only allow shortname matches for plain key types */ if ((kt->name != NULL && strcmp(name, kt->name) == 0) || (!kt->cert && strcasecmp(kt->shortname, name) == 0)) return kt->type; } return KEY_UNSPEC; } int sshkey_ecdsa_nid_from_name(const char *name) { const struct keytype *kt; for (kt = keytypes; kt->type != -1; kt++) { if (kt->type != KEY_ECDSA && kt->type != KEY_ECDSA_CERT) continue; if (kt->name != NULL && strcmp(name, kt->name) == 0) return kt->nid; } return -1; } char * key_alg_list(int certs_only, int plain_only) { char *tmp, *ret = NULL; size_t nlen, rlen = 0; const struct keytype *kt; for (kt = keytypes; kt->type != -1; kt++) { if (kt->name == NULL) continue; if ((certs_only && !kt->cert) || (plain_only && kt->cert)) continue; if (ret != NULL) ret[rlen++] = '\n'; nlen = strlen(kt->name); if ((tmp = realloc(ret, rlen + nlen + 2)) == NULL) { free(ret); return NULL; } ret = tmp; memcpy(ret + rlen, kt->name, nlen + 1); rlen += nlen; } return ret; } int sshkey_names_valid2(const char *names, int allow_wildcard) { char *s, *cp, *p; const struct keytype *kt; int type; if (names == NULL || strcmp(names, "") == 0) return 0; if ((s = cp = strdup(names)) == NULL) return 0; for ((p = strsep(&cp, ",")); p && *p != '\0'; (p = strsep(&cp, ","))) { type = sshkey_type_from_name(p); if (type == KEY_RSA1) { free(s); return 0; } if (type == KEY_UNSPEC) { if (allow_wildcard) { /* * Try matching key types against the string. * If any has a positive or negative match then * the component is accepted. */ for (kt = keytypes; kt->type != -1; kt++) { if (kt->type == KEY_RSA1) continue; if (match_pattern_list(kt->name, p, 0) != 0) break; } if (kt->type != -1) continue; } free(s); return 0; } } free(s); return 1; } u_int sshkey_size(const struct sshkey *k) { switch (k->type) { #ifdef WITH_OPENSSL case KEY_RSA1: case KEY_RSA: case KEY_RSA_CERT: return BN_num_bits(k->rsa->n); case KEY_DSA: case KEY_DSA_CERT: return BN_num_bits(k->dsa->p); case KEY_ECDSA: case KEY_ECDSA_CERT: return sshkey_curve_nid_to_bits(k->ecdsa_nid); #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: return 256; /* XXX */ } return 0; } static int sshkey_type_is_valid_ca(int type) { switch (type) { case KEY_RSA: case KEY_DSA: case KEY_ECDSA: case KEY_ED25519: return 1; default: return 0; } } int sshkey_is_cert(const struct sshkey *k) { if (k == NULL) return 0; return sshkey_type_is_cert(k->type); } /* Return the cert-less equivalent to a certified key type */ int sshkey_type_plain(int type) { switch (type) { case KEY_RSA_CERT: return KEY_RSA; case KEY_DSA_CERT: return KEY_DSA; case KEY_ECDSA_CERT: return KEY_ECDSA; case KEY_ED25519_CERT: return KEY_ED25519; default: return type; } } #ifdef WITH_OPENSSL /* XXX: these are really begging for a table-driven approach */ int sshkey_curve_name_to_nid(const char *name) { if (strcmp(name, "nistp256") == 0) return NID_X9_62_prime256v1; else if (strcmp(name, "nistp384") == 0) return NID_secp384r1; else if (strcmp(name, "nistp521") == 0) return NID_secp521r1; else return -1; } u_int sshkey_curve_nid_to_bits(int nid) { switch (nid) { case NID_X9_62_prime256v1: return 256; case NID_secp384r1: return 384; case NID_secp521r1: return 521; default: return 0; } } int sshkey_ecdsa_bits_to_nid(int bits) { switch (bits) { case 256: return NID_X9_62_prime256v1; case 384: return NID_secp384r1; case 521: return NID_secp521r1; default: return -1; } } const char * sshkey_curve_nid_to_name(int nid) { switch (nid) { case NID_X9_62_prime256v1: return "nistp256"; case NID_secp384r1: return "nistp384"; case NID_secp521r1: return "nistp521"; default: return NULL; } } int sshkey_ec_nid_to_hash_alg(int nid) { int kbits = sshkey_curve_nid_to_bits(nid); if (kbits <= 0) return -1; /* RFC5656 section 6.2.1 */ if (kbits <= 256) return SSH_DIGEST_SHA256; else if (kbits <= 384) return SSH_DIGEST_SHA384; else return SSH_DIGEST_SHA512; } #endif /* WITH_OPENSSL */ static void cert_free(struct sshkey_cert *cert) { u_int i; if (cert == NULL) return; if (cert->certblob != NULL) sshbuf_free(cert->certblob); if (cert->critical != NULL) sshbuf_free(cert->critical); if (cert->extensions != NULL) sshbuf_free(cert->extensions); if (cert->key_id != NULL) free(cert->key_id); for (i = 0; i < cert->nprincipals; i++) free(cert->principals[i]); if (cert->principals != NULL) free(cert->principals); if (cert->signature_key != NULL) sshkey_free(cert->signature_key); explicit_bzero(cert, sizeof(*cert)); free(cert); } static struct sshkey_cert * cert_new(void) { struct sshkey_cert *cert; if ((cert = calloc(1, sizeof(*cert))) == NULL) return NULL; if ((cert->certblob = sshbuf_new()) == NULL || (cert->critical = sshbuf_new()) == NULL || (cert->extensions = sshbuf_new()) == NULL) { cert_free(cert); return NULL; } cert->key_id = NULL; cert->principals = NULL; cert->signature_key = NULL; return cert; } struct sshkey * sshkey_new(int type) { struct sshkey *k; #ifdef WITH_OPENSSL RSA *rsa; DSA *dsa; #endif /* WITH_OPENSSL */ if ((k = calloc(1, sizeof(*k))) == NULL) return NULL; k->type = type; k->ecdsa = NULL; k->ecdsa_nid = -1; k->dsa = NULL; k->rsa = NULL; k->cert = NULL; k->ed25519_sk = NULL; k->ed25519_pk = NULL; switch (k->type) { #ifdef WITH_OPENSSL case KEY_RSA1: case KEY_RSA: case KEY_RSA_CERT: if ((rsa = RSA_new()) == NULL || (rsa->n = BN_new()) == NULL || (rsa->e = BN_new()) == NULL) { if (rsa != NULL) RSA_free(rsa); free(k); return NULL; } k->rsa = rsa; break; case KEY_DSA: case KEY_DSA_CERT: if ((dsa = DSA_new()) == NULL || (dsa->p = BN_new()) == NULL || (dsa->q = BN_new()) == NULL || (dsa->g = BN_new()) == NULL || (dsa->pub_key = BN_new()) == NULL) { if (dsa != NULL) DSA_free(dsa); free(k); return NULL; } k->dsa = dsa; break; case KEY_ECDSA: case KEY_ECDSA_CERT: /* Cannot do anything until we know the group */ break; #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: /* no need to prealloc */ break; case KEY_UNSPEC: break; default: free(k); return NULL; break; } if (sshkey_is_cert(k)) { if ((k->cert = cert_new()) == NULL) { sshkey_free(k); return NULL; } } return k; } int sshkey_add_private(struct sshkey *k) { switch (k->type) { #ifdef WITH_OPENSSL case KEY_RSA1: case KEY_RSA: case KEY_RSA_CERT: #define bn_maybe_alloc_failed(p) (p == NULL && (p = BN_new()) == NULL) if (bn_maybe_alloc_failed(k->rsa->d) || bn_maybe_alloc_failed(k->rsa->iqmp) || bn_maybe_alloc_failed(k->rsa->q) || bn_maybe_alloc_failed(k->rsa->p) || bn_maybe_alloc_failed(k->rsa->dmq1) || bn_maybe_alloc_failed(k->rsa->dmp1)) return SSH_ERR_ALLOC_FAIL; break; case KEY_DSA: case KEY_DSA_CERT: if (bn_maybe_alloc_failed(k->dsa->priv_key)) return SSH_ERR_ALLOC_FAIL; break; #undef bn_maybe_alloc_failed case KEY_ECDSA: case KEY_ECDSA_CERT: /* Cannot do anything until we know the group */ break; #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: /* no need to prealloc */ break; case KEY_UNSPEC: break; default: return SSH_ERR_INVALID_ARGUMENT; } return 0; } struct sshkey * sshkey_new_private(int type) { struct sshkey *k = sshkey_new(type); if (k == NULL) return NULL; if (sshkey_add_private(k) != 0) { sshkey_free(k); return NULL; } return k; } void sshkey_free(struct sshkey *k) { if (k == NULL) return; switch (k->type) { #ifdef WITH_OPENSSL case KEY_RSA1: case KEY_RSA: case KEY_RSA_CERT: if (k->rsa != NULL) RSA_free(k->rsa); k->rsa = NULL; break; case KEY_DSA: case KEY_DSA_CERT: if (k->dsa != NULL) DSA_free(k->dsa); k->dsa = NULL; break; case KEY_ECDSA: case KEY_ECDSA_CERT: if (k->ecdsa != NULL) EC_KEY_free(k->ecdsa); k->ecdsa = NULL; break; #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: if (k->ed25519_pk) { explicit_bzero(k->ed25519_pk, ED25519_PK_SZ); free(k->ed25519_pk); k->ed25519_pk = NULL; } if (k->ed25519_sk) { explicit_bzero(k->ed25519_sk, ED25519_SK_SZ); free(k->ed25519_sk); k->ed25519_sk = NULL; } break; case KEY_UNSPEC: break; default: break; } if (sshkey_is_cert(k)) cert_free(k->cert); explicit_bzero(k, sizeof(*k)); free(k); } static int cert_compare(struct sshkey_cert *a, struct sshkey_cert *b) { if (a == NULL && b == NULL) return 1; if (a == NULL || b == NULL) return 0; if (sshbuf_len(a->certblob) != sshbuf_len(b->certblob)) return 0; if (timingsafe_bcmp(sshbuf_ptr(a->certblob), sshbuf_ptr(b->certblob), sshbuf_len(a->certblob)) != 0) return 0; return 1; } /* * Compare public portions of key only, allowing comparisons between * certificates and plain keys too. */ int sshkey_equal_public(const struct sshkey *a, const struct sshkey *b) { #ifdef WITH_OPENSSL BN_CTX *bnctx; #endif /* WITH_OPENSSL */ if (a == NULL || b == NULL || sshkey_type_plain(a->type) != sshkey_type_plain(b->type)) return 0; switch (a->type) { #ifdef WITH_OPENSSL case KEY_RSA1: case KEY_RSA_CERT: case KEY_RSA: return a->rsa != NULL && b->rsa != NULL && BN_cmp(a->rsa->e, b->rsa->e) == 0 && BN_cmp(a->rsa->n, b->rsa->n) == 0; case KEY_DSA_CERT: case KEY_DSA: return a->dsa != NULL && b->dsa != NULL && BN_cmp(a->dsa->p, b->dsa->p) == 0 && BN_cmp(a->dsa->q, b->dsa->q) == 0 && BN_cmp(a->dsa->g, b->dsa->g) == 0 && BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0; case KEY_ECDSA_CERT: case KEY_ECDSA: if (a->ecdsa == NULL || b->ecdsa == NULL || EC_KEY_get0_public_key(a->ecdsa) == NULL || EC_KEY_get0_public_key(b->ecdsa) == NULL) return 0; if ((bnctx = BN_CTX_new()) == NULL) return 0; if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa), EC_KEY_get0_group(b->ecdsa), bnctx) != 0 || EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa), EC_KEY_get0_public_key(a->ecdsa), EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) { BN_CTX_free(bnctx); return 0; } BN_CTX_free(bnctx); return 1; #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: return a->ed25519_pk != NULL && b->ed25519_pk != NULL && memcmp(a->ed25519_pk, b->ed25519_pk, ED25519_PK_SZ) == 0; default: return 0; } /* NOTREACHED */ } int sshkey_equal(const struct sshkey *a, const struct sshkey *b) { if (a == NULL || b == NULL || a->type != b->type) return 0; if (sshkey_is_cert(a)) { if (!cert_compare(a->cert, b->cert)) return 0; } return sshkey_equal_public(a, b); } static int to_blob_buf(const struct sshkey *key, struct sshbuf *b, int force_plain) { int type, ret = SSH_ERR_INTERNAL_ERROR; const char *typename; if (key == NULL) return SSH_ERR_INVALID_ARGUMENT; if (sshkey_is_cert(key)) { if (key->cert == NULL) return SSH_ERR_EXPECTED_CERT; if (sshbuf_len(key->cert->certblob) == 0) return SSH_ERR_KEY_LACKS_CERTBLOB; } type = force_plain ? sshkey_type_plain(key->type) : key->type; typename = sshkey_ssh_name_from_type_nid(type, key->ecdsa_nid); switch (type) { #ifdef WITH_OPENSSL case KEY_DSA_CERT: case KEY_ECDSA_CERT: case KEY_RSA_CERT: #endif /* WITH_OPENSSL */ case KEY_ED25519_CERT: /* Use the existing blob */ /* XXX modified flag? */ if ((ret = sshbuf_putb(b, key->cert->certblob)) != 0) return ret; break; #ifdef WITH_OPENSSL case KEY_DSA: if (key->dsa == NULL) return SSH_ERR_INVALID_ARGUMENT; if ((ret = sshbuf_put_cstring(b, typename)) != 0 || (ret = sshbuf_put_bignum2(b, key->dsa->p)) != 0 || (ret = sshbuf_put_bignum2(b, key->dsa->q)) != 0 || (ret = sshbuf_put_bignum2(b, key->dsa->g)) != 0 || (ret = sshbuf_put_bignum2(b, key->dsa->pub_key)) != 0) return ret; break; case KEY_ECDSA: if (key->ecdsa == NULL) return SSH_ERR_INVALID_ARGUMENT; if ((ret = sshbuf_put_cstring(b, typename)) != 0 || (ret = sshbuf_put_cstring(b, sshkey_curve_nid_to_name(key->ecdsa_nid))) != 0 || (ret = sshbuf_put_eckey(b, key->ecdsa)) != 0) return ret; break; case KEY_RSA: if (key->rsa == NULL) return SSH_ERR_INVALID_ARGUMENT; if ((ret = sshbuf_put_cstring(b, typename)) != 0 || (ret = sshbuf_put_bignum2(b, key->rsa->e)) != 0 || (ret = sshbuf_put_bignum2(b, key->rsa->n)) != 0) return ret; break; #endif /* WITH_OPENSSL */ case KEY_ED25519: if (key->ed25519_pk == NULL) return SSH_ERR_INVALID_ARGUMENT; if ((ret = sshbuf_put_cstring(b, typename)) != 0 || (ret = sshbuf_put_string(b, key->ed25519_pk, ED25519_PK_SZ)) != 0) return ret; break; default: return SSH_ERR_KEY_TYPE_UNKNOWN; } return 0; } int sshkey_putb(const struct sshkey *key, struct sshbuf *b) { return to_blob_buf(key, b, 0); } int sshkey_puts(const struct sshkey *key, struct sshbuf *b) { struct sshbuf *tmp; int r; if ((tmp = sshbuf_new()) == NULL) return SSH_ERR_ALLOC_FAIL; r = to_blob_buf(key, tmp, 0); if (r == 0) r = sshbuf_put_stringb(b, tmp); sshbuf_free(tmp); return r; } int sshkey_putb_plain(const struct sshkey *key, struct sshbuf *b) { return to_blob_buf(key, b, 1); } static int to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp, int force_plain) { int ret = SSH_ERR_INTERNAL_ERROR; size_t len; struct sshbuf *b = NULL; if (lenp != NULL) *lenp = 0; if (blobp != NULL) *blobp = NULL; if ((b = sshbuf_new()) == NULL) return SSH_ERR_ALLOC_FAIL; if ((ret = to_blob_buf(key, b, force_plain)) != 0) goto out; len = sshbuf_len(b); if (lenp != NULL) *lenp = len; if (blobp != NULL) { if ((*blobp = malloc(len)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } memcpy(*blobp, sshbuf_ptr(b), len); } ret = 0; out: sshbuf_free(b); return ret; } int sshkey_to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp) { return to_blob(key, blobp, lenp, 0); } int sshkey_plain_to_blob(const struct sshkey *key, u_char **blobp, size_t *lenp) { return to_blob(key, blobp, lenp, 1); } int sshkey_fingerprint_raw(const struct sshkey *k, int dgst_alg, u_char **retp, size_t *lenp) { u_char *blob = NULL, *ret = NULL; size_t blob_len = 0; int r = SSH_ERR_INTERNAL_ERROR; if (retp != NULL) *retp = NULL; if (lenp != NULL) *lenp = 0; if (ssh_digest_bytes(dgst_alg) == 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if (k->type == KEY_RSA1) { #ifdef WITH_OPENSSL int nlen = BN_num_bytes(k->rsa->n); int elen = BN_num_bytes(k->rsa->e); blob_len = nlen + elen; if (nlen >= INT_MAX - elen || (blob = malloc(blob_len)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } BN_bn2bin(k->rsa->n, blob); BN_bn2bin(k->rsa->e, blob + nlen); #endif /* WITH_OPENSSL */ } else if ((r = to_blob(k, &blob, &blob_len, 1)) != 0) goto out; if ((ret = calloc(1, SSH_DIGEST_MAX_LENGTH)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((r = ssh_digest_memory(dgst_alg, blob, blob_len, ret, SSH_DIGEST_MAX_LENGTH)) != 0) goto out; /* success */ if (retp != NULL) { *retp = ret; ret = NULL; } if (lenp != NULL) *lenp = ssh_digest_bytes(dgst_alg); r = 0; out: free(ret); if (blob != NULL) { explicit_bzero(blob, blob_len); free(blob); } return r; } static char * fingerprint_b64(const char *alg, u_char *dgst_raw, size_t dgst_raw_len) { char *ret; size_t plen = strlen(alg) + 1; size_t rlen = ((dgst_raw_len + 2) / 3) * 4 + plen + 1; int r; if (dgst_raw_len > 65536 || (ret = calloc(1, rlen)) == NULL) return NULL; strlcpy(ret, alg, rlen); strlcat(ret, ":", rlen); if (dgst_raw_len == 0) return ret; if ((r = b64_ntop(dgst_raw, dgst_raw_len, ret + plen, rlen - plen)) == -1) { explicit_bzero(ret, rlen); free(ret); return NULL; } /* Trim padding characters from end */ ret[strcspn(ret, "=")] = '\0'; return ret; } static char * fingerprint_hex(const char *alg, u_char *dgst_raw, size_t dgst_raw_len) { char *retval, hex[5]; size_t i, rlen = dgst_raw_len * 3 + strlen(alg) + 2; if (dgst_raw_len > 65536 || (retval = calloc(1, rlen)) == NULL) return NULL; strlcpy(retval, alg, rlen); strlcat(retval, ":", rlen); for (i = 0; i < dgst_raw_len; i++) { snprintf(hex, sizeof(hex), "%s%02x", i > 0 ? ":" : "", dgst_raw[i]); strlcat(retval, hex, rlen); } return retval; } static char * fingerprint_bubblebabble(u_char *dgst_raw, size_t dgst_raw_len) { char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; u_int i, j = 0, rounds, seed = 1; char *retval; rounds = (dgst_raw_len / 2) + 1; if ((retval = calloc(rounds, 6)) == NULL) return NULL; retval[j++] = 'x'; for (i = 0; i < rounds; i++) { u_int idx0, idx1, idx2, idx3, idx4; if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) { idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) + seed) % 6; idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15; idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) + (seed / 6)) % 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; if ((i + 1) < rounds) { idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15; idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15; retval[j++] = consonants[idx3]; retval[j++] = '-'; retval[j++] = consonants[idx4]; seed = ((seed * 5) + ((((u_int)(dgst_raw[2 * i])) * 7) + ((u_int)(dgst_raw[(2 * i) + 1])))) % 36; } } else { idx0 = seed % 6; idx1 = 16; idx2 = seed / 6; retval[j++] = vowels[idx0]; retval[j++] = consonants[idx1]; retval[j++] = vowels[idx2]; } } retval[j++] = 'x'; retval[j++] = '\0'; return retval; } /* * Draw an ASCII-Art representing the fingerprint so human brain can * profit from its built-in pattern recognition ability. * This technique is called "random art" and can be found in some * scientific publications like this original paper: * * "Hash Visualization: a New Technique to improve Real-World Security", * Perrig A. and Song D., 1999, International Workshop on Cryptographic * Techniques and E-Commerce (CrypTEC '99) * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf * * The subject came up in a talk by Dan Kaminsky, too. * * If you see the picture is different, the key is different. * If the picture looks the same, you still know nothing. * * The algorithm used here is a worm crawling over a discrete plane, * leaving a trace (augmenting the field) everywhere it goes. * Movement is taken from dgst_raw 2bit-wise. Bumping into walls * makes the respective movement vector be ignored for this turn. * Graphs are not unambiguous, because circles in graphs can be * walked in either direction. */ /* * Field sizes for the random art. Have to be odd, so the starting point * can be in the exact middle of the picture, and FLDBASE should be >=8 . * Else pictures would be too dense, and drawing the frame would * fail, too, because the key type would not fit in anymore. */ #define FLDBASE 8 #define FLDSIZE_Y (FLDBASE + 1) #define FLDSIZE_X (FLDBASE * 2 + 1) static char * fingerprint_randomart(const char *alg, u_char *dgst_raw, size_t dgst_raw_len, const struct sshkey *k) { /* * Chars to be used after each other every time the worm * intersects with itself. Matter of taste. */ char *augmentation_string = " .o+=*BOX@%&#/^SE"; char *retval, *p, title[FLDSIZE_X], hash[FLDSIZE_X]; u_char field[FLDSIZE_X][FLDSIZE_Y]; size_t i, tlen, hlen; u_int b; int x, y, r; size_t len = strlen(augmentation_string) - 1; if ((retval = calloc((FLDSIZE_X + 3), (FLDSIZE_Y + 2))) == NULL) return NULL; /* initialize field */ memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char)); x = FLDSIZE_X / 2; y = FLDSIZE_Y / 2; /* process raw key */ for (i = 0; i < dgst_raw_len; i++) { int input; /* each byte conveys four 2-bit move commands */ input = dgst_raw[i]; for (b = 0; b < 4; b++) { /* evaluate 2 bit, rest is shifted later */ x += (input & 0x1) ? 1 : -1; y += (input & 0x2) ? 1 : -1; /* assure we are still in bounds */ x = MAX(x, 0); y = MAX(y, 0); x = MIN(x, FLDSIZE_X - 1); y = MIN(y, FLDSIZE_Y - 1); /* augment the field */ if (field[x][y] < len - 2) field[x][y]++; input = input >> 2; } } /* mark starting point and end point*/ field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1; field[x][y] = len; /* assemble title */ r = snprintf(title, sizeof(title), "[%s %u]", sshkey_type(k), sshkey_size(k)); /* If [type size] won't fit, then try [type]; fits "[ED25519-CERT]" */ if (r < 0 || r > (int)sizeof(title)) r = snprintf(title, sizeof(title), "[%s]", sshkey_type(k)); tlen = (r <= 0) ? 0 : strlen(title); /* assemble hash ID. */ r = snprintf(hash, sizeof(hash), "[%s]", alg); hlen = (r <= 0) ? 0 : strlen(hash); /* output upper border */ p = retval; *p++ = '+'; for (i = 0; i < (FLDSIZE_X - tlen) / 2; i++) *p++ = '-'; memcpy(p, title, tlen); p += tlen; for (i += tlen; i < FLDSIZE_X; i++) *p++ = '-'; *p++ = '+'; *p++ = '\n'; /* output content */ for (y = 0; y < FLDSIZE_Y; y++) { *p++ = '|'; for (x = 0; x < FLDSIZE_X; x++) *p++ = augmentation_string[MIN(field[x][y], len)]; *p++ = '|'; *p++ = '\n'; } /* output lower border */ *p++ = '+'; for (i = 0; i < (FLDSIZE_X - hlen) / 2; i++) *p++ = '-'; memcpy(p, hash, hlen); p += hlen; for (i += hlen; i < FLDSIZE_X; i++) *p++ = '-'; *p++ = '+'; return retval; } char * sshkey_fingerprint(const struct sshkey *k, int dgst_alg, enum sshkey_fp_rep dgst_rep) { char *retval = NULL; u_char *dgst_raw; size_t dgst_raw_len; if (sshkey_fingerprint_raw(k, dgst_alg, &dgst_raw, &dgst_raw_len) != 0) return NULL; switch (dgst_rep) { case SSH_FP_DEFAULT: if (dgst_alg == SSH_DIGEST_MD5) { retval = fingerprint_hex(ssh_digest_alg_name(dgst_alg), dgst_raw, dgst_raw_len); } else { retval = fingerprint_b64(ssh_digest_alg_name(dgst_alg), dgst_raw, dgst_raw_len); } break; case SSH_FP_HEX: retval = fingerprint_hex(ssh_digest_alg_name(dgst_alg), dgst_raw, dgst_raw_len); break; case SSH_FP_BASE64: retval = fingerprint_b64(ssh_digest_alg_name(dgst_alg), dgst_raw, dgst_raw_len); break; case SSH_FP_BUBBLEBABBLE: retval = fingerprint_bubblebabble(dgst_raw, dgst_raw_len); break; case SSH_FP_RANDOMART: retval = fingerprint_randomart(ssh_digest_alg_name(dgst_alg), dgst_raw, dgst_raw_len, k); break; default: explicit_bzero(dgst_raw, dgst_raw_len); free(dgst_raw); return NULL; } explicit_bzero(dgst_raw, dgst_raw_len); free(dgst_raw); return retval; } #ifdef WITH_SSH1 /* * Reads a multiple-precision integer in decimal from the buffer, and advances * the pointer. The integer must already be initialized. This function is * permitted to modify the buffer. This leaves *cpp to point just beyond the * last processed character. */ static int read_decimal_bignum(char **cpp, BIGNUM *v) { char *cp; size_t e; int skip = 1; /* skip white space */ cp = *cpp; while (*cp == ' ' || *cp == '\t') cp++; e = strspn(cp, "0123456789"); if (e == 0) return SSH_ERR_INVALID_FORMAT; if (e > SSHBUF_MAX_BIGNUM * 3) return SSH_ERR_BIGNUM_TOO_LARGE; if (cp[e] == '\0') skip = 0; else if (index(" \t\r\n", cp[e]) == NULL) return SSH_ERR_INVALID_FORMAT; cp[e] = '\0'; if (BN_dec2bn(&v, cp) <= 0) return SSH_ERR_INVALID_FORMAT; *cpp = cp + e + skip; return 0; } #endif /* WITH_SSH1 */ /* returns 0 ok, and < 0 error */ int sshkey_read(struct sshkey *ret, char **cpp) { struct sshkey *k; int retval = SSH_ERR_INVALID_FORMAT; char *cp, *space; int r, type, curve_nid = -1; struct sshbuf *blob; #ifdef WITH_SSH1 char *ep; u_long bits; #endif /* WITH_SSH1 */ cp = *cpp; switch (ret->type) { case KEY_RSA1: #ifdef WITH_SSH1 /* Get number of bits. */ bits = strtoul(cp, &ep, 10); if (*cp == '\0' || index(" \t\r\n", *ep) == NULL || bits == 0 || bits > SSHBUF_MAX_BIGNUM * 8) return SSH_ERR_INVALID_FORMAT; /* Bad bit count... */ /* Get public exponent, public modulus. */ if ((r = read_decimal_bignum(&ep, ret->rsa->e)) < 0) return r; if ((r = read_decimal_bignum(&ep, ret->rsa->n)) < 0) return r; *cpp = ep; /* validate the claimed number of bits */ if (BN_num_bits(ret->rsa->n) != (int)bits) return SSH_ERR_KEY_BITS_MISMATCH; retval = 0; #endif /* WITH_SSH1 */ break; case KEY_UNSPEC: case KEY_RSA: case KEY_DSA: case KEY_ECDSA: case KEY_ED25519: case KEY_DSA_CERT: case KEY_ECDSA_CERT: case KEY_RSA_CERT: case KEY_ED25519_CERT: space = strchr(cp, ' '); if (space == NULL) return SSH_ERR_INVALID_FORMAT; *space = '\0'; type = sshkey_type_from_name(cp); if (sshkey_type_plain(type) == KEY_ECDSA && (curve_nid = sshkey_ecdsa_nid_from_name(cp)) == -1) return SSH_ERR_EC_CURVE_INVALID; *space = ' '; if (type == KEY_UNSPEC) return SSH_ERR_INVALID_FORMAT; cp = space+1; if (*cp == '\0') return SSH_ERR_INVALID_FORMAT; if (ret->type != KEY_UNSPEC && ret->type != type) return SSH_ERR_KEY_TYPE_MISMATCH; if ((blob = sshbuf_new()) == NULL) return SSH_ERR_ALLOC_FAIL; /* trim comment */ space = strchr(cp, ' '); if (space) { /* advance 'space': skip whitespace */ *space++ = '\0'; while (*space == ' ' || *space == '\t') space++; *cpp = space; } else *cpp = cp + strlen(cp); if ((r = sshbuf_b64tod(blob, cp)) != 0) { sshbuf_free(blob); return r; } if ((r = sshkey_from_blob(sshbuf_ptr(blob), sshbuf_len(blob), &k)) != 0) { sshbuf_free(blob); return r; } sshbuf_free(blob); if (k->type != type) { sshkey_free(k); return SSH_ERR_KEY_TYPE_MISMATCH; } if (sshkey_type_plain(type) == KEY_ECDSA && curve_nid != k->ecdsa_nid) { sshkey_free(k); return SSH_ERR_EC_CURVE_MISMATCH; } ret->type = type; if (sshkey_is_cert(ret)) { if (!sshkey_is_cert(k)) { sshkey_free(k); return SSH_ERR_EXPECTED_CERT; } if (ret->cert != NULL) cert_free(ret->cert); ret->cert = k->cert; k->cert = NULL; } #ifdef WITH_OPENSSL if (sshkey_type_plain(ret->type) == KEY_RSA) { if (ret->rsa != NULL) RSA_free(ret->rsa); ret->rsa = k->rsa; k->rsa = NULL; #ifdef DEBUG_PK RSA_print_fp(stderr, ret->rsa, 8); #endif } if (sshkey_type_plain(ret->type) == KEY_DSA) { if (ret->dsa != NULL) DSA_free(ret->dsa); ret->dsa = k->dsa; k->dsa = NULL; #ifdef DEBUG_PK DSA_print_fp(stderr, ret->dsa, 8); #endif } if (sshkey_type_plain(ret->type) == KEY_ECDSA) { if (ret->ecdsa != NULL) EC_KEY_free(ret->ecdsa); ret->ecdsa = k->ecdsa; ret->ecdsa_nid = k->ecdsa_nid; k->ecdsa = NULL; k->ecdsa_nid = -1; #ifdef DEBUG_PK sshkey_dump_ec_key(ret->ecdsa); #endif } #endif /* WITH_OPENSSL */ if (sshkey_type_plain(ret->type) == KEY_ED25519) { free(ret->ed25519_pk); ret->ed25519_pk = k->ed25519_pk; k->ed25519_pk = NULL; #ifdef DEBUG_PK /* XXX */ #endif } retval = 0; /*XXXX*/ sshkey_free(k); if (retval != 0) break; break; default: return SSH_ERR_INVALID_ARGUMENT; } return retval; } int sshkey_to_base64(const struct sshkey *key, char **b64p) { int r = SSH_ERR_INTERNAL_ERROR; struct sshbuf *b = NULL; char *uu = NULL; if (b64p != NULL) *b64p = NULL; if ((b = sshbuf_new()) == NULL) return SSH_ERR_ALLOC_FAIL; if ((r = sshkey_putb(key, b)) != 0) goto out; if ((uu = sshbuf_dtob64(b)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } /* Success */ if (b64p != NULL) { *b64p = uu; uu = NULL; } r = 0; out: sshbuf_free(b); free(uu); return r; } static int sshkey_format_rsa1(const struct sshkey *key, struct sshbuf *b) { int r = SSH_ERR_INTERNAL_ERROR; #ifdef WITH_SSH1 u_int bits = 0; char *dec_e = NULL, *dec_n = NULL; if (key->rsa == NULL || key->rsa->e == NULL || key->rsa->n == NULL) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((dec_e = BN_bn2dec(key->rsa->e)) == NULL || (dec_n = BN_bn2dec(key->rsa->n)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } /* size of modulus 'n' */ if ((bits = BN_num_bits(key->rsa->n)) <= 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_putf(b, "%u %s %s", bits, dec_e, dec_n)) != 0) goto out; /* Success */ r = 0; out: if (dec_e != NULL) OPENSSL_free(dec_e); if (dec_n != NULL) OPENSSL_free(dec_n); #endif /* WITH_SSH1 */ return r; } static int sshkey_format_text(const struct sshkey *key, struct sshbuf *b) { int r = SSH_ERR_INTERNAL_ERROR; char *uu = NULL; if (key->type == KEY_RSA1) { if ((r = sshkey_format_rsa1(key, b)) != 0) goto out; } else { /* Unsupported key types handled in sshkey_to_base64() */ if ((r = sshkey_to_base64(key, &uu)) != 0) goto out; if ((r = sshbuf_putf(b, "%s %s", sshkey_ssh_name(key), uu)) != 0) goto out; } r = 0; out: free(uu); return r; } int sshkey_write(const struct sshkey *key, FILE *f) { struct sshbuf *b = NULL; int r = SSH_ERR_INTERNAL_ERROR; if ((b = sshbuf_new()) == NULL) return SSH_ERR_ALLOC_FAIL; if ((r = sshkey_format_text(key, b)) != 0) goto out; if (fwrite(sshbuf_ptr(b), sshbuf_len(b), 1, f) != 1) { if (feof(f)) errno = EPIPE; r = SSH_ERR_SYSTEM_ERROR; goto out; } /* Success */ r = 0; out: sshbuf_free(b); return r; } const char * sshkey_cert_type(const struct sshkey *k) { switch (k->cert->type) { case SSH2_CERT_TYPE_USER: return "user"; case SSH2_CERT_TYPE_HOST: return "host"; default: return "unknown"; } } #ifdef WITH_OPENSSL static int rsa_generate_private_key(u_int bits, RSA **rsap) { RSA *private = NULL; BIGNUM *f4 = NULL; int ret = SSH_ERR_INTERNAL_ERROR; if (rsap == NULL || bits < SSH_RSA_MINIMUM_MODULUS_SIZE || bits > SSHBUF_MAX_BIGNUM * 8) return SSH_ERR_INVALID_ARGUMENT; *rsap = NULL; if ((private = RSA_new()) == NULL || (f4 = BN_new()) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (!BN_set_word(f4, RSA_F4) || !RSA_generate_key_ex(private, bits, f4, NULL)) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } *rsap = private; private = NULL; ret = 0; out: if (private != NULL) RSA_free(private); if (f4 != NULL) BN_free(f4); return ret; } static int dsa_generate_private_key(u_int bits, DSA **dsap) { DSA *private; int ret = SSH_ERR_INTERNAL_ERROR; if (dsap == NULL || bits != 1024) return SSH_ERR_INVALID_ARGUMENT; if ((private = DSA_new()) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } *dsap = NULL; if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL, NULL, NULL) || !DSA_generate_key(private)) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } *dsap = private; private = NULL; ret = 0; out: if (private != NULL) DSA_free(private); return ret; } int sshkey_ecdsa_key_to_nid(EC_KEY *k) { EC_GROUP *eg; int nids[] = { NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, -1 }; int nid; u_int i; BN_CTX *bnctx; const EC_GROUP *g = EC_KEY_get0_group(k); /* * The group may be stored in a ASN.1 encoded private key in one of two * ways: as a "named group", which is reconstituted by ASN.1 object ID * or explicit group parameters encoded into the key blob. Only the * "named group" case sets the group NID for us, but we can figure * it out for the other case by comparing against all the groups that * are supported. */ if ((nid = EC_GROUP_get_curve_name(g)) > 0) return nid; if ((bnctx = BN_CTX_new()) == NULL) return -1; for (i = 0; nids[i] != -1; i++) { if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL) { BN_CTX_free(bnctx); return -1; } if (EC_GROUP_cmp(g, eg, bnctx) == 0) break; EC_GROUP_free(eg); } BN_CTX_free(bnctx); if (nids[i] != -1) { /* Use the group with the NID attached */ EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE); if (EC_KEY_set_group(k, eg) != 1) { EC_GROUP_free(eg); return -1; } } return nids[i]; } static int ecdsa_generate_private_key(u_int bits, int *nid, EC_KEY **ecdsap) { EC_KEY *private; int ret = SSH_ERR_INTERNAL_ERROR; if (nid == NULL || ecdsap == NULL || (*nid = sshkey_ecdsa_bits_to_nid(bits)) == -1) return SSH_ERR_INVALID_ARGUMENT; *ecdsap = NULL; if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (EC_KEY_generate_key(private) != 1) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE); *ecdsap = private; private = NULL; ret = 0; out: if (private != NULL) EC_KEY_free(private); return ret; } #endif /* WITH_OPENSSL */ int sshkey_generate(int type, u_int bits, struct sshkey **keyp) { struct sshkey *k; int ret = SSH_ERR_INTERNAL_ERROR; if (keyp == NULL) return SSH_ERR_INVALID_ARGUMENT; *keyp = NULL; if ((k = sshkey_new(KEY_UNSPEC)) == NULL) return SSH_ERR_ALLOC_FAIL; switch (type) { case KEY_ED25519: if ((k->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL || (k->ed25519_sk = malloc(ED25519_SK_SZ)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; break; } crypto_sign_ed25519_keypair(k->ed25519_pk, k->ed25519_sk); ret = 0; break; #ifdef WITH_OPENSSL case KEY_DSA: ret = dsa_generate_private_key(bits, &k->dsa); break; case KEY_ECDSA: ret = ecdsa_generate_private_key(bits, &k->ecdsa_nid, &k->ecdsa); break; case KEY_RSA: case KEY_RSA1: ret = rsa_generate_private_key(bits, &k->rsa); break; #endif /* WITH_OPENSSL */ default: ret = SSH_ERR_INVALID_ARGUMENT; } if (ret == 0) { k->type = type; *keyp = k; } else sshkey_free(k); return ret; } int sshkey_cert_copy(const struct sshkey *from_key, struct sshkey *to_key) { u_int i; const struct sshkey_cert *from; struct sshkey_cert *to; int ret = SSH_ERR_INTERNAL_ERROR; if (to_key->cert != NULL) { cert_free(to_key->cert); to_key->cert = NULL; } if ((from = from_key->cert) == NULL) return SSH_ERR_INVALID_ARGUMENT; if ((to = to_key->cert = cert_new()) == NULL) return SSH_ERR_ALLOC_FAIL; if ((ret = sshbuf_putb(to->certblob, from->certblob)) != 0 || (ret = sshbuf_putb(to->critical, from->critical)) != 0 || (ret = sshbuf_putb(to->extensions, from->extensions) != 0)) return ret; to->serial = from->serial; to->type = from->type; if (from->key_id == NULL) to->key_id = NULL; else if ((to->key_id = strdup(from->key_id)) == NULL) return SSH_ERR_ALLOC_FAIL; to->valid_after = from->valid_after; to->valid_before = from->valid_before; if (from->signature_key == NULL) to->signature_key = NULL; else if ((ret = sshkey_from_private(from->signature_key, &to->signature_key)) != 0) return ret; if (from->nprincipals > SSHKEY_CERT_MAX_PRINCIPALS) return SSH_ERR_INVALID_ARGUMENT; if (from->nprincipals > 0) { if ((to->principals = calloc(from->nprincipals, sizeof(*to->principals))) == NULL) return SSH_ERR_ALLOC_FAIL; for (i = 0; i < from->nprincipals; i++) { to->principals[i] = strdup(from->principals[i]); if (to->principals[i] == NULL) { to->nprincipals = i; return SSH_ERR_ALLOC_FAIL; } } } to->nprincipals = from->nprincipals; return 0; } int sshkey_from_private(const struct sshkey *k, struct sshkey **pkp) { struct sshkey *n = NULL; int ret = SSH_ERR_INTERNAL_ERROR; if (pkp != NULL) *pkp = NULL; switch (k->type) { #ifdef WITH_OPENSSL case KEY_DSA: case KEY_DSA_CERT: if ((n = sshkey_new(k->type)) == NULL) return SSH_ERR_ALLOC_FAIL; if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) || (BN_copy(n->dsa->q, k->dsa->q) == NULL) || (BN_copy(n->dsa->g, k->dsa->g) == NULL) || (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL)) { sshkey_free(n); return SSH_ERR_ALLOC_FAIL; } break; case KEY_ECDSA: case KEY_ECDSA_CERT: if ((n = sshkey_new(k->type)) == NULL) return SSH_ERR_ALLOC_FAIL; n->ecdsa_nid = k->ecdsa_nid; n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid); if (n->ecdsa == NULL) { sshkey_free(n); return SSH_ERR_ALLOC_FAIL; } if (EC_KEY_set_public_key(n->ecdsa, EC_KEY_get0_public_key(k->ecdsa)) != 1) { sshkey_free(n); return SSH_ERR_LIBCRYPTO_ERROR; } break; case KEY_RSA: case KEY_RSA1: case KEY_RSA_CERT: if ((n = sshkey_new(k->type)) == NULL) return SSH_ERR_ALLOC_FAIL; if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) || (BN_copy(n->rsa->e, k->rsa->e) == NULL)) { sshkey_free(n); return SSH_ERR_ALLOC_FAIL; } break; #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: if ((n = sshkey_new(k->type)) == NULL) return SSH_ERR_ALLOC_FAIL; if (k->ed25519_pk != NULL) { if ((n->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL) { sshkey_free(n); return SSH_ERR_ALLOC_FAIL; } memcpy(n->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ); } break; default: return SSH_ERR_KEY_TYPE_UNKNOWN; } if (sshkey_is_cert(k)) { if ((ret = sshkey_cert_copy(k, n)) != 0) { sshkey_free(n); return ret; } } *pkp = n; return 0; } static int cert_parse(struct sshbuf *b, struct sshkey *key, struct sshbuf *certbuf) { struct sshbuf *principals = NULL, *crit = NULL; struct sshbuf *exts = NULL, *ca = NULL; u_char *sig = NULL; size_t signed_len = 0, slen = 0, kidlen = 0; int ret = SSH_ERR_INTERNAL_ERROR; /* Copy the entire key blob for verification and later serialisation */ if ((ret = sshbuf_putb(key->cert->certblob, certbuf)) != 0) return ret; /* Parse body of certificate up to signature */ if ((ret = sshbuf_get_u64(b, &key->cert->serial)) != 0 || (ret = sshbuf_get_u32(b, &key->cert->type)) != 0 || (ret = sshbuf_get_cstring(b, &key->cert->key_id, &kidlen)) != 0 || (ret = sshbuf_froms(b, &principals)) != 0 || (ret = sshbuf_get_u64(b, &key->cert->valid_after)) != 0 || (ret = sshbuf_get_u64(b, &key->cert->valid_before)) != 0 || (ret = sshbuf_froms(b, &crit)) != 0 || (ret = sshbuf_froms(b, &exts)) != 0 || (ret = sshbuf_get_string_direct(b, NULL, NULL)) != 0 || (ret = sshbuf_froms(b, &ca)) != 0) { /* XXX debug print error for ret */ ret = SSH_ERR_INVALID_FORMAT; goto out; } /* Signature is left in the buffer so we can calculate this length */ signed_len = sshbuf_len(key->cert->certblob) - sshbuf_len(b); if ((ret = sshbuf_get_string(b, &sig, &slen)) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } if (key->cert->type != SSH2_CERT_TYPE_USER && key->cert->type != SSH2_CERT_TYPE_HOST) { ret = SSH_ERR_KEY_CERT_UNKNOWN_TYPE; goto out; } /* Parse principals section */ while (sshbuf_len(principals) > 0) { char *principal = NULL; char **oprincipals = NULL; if (key->cert->nprincipals >= SSHKEY_CERT_MAX_PRINCIPALS) { ret = SSH_ERR_INVALID_FORMAT; goto out; } if ((ret = sshbuf_get_cstring(principals, &principal, NULL)) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } oprincipals = key->cert->principals; key->cert->principals = reallocarray(key->cert->principals, key->cert->nprincipals + 1, sizeof(*key->cert->principals)); if (key->cert->principals == NULL) { free(principal); key->cert->principals = oprincipals; ret = SSH_ERR_ALLOC_FAIL; goto out; } key->cert->principals[key->cert->nprincipals++] = principal; } /* * Stash a copies of the critical options and extensions sections * for later use. */ if ((ret = sshbuf_putb(key->cert->critical, crit)) != 0 || (exts != NULL && (ret = sshbuf_putb(key->cert->extensions, exts)) != 0)) goto out; /* * Validate critical options and extensions sections format. */ while (sshbuf_len(crit) != 0) { if ((ret = sshbuf_get_string_direct(crit, NULL, NULL)) != 0 || (ret = sshbuf_get_string_direct(crit, NULL, NULL)) != 0) { sshbuf_reset(key->cert->critical); ret = SSH_ERR_INVALID_FORMAT; goto out; } } while (exts != NULL && sshbuf_len(exts) != 0) { if ((ret = sshbuf_get_string_direct(exts, NULL, NULL)) != 0 || (ret = sshbuf_get_string_direct(exts, NULL, NULL)) != 0) { sshbuf_reset(key->cert->extensions); ret = SSH_ERR_INVALID_FORMAT; goto out; } } /* Parse CA key and check signature */ if (sshkey_from_blob_internal(ca, &key->cert->signature_key, 0) != 0) { ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY; goto out; } if (!sshkey_type_is_valid_ca(key->cert->signature_key->type)) { ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY; goto out; } if ((ret = sshkey_verify(key->cert->signature_key, sig, slen, sshbuf_ptr(key->cert->certblob), signed_len, 0)) != 0) goto out; /* Success */ ret = 0; out: sshbuf_free(ca); sshbuf_free(crit); sshbuf_free(exts); sshbuf_free(principals); free(sig); return ret; } static int sshkey_from_blob_internal(struct sshbuf *b, struct sshkey **keyp, int allow_cert) { int type, ret = SSH_ERR_INTERNAL_ERROR; char *ktype = NULL, *curve = NULL; struct sshkey *key = NULL; size_t len; u_char *pk = NULL; struct sshbuf *copy; #ifdef WITH_OPENSSL EC_POINT *q = NULL; #endif /* WITH_OPENSSL */ #ifdef DEBUG_PK /* XXX */ sshbuf_dump(b, stderr); #endif *keyp = NULL; if ((copy = sshbuf_fromb(b)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (sshbuf_get_cstring(b, &ktype, NULL) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } type = sshkey_type_from_name(ktype); if (!allow_cert && sshkey_type_is_cert(type)) { ret = SSH_ERR_KEY_CERT_INVALID_SIGN_KEY; goto out; } switch (type) { #ifdef WITH_OPENSSL case KEY_RSA_CERT: /* Skip nonce */ if (sshbuf_get_string_direct(b, NULL, NULL) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } /* FALLTHROUGH */ case KEY_RSA: if ((key = sshkey_new(type)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (sshbuf_get_bignum2(b, key->rsa->e) != 0 || sshbuf_get_bignum2(b, key->rsa->n) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } #ifdef DEBUG_PK RSA_print_fp(stderr, key->rsa, 8); #endif break; case KEY_DSA_CERT: /* Skip nonce */ if (sshbuf_get_string_direct(b, NULL, NULL) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } /* FALLTHROUGH */ case KEY_DSA: if ((key = sshkey_new(type)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (sshbuf_get_bignum2(b, key->dsa->p) != 0 || sshbuf_get_bignum2(b, key->dsa->q) != 0 || sshbuf_get_bignum2(b, key->dsa->g) != 0 || sshbuf_get_bignum2(b, key->dsa->pub_key) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } #ifdef DEBUG_PK DSA_print_fp(stderr, key->dsa, 8); #endif break; case KEY_ECDSA_CERT: /* Skip nonce */ if (sshbuf_get_string_direct(b, NULL, NULL) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } /* FALLTHROUGH */ case KEY_ECDSA: if ((key = sshkey_new(type)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } key->ecdsa_nid = sshkey_ecdsa_nid_from_name(ktype); if (sshbuf_get_cstring(b, &curve, NULL) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } if (key->ecdsa_nid != sshkey_curve_name_to_nid(curve)) { ret = SSH_ERR_EC_CURVE_MISMATCH; goto out; } if (key->ecdsa != NULL) EC_KEY_free(key->ecdsa); if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid)) == NULL) { ret = SSH_ERR_EC_CURVE_INVALID; goto out; } if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (sshbuf_get_ec(b, q, EC_KEY_get0_group(key->ecdsa)) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } if (sshkey_ec_validate_public(EC_KEY_get0_group(key->ecdsa), q) != 0) { ret = SSH_ERR_KEY_INVALID_EC_VALUE; goto out; } if (EC_KEY_set_public_key(key->ecdsa, q) != 1) { /* XXX assume it is a allocation error */ ret = SSH_ERR_ALLOC_FAIL; goto out; } #ifdef DEBUG_PK sshkey_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q); #endif break; #endif /* WITH_OPENSSL */ case KEY_ED25519_CERT: /* Skip nonce */ if (sshbuf_get_string_direct(b, NULL, NULL) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } /* FALLTHROUGH */ case KEY_ED25519: if ((ret = sshbuf_get_string(b, &pk, &len)) != 0) goto out; if (len != ED25519_PK_SZ) { ret = SSH_ERR_INVALID_FORMAT; goto out; } if ((key = sshkey_new(type)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } key->ed25519_pk = pk; pk = NULL; break; case KEY_UNSPEC: if ((key = sshkey_new(type)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } break; default: ret = SSH_ERR_KEY_TYPE_UNKNOWN; goto out; } /* Parse certificate potion */ if (sshkey_is_cert(key) && (ret = cert_parse(b, key, copy)) != 0) goto out; if (key != NULL && sshbuf_len(b) != 0) { ret = SSH_ERR_INVALID_FORMAT; goto out; } ret = 0; *keyp = key; key = NULL; out: sshbuf_free(copy); sshkey_free(key); free(ktype); free(curve); free(pk); #ifdef WITH_OPENSSL if (q != NULL) EC_POINT_free(q); #endif /* WITH_OPENSSL */ return ret; } int sshkey_from_blob(const u_char *blob, size_t blen, struct sshkey **keyp) { struct sshbuf *b; int r; if ((b = sshbuf_from(blob, blen)) == NULL) return SSH_ERR_ALLOC_FAIL; r = sshkey_from_blob_internal(b, keyp, 1); sshbuf_free(b); return r; } int sshkey_fromb(struct sshbuf *b, struct sshkey **keyp) { return sshkey_from_blob_internal(b, keyp, 1); } int sshkey_froms(struct sshbuf *buf, struct sshkey **keyp) { struct sshbuf *b; int r; if ((r = sshbuf_froms(buf, &b)) != 0) return r; r = sshkey_from_blob_internal(b, keyp, 1); sshbuf_free(b); return r; } int sshkey_sign(const struct sshkey *key, u_char **sigp, size_t *lenp, const u_char *data, size_t datalen, u_int compat) { if (sigp != NULL) *sigp = NULL; if (lenp != NULL) *lenp = 0; if (datalen > SSH_KEY_MAX_SIGN_DATA_SIZE) return SSH_ERR_INVALID_ARGUMENT; switch (key->type) { #ifdef WITH_OPENSSL case KEY_DSA_CERT: case KEY_DSA: return ssh_dss_sign(key, sigp, lenp, data, datalen, compat); case KEY_ECDSA_CERT: case KEY_ECDSA: return ssh_ecdsa_sign(key, sigp, lenp, data, datalen, compat); case KEY_RSA_CERT: case KEY_RSA: return ssh_rsa_sign(key, sigp, lenp, data, datalen, compat); #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: return ssh_ed25519_sign(key, sigp, lenp, data, datalen, compat); default: return SSH_ERR_KEY_TYPE_UNKNOWN; } } /* * ssh_key_verify returns 0 for a correct signature and < 0 on error. */ int sshkey_verify(const struct sshkey *key, const u_char *sig, size_t siglen, const u_char *data, size_t dlen, u_int compat) { if (siglen == 0 || dlen > SSH_KEY_MAX_SIGN_DATA_SIZE) return SSH_ERR_INVALID_ARGUMENT; switch (key->type) { #ifdef WITH_OPENSSL case KEY_DSA_CERT: case KEY_DSA: return ssh_dss_verify(key, sig, siglen, data, dlen, compat); case KEY_ECDSA_CERT: case KEY_ECDSA: return ssh_ecdsa_verify(key, sig, siglen, data, dlen, compat); case KEY_RSA_CERT: case KEY_RSA: return ssh_rsa_verify(key, sig, siglen, data, dlen, compat); #endif /* WITH_OPENSSL */ case KEY_ED25519: case KEY_ED25519_CERT: return ssh_ed25519_verify(key, sig, siglen, data, dlen, compat); default: return SSH_ERR_KEY_TYPE_UNKNOWN; } } /* Converts a private to a public key */ int sshkey_demote(const struct sshkey *k, struct sshkey **dkp) { struct sshkey *pk; int ret = SSH_ERR_INTERNAL_ERROR; if (dkp != NULL) *dkp = NULL; if ((pk = calloc(1, sizeof(*pk))) == NULL) return SSH_ERR_ALLOC_FAIL; pk->type = k->type; pk->flags = k->flags; pk->ecdsa_nid = k->ecdsa_nid; pk->dsa = NULL; pk->ecdsa = NULL; pk->rsa = NULL; pk->ed25519_pk = NULL; pk->ed25519_sk = NULL; switch (k->type) { #ifdef WITH_OPENSSL case KEY_RSA_CERT: if ((ret = sshkey_cert_copy(k, pk)) != 0) goto fail; /* FALLTHROUGH */ case KEY_RSA1: case KEY_RSA: if ((pk->rsa = RSA_new()) == NULL || (pk->rsa->e = BN_dup(k->rsa->e)) == NULL || (pk->rsa->n = BN_dup(k->rsa->n)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto fail; } break; case KEY_DSA_CERT: if ((ret = sshkey_cert_copy(k, pk)) != 0) goto fail; /* FALLTHROUGH */ case KEY_DSA: if ((pk->dsa = DSA_new()) == NULL || (pk->dsa->p = BN_dup(k->dsa->p)) == NULL || (pk->dsa->q = BN_dup(k->dsa->q)) == NULL || (pk->dsa->g = BN_dup(k->dsa->g)) == NULL || (pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto fail; } break; case KEY_ECDSA_CERT: if ((ret = sshkey_cert_copy(k, pk)) != 0) goto fail; /* FALLTHROUGH */ case KEY_ECDSA: pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid); if (pk->ecdsa == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto fail; } if (EC_KEY_set_public_key(pk->ecdsa, EC_KEY_get0_public_key(k->ecdsa)) != 1) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto fail; } break; #endif /* WITH_OPENSSL */ case KEY_ED25519_CERT: if ((ret = sshkey_cert_copy(k, pk)) != 0) goto fail; /* FALLTHROUGH */ case KEY_ED25519: if (k->ed25519_pk != NULL) { if ((pk->ed25519_pk = malloc(ED25519_PK_SZ)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto fail; } memcpy(pk->ed25519_pk, k->ed25519_pk, ED25519_PK_SZ); } break; default: ret = SSH_ERR_KEY_TYPE_UNKNOWN; fail: sshkey_free(pk); return ret; } *dkp = pk; return 0; } /* Convert a plain key to their _CERT equivalent */ int sshkey_to_certified(struct sshkey *k) { int newtype; switch (k->type) { #ifdef WITH_OPENSSL case KEY_RSA: newtype = KEY_RSA_CERT; break; case KEY_DSA: newtype = KEY_DSA_CERT; break; case KEY_ECDSA: newtype = KEY_ECDSA_CERT; break; #endif /* WITH_OPENSSL */ case KEY_ED25519: newtype = KEY_ED25519_CERT; break; default: return SSH_ERR_INVALID_ARGUMENT; } if ((k->cert = cert_new()) == NULL) return SSH_ERR_ALLOC_FAIL; k->type = newtype; return 0; } /* Convert a certificate to its raw key equivalent */ int sshkey_drop_cert(struct sshkey *k) { if (!sshkey_type_is_cert(k->type)) return SSH_ERR_KEY_TYPE_UNKNOWN; cert_free(k->cert); k->cert = NULL; k->type = sshkey_type_plain(k->type); return 0; } /* Sign a certified key, (re-)generating the signed certblob. */ int sshkey_certify(struct sshkey *k, struct sshkey *ca) { struct sshbuf *principals = NULL; u_char *ca_blob = NULL, *sig_blob = NULL, nonce[32]; size_t i, ca_len, sig_len; int ret = SSH_ERR_INTERNAL_ERROR; struct sshbuf *cert; if (k == NULL || k->cert == NULL || k->cert->certblob == NULL || ca == NULL) return SSH_ERR_INVALID_ARGUMENT; if (!sshkey_is_cert(k)) return SSH_ERR_KEY_TYPE_UNKNOWN; if (!sshkey_type_is_valid_ca(ca->type)) return SSH_ERR_KEY_CERT_INVALID_SIGN_KEY; if ((ret = sshkey_to_blob(ca, &ca_blob, &ca_len)) != 0) return SSH_ERR_KEY_CERT_INVALID_SIGN_KEY; cert = k->cert->certblob; /* for readability */ sshbuf_reset(cert); if ((ret = sshbuf_put_cstring(cert, sshkey_ssh_name(k))) != 0) goto out; /* -v01 certs put nonce first */ arc4random_buf(&nonce, sizeof(nonce)); if ((ret = sshbuf_put_string(cert, nonce, sizeof(nonce))) != 0) goto out; /* XXX this substantially duplicates to_blob(); refactor */ switch (k->type) { #ifdef WITH_OPENSSL case KEY_DSA_CERT: if ((ret = sshbuf_put_bignum2(cert, k->dsa->p)) != 0 || (ret = sshbuf_put_bignum2(cert, k->dsa->q)) != 0 || (ret = sshbuf_put_bignum2(cert, k->dsa->g)) != 0 || (ret = sshbuf_put_bignum2(cert, k->dsa->pub_key)) != 0) goto out; break; case KEY_ECDSA_CERT: if ((ret = sshbuf_put_cstring(cert, sshkey_curve_nid_to_name(k->ecdsa_nid))) != 0 || (ret = sshbuf_put_ec(cert, EC_KEY_get0_public_key(k->ecdsa), EC_KEY_get0_group(k->ecdsa))) != 0) goto out; break; case KEY_RSA_CERT: if ((ret = sshbuf_put_bignum2(cert, k->rsa->e)) != 0 || (ret = sshbuf_put_bignum2(cert, k->rsa->n)) != 0) goto out; break; #endif /* WITH_OPENSSL */ case KEY_ED25519_CERT: if ((ret = sshbuf_put_string(cert, k->ed25519_pk, ED25519_PK_SZ)) != 0) goto out; break; default: ret = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((ret = sshbuf_put_u64(cert, k->cert->serial)) != 0 || (ret = sshbuf_put_u32(cert, k->cert->type)) != 0 || (ret = sshbuf_put_cstring(cert, k->cert->key_id)) != 0) goto out; if ((principals = sshbuf_new()) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } for (i = 0; i < k->cert->nprincipals; i++) { if ((ret = sshbuf_put_cstring(principals, k->cert->principals[i])) != 0) goto out; } if ((ret = sshbuf_put_stringb(cert, principals)) != 0 || (ret = sshbuf_put_u64(cert, k->cert->valid_after)) != 0 || (ret = sshbuf_put_u64(cert, k->cert->valid_before)) != 0 || (ret = sshbuf_put_stringb(cert, k->cert->critical)) != 0 || (ret = sshbuf_put_stringb(cert, k->cert->extensions)) != 0 || (ret = sshbuf_put_string(cert, NULL, 0)) != 0 || /* Reserved */ (ret = sshbuf_put_string(cert, ca_blob, ca_len)) != 0) goto out; /* Sign the whole mess */ if ((ret = sshkey_sign(ca, &sig_blob, &sig_len, sshbuf_ptr(cert), sshbuf_len(cert), 0)) != 0) goto out; /* Append signature and we are done */ if ((ret = sshbuf_put_string(cert, sig_blob, sig_len)) != 0) goto out; ret = 0; out: if (ret != 0) sshbuf_reset(cert); if (sig_blob != NULL) free(sig_blob); if (ca_blob != NULL) free(ca_blob); if (principals != NULL) sshbuf_free(principals); return ret; } int sshkey_cert_check_authority(const struct sshkey *k, int want_host, int require_principal, const char *name, const char **reason) { u_int i, principal_matches; time_t now = time(NULL); if (reason != NULL) *reason = NULL; if (want_host) { if (k->cert->type != SSH2_CERT_TYPE_HOST) { *reason = "Certificate invalid: not a host certificate"; return SSH_ERR_KEY_CERT_INVALID; } } else { if (k->cert->type != SSH2_CERT_TYPE_USER) { *reason = "Certificate invalid: not a user certificate"; return SSH_ERR_KEY_CERT_INVALID; } } if (now < 0) { /* yikes - system clock before epoch! */ *reason = "Certificate invalid: not yet valid"; return SSH_ERR_KEY_CERT_INVALID; } if ((u_int64_t)now < k->cert->valid_after) { *reason = "Certificate invalid: not yet valid"; return SSH_ERR_KEY_CERT_INVALID; } if ((u_int64_t)now >= k->cert->valid_before) { *reason = "Certificate invalid: expired"; return SSH_ERR_KEY_CERT_INVALID; } if (k->cert->nprincipals == 0) { if (require_principal) { *reason = "Certificate lacks principal list"; return SSH_ERR_KEY_CERT_INVALID; } } else if (name != NULL) { principal_matches = 0; for (i = 0; i < k->cert->nprincipals; i++) { if (strcmp(name, k->cert->principals[i]) == 0) { principal_matches = 1; break; } } if (!principal_matches) { *reason = "Certificate invalid: name is not a listed " "principal"; return SSH_ERR_KEY_CERT_INVALID; } } return 0; } int sshkey_private_serialize(const struct sshkey *key, struct sshbuf *b) { int r = SSH_ERR_INTERNAL_ERROR; if ((r = sshbuf_put_cstring(b, sshkey_ssh_name(key))) != 0) goto out; switch (key->type) { #ifdef WITH_OPENSSL case KEY_RSA: if ((r = sshbuf_put_bignum2(b, key->rsa->n)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->e)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->d)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->iqmp)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->p)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->q)) != 0) goto out; break; case KEY_RSA_CERT: if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->d)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->iqmp)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->p)) != 0 || (r = sshbuf_put_bignum2(b, key->rsa->q)) != 0) goto out; break; case KEY_DSA: if ((r = sshbuf_put_bignum2(b, key->dsa->p)) != 0 || (r = sshbuf_put_bignum2(b, key->dsa->q)) != 0 || (r = sshbuf_put_bignum2(b, key->dsa->g)) != 0 || (r = sshbuf_put_bignum2(b, key->dsa->pub_key)) != 0 || (r = sshbuf_put_bignum2(b, key->dsa->priv_key)) != 0) goto out; break; case KEY_DSA_CERT: if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 || (r = sshbuf_put_bignum2(b, key->dsa->priv_key)) != 0) goto out; break; case KEY_ECDSA: if ((r = sshbuf_put_cstring(b, sshkey_curve_nid_to_name(key->ecdsa_nid))) != 0 || (r = sshbuf_put_eckey(b, key->ecdsa)) != 0 || (r = sshbuf_put_bignum2(b, EC_KEY_get0_private_key(key->ecdsa))) != 0) goto out; break; case KEY_ECDSA_CERT: if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 || (r = sshbuf_put_bignum2(b, EC_KEY_get0_private_key(key->ecdsa))) != 0) goto out; break; #endif /* WITH_OPENSSL */ case KEY_ED25519: if ((r = sshbuf_put_string(b, key->ed25519_pk, ED25519_PK_SZ)) != 0 || (r = sshbuf_put_string(b, key->ed25519_sk, ED25519_SK_SZ)) != 0) goto out; break; case KEY_ED25519_CERT: if (key->cert == NULL || sshbuf_len(key->cert->certblob) == 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_put_stringb(b, key->cert->certblob)) != 0 || (r = sshbuf_put_string(b, key->ed25519_pk, ED25519_PK_SZ)) != 0 || (r = sshbuf_put_string(b, key->ed25519_sk, ED25519_SK_SZ)) != 0) goto out; break; default: r = SSH_ERR_INVALID_ARGUMENT; goto out; } /* success */ r = 0; out: return r; } int sshkey_private_deserialize(struct sshbuf *buf, struct sshkey **kp) { char *tname = NULL, *curve = NULL; struct sshkey *k = NULL; size_t pklen = 0, sklen = 0; int type, r = SSH_ERR_INTERNAL_ERROR; u_char *ed25519_pk = NULL, *ed25519_sk = NULL; #ifdef WITH_OPENSSL BIGNUM *exponent = NULL; #endif /* WITH_OPENSSL */ if (kp != NULL) *kp = NULL; if ((r = sshbuf_get_cstring(buf, &tname, NULL)) != 0) goto out; type = sshkey_type_from_name(tname); switch (type) { #ifdef WITH_OPENSSL case KEY_DSA: if ((k = sshkey_new_private(type)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((r = sshbuf_get_bignum2(buf, k->dsa->p)) != 0 || (r = sshbuf_get_bignum2(buf, k->dsa->q)) != 0 || (r = sshbuf_get_bignum2(buf, k->dsa->g)) != 0 || (r = sshbuf_get_bignum2(buf, k->dsa->pub_key)) != 0 || (r = sshbuf_get_bignum2(buf, k->dsa->priv_key)) != 0) goto out; break; case KEY_DSA_CERT: if ((r = sshkey_froms(buf, &k)) != 0 || (r = sshkey_add_private(k)) != 0 || (r = sshbuf_get_bignum2(buf, k->dsa->priv_key)) != 0) goto out; break; case KEY_ECDSA: if ((k = sshkey_new_private(type)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((k->ecdsa_nid = sshkey_ecdsa_nid_from_name(tname)) == -1) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_get_cstring(buf, &curve, NULL)) != 0) goto out; if (k->ecdsa_nid != sshkey_curve_name_to_nid(curve)) { r = SSH_ERR_EC_CURVE_MISMATCH; goto out; } k->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid); if (k->ecdsa == NULL || (exponent = BN_new()) == NULL) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if ((r = sshbuf_get_eckey(buf, k->ecdsa)) != 0 || (r = sshbuf_get_bignum2(buf, exponent))) goto out; if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if ((r = sshkey_ec_validate_public(EC_KEY_get0_group(k->ecdsa), EC_KEY_get0_public_key(k->ecdsa)) != 0) || (r = sshkey_ec_validate_private(k->ecdsa)) != 0) goto out; break; case KEY_ECDSA_CERT: if ((exponent = BN_new()) == NULL) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if ((r = sshkey_froms(buf, &k)) != 0 || (r = sshkey_add_private(k)) != 0 || (r = sshbuf_get_bignum2(buf, exponent)) != 0) goto out; if (EC_KEY_set_private_key(k->ecdsa, exponent) != 1) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if ((r = sshkey_ec_validate_public(EC_KEY_get0_group(k->ecdsa), EC_KEY_get0_public_key(k->ecdsa)) != 0) || (r = sshkey_ec_validate_private(k->ecdsa)) != 0) goto out; break; case KEY_RSA: if ((k = sshkey_new_private(type)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((r = sshbuf_get_bignum2(buf, k->rsa->n)) != 0 || (r = sshbuf_get_bignum2(buf, k->rsa->e)) != 0 || (r = sshbuf_get_bignum2(buf, k->rsa->d)) != 0 || (r = sshbuf_get_bignum2(buf, k->rsa->iqmp)) != 0 || (r = sshbuf_get_bignum2(buf, k->rsa->p)) != 0 || (r = sshbuf_get_bignum2(buf, k->rsa->q)) != 0 || (r = rsa_generate_additional_parameters(k->rsa)) != 0) goto out; break; case KEY_RSA_CERT: if ((r = sshkey_froms(buf, &k)) != 0 || (r = sshkey_add_private(k)) != 0 || (r = sshbuf_get_bignum2(buf, k->rsa->d) != 0) || (r = sshbuf_get_bignum2(buf, k->rsa->iqmp) != 0) || (r = sshbuf_get_bignum2(buf, k->rsa->p) != 0) || (r = sshbuf_get_bignum2(buf, k->rsa->q) != 0) || (r = rsa_generate_additional_parameters(k->rsa)) != 0) goto out; break; #endif /* WITH_OPENSSL */ case KEY_ED25519: if ((k = sshkey_new_private(type)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((r = sshbuf_get_string(buf, &ed25519_pk, &pklen)) != 0 || (r = sshbuf_get_string(buf, &ed25519_sk, &sklen)) != 0) goto out; if (pklen != ED25519_PK_SZ || sklen != ED25519_SK_SZ) { r = SSH_ERR_INVALID_FORMAT; goto out; } k->ed25519_pk = ed25519_pk; k->ed25519_sk = ed25519_sk; ed25519_pk = ed25519_sk = NULL; break; case KEY_ED25519_CERT: if ((r = sshkey_froms(buf, &k)) != 0 || (r = sshkey_add_private(k)) != 0 || (r = sshbuf_get_string(buf, &ed25519_pk, &pklen)) != 0 || (r = sshbuf_get_string(buf, &ed25519_sk, &sklen)) != 0) goto out; if (pklen != ED25519_PK_SZ || sklen != ED25519_SK_SZ) { r = SSH_ERR_INVALID_FORMAT; goto out; } k->ed25519_pk = ed25519_pk; k->ed25519_sk = ed25519_sk; ed25519_pk = ed25519_sk = NULL; break; default: r = SSH_ERR_KEY_TYPE_UNKNOWN; goto out; } #ifdef WITH_OPENSSL /* enable blinding */ switch (k->type) { case KEY_RSA: case KEY_RSA_CERT: case KEY_RSA1: if (RSA_blinding_on(k->rsa, NULL) != 1) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } break; } #endif /* WITH_OPENSSL */ /* success */ r = 0; if (kp != NULL) { *kp = k; k = NULL; } out: free(tname); free(curve); #ifdef WITH_OPENSSL if (exponent != NULL) BN_clear_free(exponent); #endif /* WITH_OPENSSL */ sshkey_free(k); if (ed25519_pk != NULL) { explicit_bzero(ed25519_pk, pklen); free(ed25519_pk); } if (ed25519_sk != NULL) { explicit_bzero(ed25519_sk, sklen); free(ed25519_sk); } return r; } #ifdef WITH_OPENSSL int sshkey_ec_validate_public(const EC_GROUP *group, const EC_POINT *public) { BN_CTX *bnctx; EC_POINT *nq = NULL; BIGNUM *order, *x, *y, *tmp; int ret = SSH_ERR_KEY_INVALID_EC_VALUE; if ((bnctx = BN_CTX_new()) == NULL) return SSH_ERR_ALLOC_FAIL; BN_CTX_start(bnctx); /* * We shouldn't ever hit this case because bignum_get_ecpoint() * refuses to load GF2m points. */ if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_prime_field) goto out; /* Q != infinity */ if (EC_POINT_is_at_infinity(group, public)) goto out; if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL || (order = BN_CTX_get(bnctx)) == NULL || (tmp = BN_CTX_get(bnctx)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } /* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */ if (EC_GROUP_get_order(group, order, bnctx) != 1 || EC_POINT_get_affine_coordinates_GFp(group, public, x, y, bnctx) != 1) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if (BN_num_bits(x) <= BN_num_bits(order) / 2 || BN_num_bits(y) <= BN_num_bits(order) / 2) goto out; /* nQ == infinity (n == order of subgroup) */ if ((nq = EC_POINT_new(group)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if (EC_POINT_is_at_infinity(group, nq) != 1) goto out; /* x < order - 1, y < order - 1 */ if (!BN_sub(tmp, order, BN_value_one())) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if (BN_cmp(x, tmp) >= 0 || BN_cmp(y, tmp) >= 0) goto out; ret = 0; out: BN_CTX_free(bnctx); if (nq != NULL) EC_POINT_free(nq); return ret; } int sshkey_ec_validate_private(const EC_KEY *key) { BN_CTX *bnctx; BIGNUM *order, *tmp; int ret = SSH_ERR_KEY_INVALID_EC_VALUE; if ((bnctx = BN_CTX_new()) == NULL) return SSH_ERR_ALLOC_FAIL; BN_CTX_start(bnctx); if ((order = BN_CTX_get(bnctx)) == NULL || (tmp = BN_CTX_get(bnctx)) == NULL) { ret = SSH_ERR_ALLOC_FAIL; goto out; } /* log2(private) > log2(order)/2 */ if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if (BN_num_bits(EC_KEY_get0_private_key(key)) <= BN_num_bits(order) / 2) goto out; /* private < order - 1 */ if (!BN_sub(tmp, order, BN_value_one())) { ret = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) goto out; ret = 0; out: BN_CTX_free(bnctx); return ret; } void sshkey_dump_ec_point(const EC_GROUP *group, const EC_POINT *point) { BIGNUM *x, *y; BN_CTX *bnctx; if (point == NULL) { fputs("point=(NULL)\n", stderr); return; } if ((bnctx = BN_CTX_new()) == NULL) { fprintf(stderr, "%s: BN_CTX_new failed\n", __func__); return; } BN_CTX_start(bnctx); if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL) { fprintf(stderr, "%s: BN_CTX_get failed\n", __func__); return; } if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != NID_X9_62_prime_field) { fprintf(stderr, "%s: group is not a prime field\n", __func__); return; } if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1) { fprintf(stderr, "%s: EC_POINT_get_affine_coordinates_GFp\n", __func__); return; } fputs("x=", stderr); BN_print_fp(stderr, x); fputs("\ny=", stderr); BN_print_fp(stderr, y); fputs("\n", stderr); BN_CTX_free(bnctx); } void sshkey_dump_ec_key(const EC_KEY *key) { const BIGNUM *exponent; sshkey_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key)); fputs("exponent=", stderr); if ((exponent = EC_KEY_get0_private_key(key)) == NULL) fputs("(NULL)", stderr); else BN_print_fp(stderr, EC_KEY_get0_private_key(key)); fputs("\n", stderr); } #endif /* WITH_OPENSSL */ static int sshkey_private_to_blob2(const struct sshkey *prv, struct sshbuf *blob, const char *passphrase, const char *comment, const char *ciphername, int rounds) { u_char *cp, *key = NULL, *pubkeyblob = NULL; u_char salt[SALT_LEN]; char *b64 = NULL; size_t i, pubkeylen, keylen, ivlen, blocksize, authlen; u_int check; int r = SSH_ERR_INTERNAL_ERROR; struct sshcipher_ctx ciphercontext; const struct sshcipher *cipher; const char *kdfname = KDFNAME; struct sshbuf *encoded = NULL, *encrypted = NULL, *kdf = NULL; memset(&ciphercontext, 0, sizeof(ciphercontext)); if (rounds <= 0) rounds = DEFAULT_ROUNDS; if (passphrase == NULL || !strlen(passphrase)) { ciphername = "none"; kdfname = "none"; } else if (ciphername == NULL) ciphername = DEFAULT_CIPHERNAME; else if (cipher_number(ciphername) != SSH_CIPHER_SSH2) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((cipher = cipher_by_name(ciphername)) == NULL) { r = SSH_ERR_INTERNAL_ERROR; goto out; } if ((kdf = sshbuf_new()) == NULL || (encoded = sshbuf_new()) == NULL || (encrypted = sshbuf_new()) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } blocksize = cipher_blocksize(cipher); keylen = cipher_keylen(cipher); ivlen = cipher_ivlen(cipher); authlen = cipher_authlen(cipher); if ((key = calloc(1, keylen + ivlen)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if (strcmp(kdfname, "bcrypt") == 0) { arc4random_buf(salt, SALT_LEN); if (bcrypt_pbkdf(passphrase, strlen(passphrase), salt, SALT_LEN, key, keylen + ivlen, rounds) < 0) { r = SSH_ERR_INVALID_ARGUMENT; goto out; } if ((r = sshbuf_put_string(kdf, salt, SALT_LEN)) != 0 || (r = sshbuf_put_u32(kdf, rounds)) != 0) goto out; } else if (strcmp(kdfname, "none") != 0) { /* Unsupported KDF type */ r = SSH_ERR_KEY_UNKNOWN_CIPHER; goto out; } if ((r = cipher_init(&ciphercontext, cipher, key, keylen, key + keylen, ivlen, 1)) != 0) goto out; if ((r = sshbuf_put(encoded, AUTH_MAGIC, sizeof(AUTH_MAGIC))) != 0 || (r = sshbuf_put_cstring(encoded, ciphername)) != 0 || (r = sshbuf_put_cstring(encoded, kdfname)) != 0 || (r = sshbuf_put_stringb(encoded, kdf)) != 0 || (r = sshbuf_put_u32(encoded, 1)) != 0 || /* number of keys */ (r = sshkey_to_blob(prv, &pubkeyblob, &pubkeylen)) != 0 || (r = sshbuf_put_string(encoded, pubkeyblob, pubkeylen)) != 0) goto out; /* set up the buffer that will be encrypted */ /* Random check bytes */ check = arc4random(); if ((r = sshbuf_put_u32(encrypted, check)) != 0 || (r = sshbuf_put_u32(encrypted, check)) != 0) goto out; /* append private key and comment*/ if ((r = sshkey_private_serialize(prv, encrypted)) != 0 || (r = sshbuf_put_cstring(encrypted, comment)) != 0) goto out; /* padding */ i = 0; while (sshbuf_len(encrypted) % blocksize) { if ((r = sshbuf_put_u8(encrypted, ++i & 0xff)) != 0) goto out; } /* length in destination buffer */ if ((r = sshbuf_put_u32(encoded, sshbuf_len(encrypted))) != 0) goto out; /* encrypt */ if ((r = sshbuf_reserve(encoded, sshbuf_len(encrypted) + authlen, &cp)) != 0) goto out; if ((r = cipher_crypt(&ciphercontext, 0, cp, sshbuf_ptr(encrypted), sshbuf_len(encrypted), 0, authlen)) != 0) goto out; /* uuencode */ if ((b64 = sshbuf_dtob64(encoded)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } sshbuf_reset(blob); if ((r = sshbuf_put(blob, MARK_BEGIN, MARK_BEGIN_LEN)) != 0) goto out; for (i = 0; i < strlen(b64); i++) { if ((r = sshbuf_put_u8(blob, b64[i])) != 0) goto out; /* insert line breaks */ if (i % 70 == 69 && (r = sshbuf_put_u8(blob, '\n')) != 0) goto out; } if (i % 70 != 69 && (r = sshbuf_put_u8(blob, '\n')) != 0) goto out; if ((r = sshbuf_put(blob, MARK_END, MARK_END_LEN)) != 0) goto out; /* success */ r = 0; out: sshbuf_free(kdf); sshbuf_free(encoded); sshbuf_free(encrypted); cipher_cleanup(&ciphercontext); explicit_bzero(salt, sizeof(salt)); if (key != NULL) { explicit_bzero(key, keylen + ivlen); free(key); } if (pubkeyblob != NULL) { explicit_bzero(pubkeyblob, pubkeylen); free(pubkeyblob); } if (b64 != NULL) { explicit_bzero(b64, strlen(b64)); free(b64); } return r; } static int sshkey_parse_private2(struct sshbuf *blob, int type, const char *passphrase, struct sshkey **keyp, char **commentp) { char *comment = NULL, *ciphername = NULL, *kdfname = NULL; const struct sshcipher *cipher = NULL; const u_char *cp; int r = SSH_ERR_INTERNAL_ERROR; size_t encoded_len; size_t i, keylen = 0, ivlen = 0, authlen = 0, slen = 0; struct sshbuf *encoded = NULL, *decoded = NULL; struct sshbuf *kdf = NULL, *decrypted = NULL; struct sshcipher_ctx ciphercontext; struct sshkey *k = NULL; u_char *key = NULL, *salt = NULL, *dp, pad, last; u_int blocksize, rounds, nkeys, encrypted_len, check1, check2; memset(&ciphercontext, 0, sizeof(ciphercontext)); if (keyp != NULL) *keyp = NULL; if (commentp != NULL) *commentp = NULL; if ((encoded = sshbuf_new()) == NULL || (decoded = sshbuf_new()) == NULL || (decrypted = sshbuf_new()) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } /* check preamble */ cp = sshbuf_ptr(blob); encoded_len = sshbuf_len(blob); if (encoded_len < (MARK_BEGIN_LEN + MARK_END_LEN) || memcmp(cp, MARK_BEGIN, MARK_BEGIN_LEN) != 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } cp += MARK_BEGIN_LEN; encoded_len -= MARK_BEGIN_LEN; /* Look for end marker, removing whitespace as we go */ while (encoded_len > 0) { if (*cp != '\n' && *cp != '\r') { if ((r = sshbuf_put_u8(encoded, *cp)) != 0) goto out; } last = *cp; encoded_len--; cp++; if (last == '\n') { if (encoded_len >= MARK_END_LEN && memcmp(cp, MARK_END, MARK_END_LEN) == 0) { /* \0 terminate */ if ((r = sshbuf_put_u8(encoded, 0)) != 0) goto out; break; } } } if (encoded_len == 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } /* decode base64 */ if ((r = sshbuf_b64tod(decoded, (char *)sshbuf_ptr(encoded))) != 0) goto out; /* check magic */ if (sshbuf_len(decoded) < sizeof(AUTH_MAGIC) || memcmp(sshbuf_ptr(decoded), AUTH_MAGIC, sizeof(AUTH_MAGIC))) { r = SSH_ERR_INVALID_FORMAT; goto out; } /* parse public portion of key */ if ((r = sshbuf_consume(decoded, sizeof(AUTH_MAGIC))) != 0 || (r = sshbuf_get_cstring(decoded, &ciphername, NULL)) != 0 || (r = sshbuf_get_cstring(decoded, &kdfname, NULL)) != 0 || (r = sshbuf_froms(decoded, &kdf)) != 0 || (r = sshbuf_get_u32(decoded, &nkeys)) != 0 || (r = sshbuf_skip_string(decoded)) != 0 || /* pubkey */ (r = sshbuf_get_u32(decoded, &encrypted_len)) != 0) goto out; if ((cipher = cipher_by_name(ciphername)) == NULL) { r = SSH_ERR_KEY_UNKNOWN_CIPHER; goto out; } if ((passphrase == NULL || strlen(passphrase) == 0) && strcmp(ciphername, "none") != 0) { /* passphrase required */ r = SSH_ERR_KEY_WRONG_PASSPHRASE; goto out; } if (strcmp(kdfname, "none") != 0 && strcmp(kdfname, "bcrypt") != 0) { r = SSH_ERR_KEY_UNKNOWN_CIPHER; goto out; } if (!strcmp(kdfname, "none") && strcmp(ciphername, "none") != 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } if (nkeys != 1) { /* XXX only one key supported */ r = SSH_ERR_INVALID_FORMAT; goto out; } /* check size of encrypted key blob */ blocksize = cipher_blocksize(cipher); if (encrypted_len < blocksize || (encrypted_len % blocksize) != 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } /* setup key */ keylen = cipher_keylen(cipher); ivlen = cipher_ivlen(cipher); authlen = cipher_authlen(cipher); if ((key = calloc(1, keylen + ivlen)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if (strcmp(kdfname, "bcrypt") == 0) { if ((r = sshbuf_get_string(kdf, &salt, &slen)) != 0 || (r = sshbuf_get_u32(kdf, &rounds)) != 0) goto out; if (bcrypt_pbkdf(passphrase, strlen(passphrase), salt, slen, key, keylen + ivlen, rounds) < 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } } /* check that an appropriate amount of auth data is present */ if (sshbuf_len(decoded) < encrypted_len + authlen) { r = SSH_ERR_INVALID_FORMAT; goto out; } /* decrypt private portion of key */ if ((r = sshbuf_reserve(decrypted, encrypted_len, &dp)) != 0 || (r = cipher_init(&ciphercontext, cipher, key, keylen, key + keylen, ivlen, 0)) != 0) goto out; if ((r = cipher_crypt(&ciphercontext, 0, dp, sshbuf_ptr(decoded), encrypted_len, 0, authlen)) != 0) { /* an integrity error here indicates an incorrect passphrase */ if (r == SSH_ERR_MAC_INVALID) r = SSH_ERR_KEY_WRONG_PASSPHRASE; goto out; } if ((r = sshbuf_consume(decoded, encrypted_len + authlen)) != 0) goto out; /* there should be no trailing data */ if (sshbuf_len(decoded) != 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } /* check check bytes */ if ((r = sshbuf_get_u32(decrypted, &check1)) != 0 || (r = sshbuf_get_u32(decrypted, &check2)) != 0) goto out; if (check1 != check2) { r = SSH_ERR_KEY_WRONG_PASSPHRASE; goto out; } /* Load the private key and comment */ if ((r = sshkey_private_deserialize(decrypted, &k)) != 0 || (r = sshbuf_get_cstring(decrypted, &comment, NULL)) != 0) goto out; /* Check deterministic padding */ i = 0; while (sshbuf_len(decrypted)) { if ((r = sshbuf_get_u8(decrypted, &pad)) != 0) goto out; if (pad != (++i & 0xff)) { r = SSH_ERR_INVALID_FORMAT; goto out; } } /* XXX decode pubkey and check against private */ /* success */ r = 0; if (keyp != NULL) { *keyp = k; k = NULL; } if (commentp != NULL) { *commentp = comment; comment = NULL; } out: pad = 0; cipher_cleanup(&ciphercontext); free(ciphername); free(kdfname); free(comment); if (salt != NULL) { explicit_bzero(salt, slen); free(salt); } if (key != NULL) { explicit_bzero(key, keylen + ivlen); free(key); } sshbuf_free(encoded); sshbuf_free(decoded); sshbuf_free(kdf); sshbuf_free(decrypted); sshkey_free(k); return r; } #if WITH_SSH1 /* * Serialises the authentication (private) key to a blob, encrypting it with * passphrase. The identification of the blob (lowest 64 bits of n) will * precede the key to provide identification of the key without needing a * passphrase. */ static int sshkey_private_rsa1_to_blob(struct sshkey *key, struct sshbuf *blob, const char *passphrase, const char *comment) { struct sshbuf *buffer = NULL, *encrypted = NULL; u_char buf[8]; int r, cipher_num; struct sshcipher_ctx ciphercontext; const struct sshcipher *cipher; u_char *cp; /* * If the passphrase is empty, use SSH_CIPHER_NONE to ease converting * to another cipher; otherwise use SSH_AUTHFILE_CIPHER. */ cipher_num = (strcmp(passphrase, "") == 0) ? SSH_CIPHER_NONE : SSH_CIPHER_3DES; if ((cipher = cipher_by_number(cipher_num)) == NULL) return SSH_ERR_INTERNAL_ERROR; /* This buffer is used to build the secret part of the private key. */ if ((buffer = sshbuf_new()) == NULL) return SSH_ERR_ALLOC_FAIL; /* Put checkbytes for checking passphrase validity. */ if ((r = sshbuf_reserve(buffer, 4, &cp)) != 0) goto out; arc4random_buf(cp, 2); memcpy(cp + 2, cp, 2); /* * Store the private key (n and e will not be stored because they * will be stored in plain text, and storing them also in encrypted * format would just give known plaintext). * Note: q and p are stored in reverse order to SSL. */ if ((r = sshbuf_put_bignum1(buffer, key->rsa->d)) != 0 || (r = sshbuf_put_bignum1(buffer, key->rsa->iqmp)) != 0 || (r = sshbuf_put_bignum1(buffer, key->rsa->q)) != 0 || (r = sshbuf_put_bignum1(buffer, key->rsa->p)) != 0) goto out; /* Pad the part to be encrypted to a size that is a multiple of 8. */ explicit_bzero(buf, 8); if ((r = sshbuf_put(buffer, buf, 8 - (sshbuf_len(buffer) % 8))) != 0) goto out; /* This buffer will be used to contain the data in the file. */ if ((encrypted = sshbuf_new()) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } /* First store keyfile id string. */ if ((r = sshbuf_put(encrypted, LEGACY_BEGIN, sizeof(LEGACY_BEGIN))) != 0) goto out; /* Store cipher type and "reserved" field. */ if ((r = sshbuf_put_u8(encrypted, cipher_num)) != 0 || (r = sshbuf_put_u32(encrypted, 0)) != 0) goto out; /* Store public key. This will be in plain text. */ if ((r = sshbuf_put_u32(encrypted, BN_num_bits(key->rsa->n))) != 0 || (r = sshbuf_put_bignum1(encrypted, key->rsa->n) != 0) || (r = sshbuf_put_bignum1(encrypted, key->rsa->e) != 0) || (r = sshbuf_put_cstring(encrypted, comment) != 0)) goto out; /* Allocate space for the private part of the key in the buffer. */ if ((r = sshbuf_reserve(encrypted, sshbuf_len(buffer), &cp)) != 0) goto out; if ((r = cipher_set_key_string(&ciphercontext, cipher, passphrase, CIPHER_ENCRYPT)) != 0) goto out; if ((r = cipher_crypt(&ciphercontext, 0, cp, sshbuf_ptr(buffer), sshbuf_len(buffer), 0, 0)) != 0) goto out; if ((r = cipher_cleanup(&ciphercontext)) != 0) goto out; r = sshbuf_putb(blob, encrypted); out: explicit_bzero(&ciphercontext, sizeof(ciphercontext)); explicit_bzero(buf, sizeof(buf)); if (buffer != NULL) sshbuf_free(buffer); if (encrypted != NULL) sshbuf_free(encrypted); return r; } #endif /* WITH_SSH1 */ #ifdef WITH_OPENSSL /* convert SSH v2 key in OpenSSL PEM format */ static int sshkey_private_pem_to_blob(struct sshkey *key, struct sshbuf *blob, const char *_passphrase, const char *comment) { int success, r; int blen, len = strlen(_passphrase); u_char *passphrase = (len > 0) ? (u_char *)_passphrase : NULL; const EVP_CIPHER *cipher = (len > 0) ? EVP_aes_128_cbc() : NULL; const u_char *bptr; BIO *bio = NULL; if (len > 0 && len <= 4) return SSH_ERR_PASSPHRASE_TOO_SHORT; if ((bio = BIO_new(BIO_s_mem())) == NULL) return SSH_ERR_ALLOC_FAIL; switch (key->type) { case KEY_DSA: success = PEM_write_bio_DSAPrivateKey(bio, key->dsa, cipher, passphrase, len, NULL, NULL); break; case KEY_ECDSA: success = PEM_write_bio_ECPrivateKey(bio, key->ecdsa, cipher, passphrase, len, NULL, NULL); break; case KEY_RSA: success = PEM_write_bio_RSAPrivateKey(bio, key->rsa, cipher, passphrase, len, NULL, NULL); break; default: success = 0; break; } if (success == 0) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } if ((blen = BIO_get_mem_data(bio, &bptr)) <= 0) { r = SSH_ERR_INTERNAL_ERROR; goto out; } if ((r = sshbuf_put(blob, bptr, blen)) != 0) goto out; r = 0; out: BIO_free(bio); return r; } #endif /* WITH_OPENSSL */ /* Serialise "key" to buffer "blob" */ int sshkey_private_to_fileblob(struct sshkey *key, struct sshbuf *blob, const char *passphrase, const char *comment, int force_new_format, const char *new_format_cipher, int new_format_rounds) { switch (key->type) { #ifdef WITH_SSH1 case KEY_RSA1: return sshkey_private_rsa1_to_blob(key, blob, passphrase, comment); #endif /* WITH_SSH1 */ #ifdef WITH_OPENSSL case KEY_DSA: case KEY_ECDSA: case KEY_RSA: if (force_new_format) { return sshkey_private_to_blob2(key, blob, passphrase, comment, new_format_cipher, new_format_rounds); } return sshkey_private_pem_to_blob(key, blob, passphrase, comment); #endif /* WITH_OPENSSL */ case KEY_ED25519: return sshkey_private_to_blob2(key, blob, passphrase, comment, new_format_cipher, new_format_rounds); default: return SSH_ERR_KEY_TYPE_UNKNOWN; } } #ifdef WITH_SSH1 /* * Parse the public, unencrypted portion of a RSA1 key. */ int sshkey_parse_public_rsa1_fileblob(struct sshbuf *blob, struct sshkey **keyp, char **commentp) { int r; struct sshkey *pub = NULL; struct sshbuf *copy = NULL; if (keyp != NULL) *keyp = NULL; if (commentp != NULL) *commentp = NULL; /* Check that it is at least big enough to contain the ID string. */ if (sshbuf_len(blob) < sizeof(LEGACY_BEGIN)) return SSH_ERR_INVALID_FORMAT; /* * Make sure it begins with the id string. Consume the id string * from the buffer. */ if (memcmp(sshbuf_ptr(blob), LEGACY_BEGIN, sizeof(LEGACY_BEGIN)) != 0) return SSH_ERR_INVALID_FORMAT; /* Make a working copy of the keyblob and skip past the magic */ if ((copy = sshbuf_fromb(blob)) == NULL) return SSH_ERR_ALLOC_FAIL; if ((r = sshbuf_consume(copy, sizeof(LEGACY_BEGIN))) != 0) goto out; /* Skip cipher type, reserved data and key bits. */ if ((r = sshbuf_get_u8(copy, NULL)) != 0 || /* cipher type */ (r = sshbuf_get_u32(copy, NULL)) != 0 || /* reserved */ (r = sshbuf_get_u32(copy, NULL)) != 0) /* key bits */ goto out; /* Read the public key from the buffer. */ if ((pub = sshkey_new(KEY_RSA1)) == NULL || (r = sshbuf_get_bignum1(copy, pub->rsa->n)) != 0 || (r = sshbuf_get_bignum1(copy, pub->rsa->e)) != 0) goto out; /* Finally, the comment */ if ((r = sshbuf_get_string(copy, (u_char**)commentp, NULL)) != 0) goto out; /* The encrypted private part is not parsed by this function. */ r = 0; if (keyp != NULL) *keyp = pub; else sshkey_free(pub); pub = NULL; out: if (copy != NULL) sshbuf_free(copy); if (pub != NULL) sshkey_free(pub); return r; } static int sshkey_parse_private_rsa1(struct sshbuf *blob, const char *passphrase, struct sshkey **keyp, char **commentp) { int r; u_int16_t check1, check2; u_int8_t cipher_type; struct sshbuf *decrypted = NULL, *copy = NULL; u_char *cp; char *comment = NULL; struct sshcipher_ctx ciphercontext; const struct sshcipher *cipher; struct sshkey *prv = NULL; *keyp = NULL; if (commentp != NULL) *commentp = NULL; /* Check that it is at least big enough to contain the ID string. */ if (sshbuf_len(blob) < sizeof(LEGACY_BEGIN)) return SSH_ERR_INVALID_FORMAT; /* * Make sure it begins with the id string. Consume the id string * from the buffer. */ if (memcmp(sshbuf_ptr(blob), LEGACY_BEGIN, sizeof(LEGACY_BEGIN)) != 0) return SSH_ERR_INVALID_FORMAT; if ((prv = sshkey_new_private(KEY_RSA1)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((copy = sshbuf_fromb(blob)) == NULL || (decrypted = sshbuf_new()) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((r = sshbuf_consume(copy, sizeof(LEGACY_BEGIN))) != 0) goto out; /* Read cipher type. */ if ((r = sshbuf_get_u8(copy, &cipher_type)) != 0 || (r = sshbuf_get_u32(copy, NULL)) != 0) /* reserved */ goto out; /* Read the public key and comment from the buffer. */ if ((r = sshbuf_get_u32(copy, NULL)) != 0 || /* key bits */ (r = sshbuf_get_bignum1(copy, prv->rsa->n)) != 0 || (r = sshbuf_get_bignum1(copy, prv->rsa->e)) != 0 || (r = sshbuf_get_cstring(copy, &comment, NULL)) != 0) goto out; /* Check that it is a supported cipher. */ cipher = cipher_by_number(cipher_type); if (cipher == NULL) { r = SSH_ERR_KEY_UNKNOWN_CIPHER; goto out; } /* Initialize space for decrypted data. */ if ((r = sshbuf_reserve(decrypted, sshbuf_len(copy), &cp)) != 0) goto out; /* Rest of the buffer is encrypted. Decrypt it using the passphrase. */ if ((r = cipher_set_key_string(&ciphercontext, cipher, passphrase, CIPHER_DECRYPT)) != 0) goto out; if ((r = cipher_crypt(&ciphercontext, 0, cp, sshbuf_ptr(copy), sshbuf_len(copy), 0, 0)) != 0) { cipher_cleanup(&ciphercontext); goto out; } if ((r = cipher_cleanup(&ciphercontext)) != 0) goto out; if ((r = sshbuf_get_u16(decrypted, &check1)) != 0 || (r = sshbuf_get_u16(decrypted, &check2)) != 0) goto out; if (check1 != check2) { r = SSH_ERR_KEY_WRONG_PASSPHRASE; goto out; } /* Read the rest of the private key. */ if ((r = sshbuf_get_bignum1(decrypted, prv->rsa->d)) != 0 || (r = sshbuf_get_bignum1(decrypted, prv->rsa->iqmp)) != 0 || (r = sshbuf_get_bignum1(decrypted, prv->rsa->q)) != 0 || (r = sshbuf_get_bignum1(decrypted, prv->rsa->p)) != 0) goto out; /* calculate p-1 and q-1 */ if ((r = rsa_generate_additional_parameters(prv->rsa)) != 0) goto out; /* enable blinding */ if (RSA_blinding_on(prv->rsa, NULL) != 1) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } r = 0; *keyp = prv; prv = NULL; if (commentp != NULL) { *commentp = comment; comment = NULL; } out: explicit_bzero(&ciphercontext, sizeof(ciphercontext)); if (comment != NULL) free(comment); if (prv != NULL) sshkey_free(prv); if (copy != NULL) sshbuf_free(copy); if (decrypted != NULL) sshbuf_free(decrypted); return r; } #endif /* WITH_SSH1 */ #ifdef WITH_OPENSSL static int sshkey_parse_private_pem_fileblob(struct sshbuf *blob, int type, const char *passphrase, struct sshkey **keyp) { EVP_PKEY *pk = NULL; struct sshkey *prv = NULL; BIO *bio = NULL; int r; *keyp = NULL; if ((bio = BIO_new(BIO_s_mem())) == NULL || sshbuf_len(blob) > INT_MAX) return SSH_ERR_ALLOC_FAIL; if (BIO_write(bio, sshbuf_ptr(blob), sshbuf_len(blob)) != (int)sshbuf_len(blob)) { r = SSH_ERR_ALLOC_FAIL; goto out; } if ((pk = PEM_read_bio_PrivateKey(bio, NULL, NULL, (char *)passphrase)) == NULL) { r = SSH_ERR_KEY_WRONG_PASSPHRASE; goto out; } if (pk->type == EVP_PKEY_RSA && (type == KEY_UNSPEC || type == KEY_RSA)) { if ((prv = sshkey_new(KEY_UNSPEC)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } prv->rsa = EVP_PKEY_get1_RSA(pk); prv->type = KEY_RSA; #ifdef DEBUG_PK RSA_print_fp(stderr, prv->rsa, 8); #endif if (RSA_blinding_on(prv->rsa, NULL) != 1) { r = SSH_ERR_LIBCRYPTO_ERROR; goto out; } } else if (pk->type == EVP_PKEY_DSA && (type == KEY_UNSPEC || type == KEY_DSA)) { if ((prv = sshkey_new(KEY_UNSPEC)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } prv->dsa = EVP_PKEY_get1_DSA(pk); prv->type = KEY_DSA; #ifdef DEBUG_PK DSA_print_fp(stderr, prv->dsa, 8); #endif } else if (pk->type == EVP_PKEY_EC && (type == KEY_UNSPEC || type == KEY_ECDSA)) { if ((prv = sshkey_new(KEY_UNSPEC)) == NULL) { r = SSH_ERR_ALLOC_FAIL; goto out; } prv->ecdsa = EVP_PKEY_get1_EC_KEY(pk); prv->type = KEY_ECDSA; prv->ecdsa_nid = sshkey_ecdsa_key_to_nid(prv->ecdsa); if (prv->ecdsa_nid == -1 || sshkey_curve_nid_to_name(prv->ecdsa_nid) == NULL || sshkey_ec_validate_public(EC_KEY_get0_group(prv->ecdsa), EC_KEY_get0_public_key(prv->ecdsa)) != 0 || sshkey_ec_validate_private(prv->ecdsa) != 0) { r = SSH_ERR_INVALID_FORMAT; goto out; } #ifdef DEBUG_PK if (prv != NULL && prv->ecdsa != NULL) sshkey_dump_ec_key(prv->ecdsa); #endif } else { r = SSH_ERR_INVALID_FORMAT; goto out; } r = 0; *keyp = prv; prv = NULL; out: BIO_free(bio); if (pk != NULL) EVP_PKEY_free(pk); if (prv != NULL) sshkey_free(prv); return r; } #endif /* WITH_OPENSSL */ int sshkey_parse_private_fileblob_type(struct sshbuf *blob, int type, const char *passphrase, struct sshkey **keyp, char **commentp) { int r; *keyp = NULL; if (commentp != NULL) *commentp = NULL; switch (type) { #ifdef WITH_SSH1 case KEY_RSA1: return sshkey_parse_private_rsa1(blob, passphrase, keyp, commentp); #endif /* WITH_SSH1 */ #ifdef WITH_OPENSSL case KEY_DSA: case KEY_ECDSA: case KEY_RSA: return sshkey_parse_private_pem_fileblob(blob, type, passphrase, keyp); #endif /* WITH_OPENSSL */ case KEY_ED25519: return sshkey_parse_private2(blob, type, passphrase, keyp, commentp); case KEY_UNSPEC: if ((r = sshkey_parse_private2(blob, type, passphrase, keyp, commentp)) == 0) return 0; #ifdef WITH_OPENSSL return sshkey_parse_private_pem_fileblob(blob, type, passphrase, keyp); #else return SSH_ERR_INVALID_FORMAT; #endif /* WITH_OPENSSL */ default: return SSH_ERR_KEY_TYPE_UNKNOWN; } } int sshkey_parse_private_fileblob(struct sshbuf *buffer, const char *passphrase, const char *filename, struct sshkey **keyp, char **commentp) { int r; if (keyp != NULL) *keyp = NULL; if (commentp != NULL) *commentp = NULL; #ifdef WITH_SSH1 /* it's a SSH v1 key if the public key part is readable */ if ((r = sshkey_parse_public_rsa1_fileblob(buffer, NULL, NULL)) == 0) { return sshkey_parse_private_fileblob_type(buffer, KEY_RSA1, passphrase, keyp, commentp); } #endif /* WITH_SSH1 */ if ((r = sshkey_parse_private_fileblob_type(buffer, KEY_UNSPEC, passphrase, keyp, commentp)) == 0) return 0; return r; }