/* $OpenBSD: grid.c,v 1.135 2024/11/20 20:54:02 nicm Exp $ */ /* * Copyright (c) 2008 Nicholas Marriott * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER * IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include "tmux.h" /* * Grid data. This is the basic data structure that represents what is shown on * screen. * * A grid is a grid of cells (struct grid_cell). Lines are not allocated until * cells in that line are written to. The grid is split into history and * viewable data with the history starting at row (line) 0 and extending to * (hsize - 1); from hsize to hsize + (sy - 1) is the viewable data. All * functions in this file work on absolute coordinates, grid-view.c has * functions which work on the screen data. */ /* Default grid cell data. */ const struct grid_cell grid_default_cell = { { { ' ' }, 0, 1, 1 }, 0, 0, 8, 8, 8, 0 }; /* * Padding grid cell data. Padding cells are the only zero width cell that * appears in the grid - because of this, they are always extended cells. */ static const struct grid_cell grid_padding_cell = { { { '!' }, 0, 0, 0 }, 0, GRID_FLAG_PADDING, 8, 8, 8, 0 }; /* Cleared grid cell data. */ static const struct grid_cell grid_cleared_cell = { { { ' ' }, 0, 1, 1 }, 0, GRID_FLAG_CLEARED, 8, 8, 8, 0 }; static const struct grid_cell_entry grid_cleared_entry = { { .data = { 0, 8, 8, ' ' } }, GRID_FLAG_CLEARED }; /* Store cell in entry. */ static void grid_store_cell(struct grid_cell_entry *gce, const struct grid_cell *gc, u_char c) { gce->flags = (gc->flags & ~GRID_FLAG_CLEARED); gce->data.fg = gc->fg & 0xff; if (gc->fg & COLOUR_FLAG_256) gce->flags |= GRID_FLAG_FG256; gce->data.bg = gc->bg & 0xff; if (gc->bg & COLOUR_FLAG_256) gce->flags |= GRID_FLAG_BG256; gce->data.attr = gc->attr; gce->data.data = c; } /* Check if a cell should be an extended cell. */ static int grid_need_extended_cell(const struct grid_cell_entry *gce, const struct grid_cell *gc) { if (gce->flags & GRID_FLAG_EXTENDED) return (1); if (gc->attr > 0xff) return (1); if (gc->data.size > 1 || gc->data.width > 1) return (1); if ((gc->fg & COLOUR_FLAG_RGB) || (gc->bg & COLOUR_FLAG_RGB)) return (1); if (gc->us != 8) /* only supports 256 or RGB */ return (1); if (gc->link != 0) return (1); if (gc->flags & GRID_FLAG_TAB) return (1); return (0); } /* Get an extended cell. */ static void grid_get_extended_cell(struct grid_line *gl, struct grid_cell_entry *gce, int flags) { u_int at = gl->extdsize + 1; gl->extddata = xreallocarray(gl->extddata, at, sizeof *gl->extddata); gl->extdsize = at; gce->offset = at - 1; gce->flags = (flags | GRID_FLAG_EXTENDED); } /* Set cell as extended. */ static struct grid_extd_entry * grid_extended_cell(struct grid_line *gl, struct grid_cell_entry *gce, const struct grid_cell *gc) { struct grid_extd_entry *gee; int flags = (gc->flags & ~GRID_FLAG_CLEARED); utf8_char uc; if (~gce->flags & GRID_FLAG_EXTENDED) grid_get_extended_cell(gl, gce, flags); else if (gce->offset >= gl->extdsize) fatalx("offset too big"); gl->flags |= GRID_LINE_EXTENDED; if (gc->flags & GRID_FLAG_TAB) uc = gc->data.width; else utf8_from_data(&gc->data, &uc); gee = &gl->extddata[gce->offset]; gee->data = uc; gee->attr = gc->attr; gee->flags = flags; gee->fg = gc->fg; gee->bg = gc->bg; gee->us = gc->us; gee->link = gc->link; return (gee); } /* Free up unused extended cells. */ static void grid_compact_line(struct grid_line *gl) { int new_extdsize = 0; struct grid_extd_entry *new_extddata; struct grid_cell_entry *gce; struct grid_extd_entry *gee; u_int px, idx; if (gl->extdsize == 0) return; for (px = 0; px < gl->cellsize; px++) { gce = &gl->celldata[px]; if (gce->flags & GRID_FLAG_EXTENDED) new_extdsize++; } if (new_extdsize == 0) { free(gl->extddata); gl->extddata = NULL; gl->extdsize = 0; return; } new_extddata = xreallocarray(NULL, new_extdsize, sizeof *gl->extddata); idx = 0; for (px = 0; px < gl->cellsize; px++) { gce = &gl->celldata[px]; if (gce->flags & GRID_FLAG_EXTENDED) { gee = &gl->extddata[gce->offset]; memcpy(&new_extddata[idx], gee, sizeof *gee); gce->offset = idx++; } } free(gl->extddata); gl->extddata = new_extddata; gl->extdsize = new_extdsize; } /* Get line data. */ struct grid_line * grid_get_line(struct grid *gd, u_int line) { return (&gd->linedata[line]); } /* Adjust number of lines. */ void grid_adjust_lines(struct grid *gd, u_int lines) { gd->linedata = xreallocarray(gd->linedata, lines, sizeof *gd->linedata); } /* Copy default into a cell. */ static void grid_clear_cell(struct grid *gd, u_int px, u_int py, u_int bg) { struct grid_line *gl = &gd->linedata[py]; struct grid_cell_entry *gce = &gl->celldata[px]; struct grid_extd_entry *gee; memcpy(gce, &grid_cleared_entry, sizeof *gce); if (bg != 8) { if (bg & COLOUR_FLAG_RGB) { grid_get_extended_cell(gl, gce, gce->flags); gee = grid_extended_cell(gl, gce, &grid_cleared_cell); gee->bg = bg; } else { if (bg & COLOUR_FLAG_256) gce->flags |= GRID_FLAG_BG256; gce->data.bg = bg; } } } /* Check grid y position. */ static int grid_check_y(struct grid *gd, const char *from, u_int py) { if (py >= gd->hsize + gd->sy) { log_debug("%s: y out of range: %u", from, py); return (-1); } return (0); } /* Check if two styles are (visibly) the same. */ int grid_cells_look_equal(const struct grid_cell *gc1, const struct grid_cell *gc2) { int flags1 = gc1->flags, flags2 = gc2->flags;; if (gc1->fg != gc2->fg || gc1->bg != gc2->bg) return (0); if (gc1->attr != gc2->attr) return (0); if ((flags1 & ~GRID_FLAG_CLEARED) != (flags2 & ~GRID_FLAG_CLEARED)) return (0); if (gc1->link != gc2->link) return (0); return (1); } /* Compare grid cells. Return 1 if equal, 0 if not. */ int grid_cells_equal(const struct grid_cell *gc1, const struct grid_cell *gc2) { if (!grid_cells_look_equal(gc1, gc2)) return (0); if (gc1->data.width != gc2->data.width) return (0); if (gc1->data.size != gc2->data.size) return (0); return (memcmp(gc1->data.data, gc2->data.data, gc1->data.size) == 0); } /* Set grid cell to a tab. */ void grid_set_tab(struct grid_cell *gc, u_int width) { memset(gc->data.data, 0, sizeof gc->data.data); gc->flags |= GRID_FLAG_TAB; gc->data.width = gc->data.size = gc->data.have = width; memset(gc->data.data, ' ', gc->data.size); } /* Free one line. */ static void grid_free_line(struct grid *gd, u_int py) { free(gd->linedata[py].celldata); gd->linedata[py].celldata = NULL; free(gd->linedata[py].extddata); gd->linedata[py].extddata = NULL; } /* Free several lines. */ static void grid_free_lines(struct grid *gd, u_int py, u_int ny) { u_int yy; for (yy = py; yy < py + ny; yy++) grid_free_line(gd, yy); } /* Create a new grid. */ struct grid * grid_create(u_int sx, u_int sy, u_int hlimit) { struct grid *gd; gd = xmalloc(sizeof *gd); gd->sx = sx; gd->sy = sy; if (hlimit != 0) gd->flags = GRID_HISTORY; else gd->flags = 0; gd->hscrolled = 0; gd->hsize = 0; gd->hlimit = hlimit; if (gd->sy != 0) gd->linedata = xcalloc(gd->sy, sizeof *gd->linedata); else gd->linedata = NULL; return (gd); } /* Destroy grid. */ void grid_destroy(struct grid *gd) { grid_free_lines(gd, 0, gd->hsize + gd->sy); free(gd->linedata); free(gd); } /* Compare grids. */ int grid_compare(struct grid *ga, struct grid *gb) { struct grid_line *gla, *glb; struct grid_cell gca, gcb; u_int xx, yy; if (ga->sx != gb->sx || ga->sy != gb->sy) return (1); for (yy = 0; yy < ga->sy; yy++) { gla = &ga->linedata[yy]; glb = &gb->linedata[yy]; if (gla->cellsize != glb->cellsize) return (1); for (xx = 0; xx < gla->cellsize; xx++) { grid_get_cell(ga, xx, yy, &gca); grid_get_cell(gb, xx, yy, &gcb); if (!grid_cells_equal(&gca, &gcb)) return (1); } } return (0); } /* Trim lines from the history. */ static void grid_trim_history(struct grid *gd, u_int ny) { grid_free_lines(gd, 0, ny); memmove(&gd->linedata[0], &gd->linedata[ny], (gd->hsize + gd->sy - ny) * (sizeof *gd->linedata)); } /* * Collect lines from the history if at the limit. Free the top (oldest) 10% * and shift up. */ void grid_collect_history(struct grid *gd) { u_int ny; if (gd->hsize == 0 || gd->hsize < gd->hlimit) return; ny = gd->hlimit / 10; if (ny < 1) ny = 1; if (ny > gd->hsize) ny = gd->hsize; /* * Free the lines from 0 to ny then move the remaining lines over * them. */ grid_trim_history(gd, ny); gd->hsize -= ny; if (gd->hscrolled > gd->hsize) gd->hscrolled = gd->hsize; } /* Remove lines from the bottom of the history. */ void grid_remove_history(struct grid *gd, u_int ny) { u_int yy; if (ny > gd->hsize) return; for (yy = 0; yy < ny; yy++) grid_free_line(gd, gd->hsize + gd->sy - 1 - yy); gd->hsize -= ny; } /* * Scroll the entire visible screen, moving one line into the history. Just * allocate a new line at the bottom and move the history size indicator. */ void grid_scroll_history(struct grid *gd, u_int bg) { u_int yy; yy = gd->hsize + gd->sy; gd->linedata = xreallocarray(gd->linedata, yy + 1, sizeof *gd->linedata); grid_empty_line(gd, yy, bg); gd->hscrolled++; grid_compact_line(&gd->linedata[gd->hsize]); gd->linedata[gd->hsize].time = current_time; gd->hsize++; } /* Clear the history. */ void grid_clear_history(struct grid *gd) { grid_trim_history(gd, gd->hsize); gd->hscrolled = 0; gd->hsize = 0; gd->linedata = xreallocarray(gd->linedata, gd->sy, sizeof *gd->linedata); } /* Scroll a region up, moving the top line into the history. */ void grid_scroll_history_region(struct grid *gd, u_int upper, u_int lower, u_int bg) { struct grid_line *gl_history, *gl_upper; u_int yy; /* Create a space for a new line. */ yy = gd->hsize + gd->sy; gd->linedata = xreallocarray(gd->linedata, yy + 1, sizeof *gd->linedata); /* Move the entire screen down to free a space for this line. */ gl_history = &gd->linedata[gd->hsize]; memmove(gl_history + 1, gl_history, gd->sy * sizeof *gl_history); /* Adjust the region and find its start and end. */ upper++; gl_upper = &gd->linedata[upper]; lower++; /* Move the line into the history. */ memcpy(gl_history, gl_upper, sizeof *gl_history); gl_history->time = current_time; /* Then move the region up and clear the bottom line. */ memmove(gl_upper, gl_upper + 1, (lower - upper) * sizeof *gl_upper); grid_empty_line(gd, lower, bg); /* Move the history offset down over the line. */ gd->hscrolled++; gd->hsize++; } /* Expand line to fit to cell. */ static void grid_expand_line(struct grid *gd, u_int py, u_int sx, u_int bg) { struct grid_line *gl; u_int xx; gl = &gd->linedata[py]; if (sx <= gl->cellsize) return; if (sx < gd->sx / 4) sx = gd->sx / 4; else if (sx < gd->sx / 2) sx = gd->sx / 2; else if (gd->sx > sx) sx = gd->sx; gl->celldata = xreallocarray(gl->celldata, sx, sizeof *gl->celldata); for (xx = gl->cellsize; xx < sx; xx++) grid_clear_cell(gd, xx, py, bg); gl->cellsize = sx; } /* Empty a line and set background colour if needed. */ void grid_empty_line(struct grid *gd, u_int py, u_int bg) { memset(&gd->linedata[py], 0, sizeof gd->linedata[py]); if (!COLOUR_DEFAULT(bg)) grid_expand_line(gd, py, gd->sx, bg); } /* Peek at grid line. */ const struct grid_line * grid_peek_line(struct grid *gd, u_int py) { if (grid_check_y(gd, __func__, py) != 0) return (NULL); return (&gd->linedata[py]); } /* Get cell from line. */ static void grid_get_cell1(struct grid_line *gl, u_int px, struct grid_cell *gc) { struct grid_cell_entry *gce = &gl->celldata[px]; struct grid_extd_entry *gee; if (gce->flags & GRID_FLAG_EXTENDED) { if (gce->offset >= gl->extdsize) memcpy(gc, &grid_default_cell, sizeof *gc); else { gee = &gl->extddata[gce->offset]; gc->flags = gee->flags; gc->attr = gee->attr; gc->fg = gee->fg; gc->bg = gee->bg; gc->us = gee->us; gc->link = gee->link; if (gc->flags & GRID_FLAG_TAB) grid_set_tab(gc, gee->data); else utf8_to_data(gee->data, &gc->data); } return; } gc->flags = gce->flags & ~(GRID_FLAG_FG256|GRID_FLAG_BG256); gc->attr = gce->data.attr; gc->fg = gce->data.fg; if (gce->flags & GRID_FLAG_FG256) gc->fg |= COLOUR_FLAG_256; gc->bg = gce->data.bg; if (gce->flags & GRID_FLAG_BG256) gc->bg |= COLOUR_FLAG_256; gc->us = 8; utf8_set(&gc->data, gce->data.data); gc->link = 0; } /* Get cell for reading. */ void grid_get_cell(struct grid *gd, u_int px, u_int py, struct grid_cell *gc) { if (grid_check_y(gd, __func__, py) != 0 || px >= gd->linedata[py].cellsize) memcpy(gc, &grid_default_cell, sizeof *gc); else grid_get_cell1(&gd->linedata[py], px, gc); } /* Set cell at position. */ void grid_set_cell(struct grid *gd, u_int px, u_int py, const struct grid_cell *gc) { struct grid_line *gl; struct grid_cell_entry *gce; if (grid_check_y(gd, __func__, py) != 0) return; grid_expand_line(gd, py, px + 1, 8); gl = &gd->linedata[py]; if (px + 1 > gl->cellused) gl->cellused = px + 1; gce = &gl->celldata[px]; if (grid_need_extended_cell(gce, gc)) grid_extended_cell(gl, gce, gc); else grid_store_cell(gce, gc, gc->data.data[0]); } /* Set padding at position. */ void grid_set_padding(struct grid *gd, u_int px, u_int py) { grid_set_cell(gd, px, py, &grid_padding_cell); } /* Set cells at position. */ void grid_set_cells(struct grid *gd, u_int px, u_int py, const struct grid_cell *gc, const char *s, size_t slen) { struct grid_line *gl; struct grid_cell_entry *gce; struct grid_extd_entry *gee; u_int i; if (grid_check_y(gd, __func__, py) != 0) return; grid_expand_line(gd, py, px + slen, 8); gl = &gd->linedata[py]; if (px + slen > gl->cellused) gl->cellused = px + slen; for (i = 0; i < slen; i++) { gce = &gl->celldata[px + i]; if (grid_need_extended_cell(gce, gc)) { gee = grid_extended_cell(gl, gce, gc); gee->data = utf8_build_one(s[i]); } else grid_store_cell(gce, gc, s[i]); } } /* Clear area. */ void grid_clear(struct grid *gd, u_int px, u_int py, u_int nx, u_int ny, u_int bg) { struct grid_line *gl; u_int xx, yy, ox, sx; if (nx == 0 || ny == 0) return; if (px == 0 && nx == gd->sx) { grid_clear_lines(gd, py, ny, bg); return; } if (grid_check_y(gd, __func__, py) != 0) return; if (grid_check_y(gd, __func__, py + ny - 1) != 0) return; for (yy = py; yy < py + ny; yy++) { gl = &gd->linedata[yy]; sx = gd->sx; if (sx > gl->cellsize) sx = gl->cellsize; ox = nx; if (COLOUR_DEFAULT(bg)) { if (px > sx) continue; if (px + nx > sx) ox = sx - px; } grid_expand_line(gd, yy, px + ox, 8); /* default bg first */ for (xx = px; xx < px + ox; xx++) grid_clear_cell(gd, xx, yy, bg); } } /* Clear lines. This just frees and truncates the lines. */ void grid_clear_lines(struct grid *gd, u_int py, u_int ny, u_int bg) { u_int yy; if (ny == 0) return; if (grid_check_y(gd, __func__, py) != 0) return; if (grid_check_y(gd, __func__, py + ny - 1) != 0) return; for (yy = py; yy < py + ny; yy++) { grid_free_line(gd, yy); grid_empty_line(gd, yy, bg); } if (py != 0) gd->linedata[py - 1].flags &= ~GRID_LINE_WRAPPED; } /* Move a group of lines. */ void grid_move_lines(struct grid *gd, u_int dy, u_int py, u_int ny, u_int bg) { u_int yy; if (ny == 0 || py == dy) return; if (grid_check_y(gd, __func__, py) != 0) return; if (grid_check_y(gd, __func__, py + ny - 1) != 0) return; if (grid_check_y(gd, __func__, dy) != 0) return; if (grid_check_y(gd, __func__, dy + ny - 1) != 0) return; /* Free any lines which are being replaced. */ for (yy = dy; yy < dy + ny; yy++) { if (yy >= py && yy < py + ny) continue; grid_free_line(gd, yy); } if (dy != 0) gd->linedata[dy - 1].flags &= ~GRID_LINE_WRAPPED; memmove(&gd->linedata[dy], &gd->linedata[py], ny * (sizeof *gd->linedata)); /* * Wipe any lines that have been moved (without freeing them - they are * still present). */ for (yy = py; yy < py + ny; yy++) { if (yy < dy || yy >= dy + ny) grid_empty_line(gd, yy, bg); } if (py != 0 && (py < dy || py >= dy + ny)) gd->linedata[py - 1].flags &= ~GRID_LINE_WRAPPED; } /* Move a group of cells. */ void grid_move_cells(struct grid *gd, u_int dx, u_int px, u_int py, u_int nx, u_int bg) { struct grid_line *gl; u_int xx; if (nx == 0 || px == dx) return; if (grid_check_y(gd, __func__, py) != 0) return; gl = &gd->linedata[py]; grid_expand_line(gd, py, px + nx, 8); grid_expand_line(gd, py, dx + nx, 8); memmove(&gl->celldata[dx], &gl->celldata[px], nx * sizeof *gl->celldata); if (dx + nx > gl->cellused) gl->cellused = dx + nx; /* Wipe any cells that have been moved. */ for (xx = px; xx < px + nx; xx++) { if (xx >= dx && xx < dx + nx) continue; grid_clear_cell(gd, xx, py, bg); } } /* Get ANSI foreground sequence. */ static size_t grid_string_cells_fg(const struct grid_cell *gc, int *values) { size_t n; u_char r, g, b; n = 0; if (gc->fg & COLOUR_FLAG_256) { values[n++] = 38; values[n++] = 5; values[n++] = gc->fg & 0xff; } else if (gc->fg & COLOUR_FLAG_RGB) { values[n++] = 38; values[n++] = 2; colour_split_rgb(gc->fg, &r, &g, &b); values[n++] = r; values[n++] = g; values[n++] = b; } else { switch (gc->fg) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: values[n++] = gc->fg + 30; break; case 8: values[n++] = 39; break; case 90: case 91: case 92: case 93: case 94: case 95: case 96: case 97: values[n++] = gc->fg; break; } } return (n); } /* Get ANSI background sequence. */ static size_t grid_string_cells_bg(const struct grid_cell *gc, int *values) { size_t n; u_char r, g, b; n = 0; if (gc->bg & COLOUR_FLAG_256) { values[n++] = 48; values[n++] = 5; values[n++] = gc->bg & 0xff; } else if (gc->bg & COLOUR_FLAG_RGB) { values[n++] = 48; values[n++] = 2; colour_split_rgb(gc->bg, &r, &g, &b); values[n++] = r; values[n++] = g; values[n++] = b; } else { switch (gc->bg) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: values[n++] = gc->bg + 40; break; case 8: values[n++] = 49; break; case 90: case 91: case 92: case 93: case 94: case 95: case 96: case 97: values[n++] = gc->bg + 10; break; } } return (n); } /* Get underscore colour sequence. */ static size_t grid_string_cells_us(const struct grid_cell *gc, int *values) { size_t n; u_char r, g, b; n = 0; if (gc->us & COLOUR_FLAG_256) { values[n++] = 58; values[n++] = 5; values[n++] = gc->us & 0xff; } else if (gc->us & COLOUR_FLAG_RGB) { values[n++] = 58; values[n++] = 2; colour_split_rgb(gc->us, &r, &g, &b); values[n++] = r; values[n++] = g; values[n++] = b; } return (n); } /* Add on SGR code. */ static void grid_string_cells_add_code(char *buf, size_t len, u_int n, int *s, int *newc, int *oldc, size_t nnewc, size_t noldc, int flags) { u_int i; char tmp[64]; int reset = (n != 0 && s[0] == 0); if (nnewc == 0) return; /* no code to add */ if (!reset && nnewc == noldc && memcmp(newc, oldc, nnewc * sizeof newc[0]) == 0) return; /* no reset and colour unchanged */ if (reset && (newc[0] == 49 || newc[0] == 39)) return; /* reset and colour default */ if (flags & GRID_STRING_ESCAPE_SEQUENCES) strlcat(buf, "\\033[", len); else strlcat(buf, "\033[", len); for (i = 0; i < nnewc; i++) { if (i + 1 < nnewc) xsnprintf(tmp, sizeof tmp, "%d;", newc[i]); else xsnprintf(tmp, sizeof tmp, "%d", newc[i]); strlcat(buf, tmp, len); } strlcat(buf, "m", len); } static int grid_string_cells_add_hyperlink(char *buf, size_t len, const char *id, const char *uri, int flags) { char *tmp; if (strlen(uri) + strlen(id) + 17 >= len) return (0); if (flags & GRID_STRING_ESCAPE_SEQUENCES) strlcat(buf, "\\033]8;", len); else strlcat(buf, "\033]8;", len); if (*id != '\0') { xasprintf(&tmp, "id=%s;", id); strlcat(buf, tmp, len); free(tmp); } else strlcat(buf, ";", len); strlcat(buf, uri, len); if (flags & GRID_STRING_ESCAPE_SEQUENCES) strlcat(buf, "\\033\\\\", len); else strlcat(buf, "\033\\", len); return (1); } /* * Returns ANSI code to set particular attributes (colour, bold and so on) * given a current state. */ static void grid_string_cells_code(const struct grid_cell *lastgc, const struct grid_cell *gc, char *buf, size_t len, int flags, struct screen *sc, int *has_link) { int oldc[64], newc[64], s[128]; size_t noldc, nnewc, n, i; u_int attr = gc->attr, lastattr = lastgc->attr; char tmp[64]; const char *uri, *id; static const struct { u_int mask; u_int code; } attrs[] = { { GRID_ATTR_BRIGHT, 1 }, { GRID_ATTR_DIM, 2 }, { GRID_ATTR_ITALICS, 3 }, { GRID_ATTR_UNDERSCORE, 4 }, { GRID_ATTR_BLINK, 5 }, { GRID_ATTR_REVERSE, 7 }, { GRID_ATTR_HIDDEN, 8 }, { GRID_ATTR_STRIKETHROUGH, 9 }, { GRID_ATTR_UNDERSCORE_2, 42 }, { GRID_ATTR_UNDERSCORE_3, 43 }, { GRID_ATTR_UNDERSCORE_4, 44 }, { GRID_ATTR_UNDERSCORE_5, 45 }, { GRID_ATTR_OVERLINE, 53 }, }; n = 0; /* If any attribute is removed, begin with 0. */ for (i = 0; i < nitems(attrs); i++) { if (((~attr & attrs[i].mask) && (lastattr & attrs[i].mask)) || (lastgc->us != 8 && gc->us == 8)) { s[n++] = 0; lastattr &= GRID_ATTR_CHARSET; break; } } /* For each attribute that is newly set, add its code. */ for (i = 0; i < nitems(attrs); i++) { if ((attr & attrs[i].mask) && !(lastattr & attrs[i].mask)) s[n++] = attrs[i].code; } /* Write the attributes. */ *buf = '\0'; if (n > 0) { if (flags & GRID_STRING_ESCAPE_SEQUENCES) strlcat(buf, "\\033[", len); else strlcat(buf, "\033[", len); for (i = 0; i < n; i++) { if (s[i] < 10) xsnprintf(tmp, sizeof tmp, "%d", s[i]); else { xsnprintf(tmp, sizeof tmp, "%d:%d", s[i] / 10, s[i] % 10); } strlcat(buf, tmp, len); if (i + 1 < n) strlcat(buf, ";", len); } strlcat(buf, "m", len); } /* If the foreground colour changed, write its parameters. */ nnewc = grid_string_cells_fg(gc, newc); noldc = grid_string_cells_fg(lastgc, oldc); grid_string_cells_add_code(buf, len, n, s, newc, oldc, nnewc, noldc, flags); /* If the background colour changed, append its parameters. */ nnewc = grid_string_cells_bg(gc, newc); noldc = grid_string_cells_bg(lastgc, oldc); grid_string_cells_add_code(buf, len, n, s, newc, oldc, nnewc, noldc, flags); /* If the underscore colour changed, append its parameters. */ nnewc = grid_string_cells_us(gc, newc); noldc = grid_string_cells_us(lastgc, oldc); grid_string_cells_add_code(buf, len, n, s, newc, oldc, nnewc, noldc, flags); /* Append shift in/shift out if needed. */ if ((attr & GRID_ATTR_CHARSET) && !(lastattr & GRID_ATTR_CHARSET)) { if (flags & GRID_STRING_ESCAPE_SEQUENCES) strlcat(buf, "\\016", len); /* SO */ else strlcat(buf, "\016", len); /* SO */ } if (!(attr & GRID_ATTR_CHARSET) && (lastattr & GRID_ATTR_CHARSET)) { if (flags & GRID_STRING_ESCAPE_SEQUENCES) strlcat(buf, "\\017", len); /* SI */ else strlcat(buf, "\017", len); /* SI */ } /* Add hyperlink if changed. */ if (sc != NULL && sc->hyperlinks != NULL && lastgc->link != gc->link) { if (hyperlinks_get(sc->hyperlinks, gc->link, &uri, &id, NULL)) { *has_link = grid_string_cells_add_hyperlink(buf, len, id, uri, flags); } else if (*has_link) { grid_string_cells_add_hyperlink(buf, len, "", "", flags); *has_link = 0; } } } /* Convert cells into a string. */ char * grid_string_cells(struct grid *gd, u_int px, u_int py, u_int nx, struct grid_cell **lastgc, int flags, struct screen *s) { struct grid_cell gc; static struct grid_cell lastgc1; const char *data; char *buf, code[8192]; size_t len, off, size, codelen; u_int xx, end; int has_link = 0; const struct grid_line *gl; if (lastgc != NULL && *lastgc == NULL) { memcpy(&lastgc1, &grid_default_cell, sizeof lastgc1); *lastgc = &lastgc1; } len = 128; buf = xmalloc(len); off = 0; gl = grid_peek_line(gd, py); if (flags & GRID_STRING_EMPTY_CELLS) end = gl->cellsize; else end = gl->cellused; for (xx = px; xx < px + nx; xx++) { if (gl == NULL || xx >= end) break; grid_get_cell(gd, xx, py, &gc); if (gc.flags & GRID_FLAG_PADDING) continue; if (flags & GRID_STRING_WITH_SEQUENCES) { grid_string_cells_code(*lastgc, &gc, code, sizeof code, flags, s, &has_link); codelen = strlen(code); memcpy(*lastgc, &gc, sizeof **lastgc); } else codelen = 0; if (gc.flags & GRID_FLAG_TAB) { data = "\t"; size = 1; } else { data = gc.data.data; size = gc.data.size; if ((flags & GRID_STRING_ESCAPE_SEQUENCES) && size == 1 && *data == '\\') { data = "\\\\"; size = 2; } } while (len < off + size + codelen + 1) { buf = xreallocarray(buf, 2, len); len *= 2; } if (codelen != 0) { memcpy(buf + off, code, codelen); off += codelen; } memcpy(buf + off, data, size); off += size; } if (has_link) { grid_string_cells_add_hyperlink(code, sizeof code, "", "", flags); codelen = strlen(code); while (len < off + size + codelen + 1) { buf = xreallocarray(buf, 2, len); len *= 2; } memcpy(buf + off, code, codelen); off += codelen; } if (flags & GRID_STRING_TRIM_SPACES) { while (off > 0 && buf[off - 1] == ' ') off--; } buf[off] = '\0'; return (buf); } /* * Duplicate a set of lines between two grids. Both source and destination * should be big enough. */ void grid_duplicate_lines(struct grid *dst, u_int dy, struct grid *src, u_int sy, u_int ny) { struct grid_line *dstl, *srcl; u_int yy; if (dy + ny > dst->hsize + dst->sy) ny = dst->hsize + dst->sy - dy; if (sy + ny > src->hsize + src->sy) ny = src->hsize + src->sy - sy; grid_free_lines(dst, dy, ny); for (yy = 0; yy < ny; yy++) { srcl = &src->linedata[sy]; dstl = &dst->linedata[dy]; memcpy(dstl, srcl, sizeof *dstl); if (srcl->cellsize != 0) { dstl->celldata = xreallocarray(NULL, srcl->cellsize, sizeof *dstl->celldata); memcpy(dstl->celldata, srcl->celldata, srcl->cellsize * sizeof *dstl->celldata); } else dstl->celldata = NULL; if (srcl->extdsize != 0) { dstl->extdsize = srcl->extdsize; dstl->extddata = xreallocarray(NULL, dstl->extdsize, sizeof *dstl->extddata); memcpy(dstl->extddata, srcl->extddata, dstl->extdsize * sizeof *dstl->extddata); } else dstl->extddata = NULL; sy++; dy++; } } /* Mark line as dead. */ static void grid_reflow_dead(struct grid_line *gl) { memset(gl, 0, sizeof *gl); gl->flags = GRID_LINE_DEAD; } /* Add lines, return the first new one. */ static struct grid_line * grid_reflow_add(struct grid *gd, u_int n) { struct grid_line *gl; u_int sy = gd->sy + n; gd->linedata = xreallocarray(gd->linedata, sy, sizeof *gd->linedata); gl = &gd->linedata[gd->sy]; memset(gl, 0, n * (sizeof *gl)); gd->sy = sy; return (gl); } /* Move a line across. */ static struct grid_line * grid_reflow_move(struct grid *gd, struct grid_line *from) { struct grid_line *to; to = grid_reflow_add(gd, 1); memcpy(to, from, sizeof *to); grid_reflow_dead(from); return (to); } /* Join line below onto this one. */ static void grid_reflow_join(struct grid *target, struct grid *gd, u_int sx, u_int yy, u_int width, int already) { struct grid_line *gl, *from = NULL; struct grid_cell gc; u_int lines, left, i, to, line, want = 0; u_int at; int wrapped = 1; /* * Add a new target line. */ if (!already) { to = target->sy; gl = grid_reflow_move(target, &gd->linedata[yy]); } else { to = target->sy - 1; gl = &target->linedata[to]; } at = gl->cellused; /* * Loop until no more to consume or the target line is full. */ lines = 0; for (;;) { /* * If this is now the last line, there is nothing more to be * done. */ if (yy + 1 + lines == gd->hsize + gd->sy) break; line = yy + 1 + lines; /* If the next line is empty, skip it. */ if (~gd->linedata[line].flags & GRID_LINE_WRAPPED) wrapped = 0; if (gd->linedata[line].cellused == 0) { if (!wrapped) break; lines++; continue; } /* * Is the destination line now full? Copy the first character * separately because we need to leave "from" set to the last * line if this line is full. */ grid_get_cell1(&gd->linedata[line], 0, &gc); if (width + gc.data.width > sx) break; width += gc.data.width; grid_set_cell(target, at, to, &gc); at++; /* Join as much more as possible onto the current line. */ from = &gd->linedata[line]; for (want = 1; want < from->cellused; want++) { grid_get_cell1(from, want, &gc); if (width + gc.data.width > sx) break; width += gc.data.width; grid_set_cell(target, at, to, &gc); at++; } lines++; /* * If this line wasn't wrapped or we didn't consume the entire * line, don't try to join any further lines. */ if (!wrapped || want != from->cellused || width == sx) break; } if (lines == 0) return; /* * If we didn't consume the entire final line, then remove what we did * consume. If we consumed the entire line and it wasn't wrapped, * remove the wrap flag from this line. */ left = from->cellused - want; if (left != 0) { grid_move_cells(gd, 0, want, yy + lines, left, 8); from->cellsize = from->cellused = left; lines--; } else if (!wrapped) gl->flags &= ~GRID_LINE_WRAPPED; /* Remove the lines that were completely consumed. */ for (i = yy + 1; i < yy + 1 + lines; i++) { free(gd->linedata[i].celldata); free(gd->linedata[i].extddata); grid_reflow_dead(&gd->linedata[i]); } /* Adjust scroll position. */ if (gd->hscrolled > to + lines) gd->hscrolled -= lines; else if (gd->hscrolled > to) gd->hscrolled = to; } /* Split this line into several new ones */ static void grid_reflow_split(struct grid *target, struct grid *gd, u_int sx, u_int yy, u_int at) { struct grid_line *gl = &gd->linedata[yy], *first; struct grid_cell gc; u_int line, lines, width, i, xx; u_int used = gl->cellused; int flags = gl->flags; /* How many lines do we need to insert? We know we need at least two. */ if (~gl->flags & GRID_LINE_EXTENDED) lines = 1 + (gl->cellused - 1) / sx; else { lines = 2; width = 0; for (i = at; i < used; i++) { grid_get_cell1(gl, i, &gc); if (width + gc.data.width > sx) { lines++; width = 0; } width += gc.data.width; } } /* Insert new lines. */ line = target->sy + 1; first = grid_reflow_add(target, lines); /* Copy sections from the original line. */ width = 0; xx = 0; for (i = at; i < used; i++) { grid_get_cell1(gl, i, &gc); if (width + gc.data.width > sx) { target->linedata[line].flags |= GRID_LINE_WRAPPED; line++; width = 0; xx = 0; } width += gc.data.width; grid_set_cell(target, xx, line, &gc); xx++; } if (flags & GRID_LINE_WRAPPED) target->linedata[line].flags |= GRID_LINE_WRAPPED; /* Move the remainder of the original line. */ gl->cellsize = gl->cellused = at; gl->flags |= GRID_LINE_WRAPPED; memcpy(first, gl, sizeof *first); grid_reflow_dead(gl); /* Adjust the scroll position. */ if (yy <= gd->hscrolled) gd->hscrolled += lines - 1; /* * If the original line had the wrapped flag and there is still space * in the last new line, try to join with the next lines. */ if (width < sx && (flags & GRID_LINE_WRAPPED)) grid_reflow_join(target, gd, sx, yy, width, 1); } /* Reflow lines on grid to new width. */ void grid_reflow(struct grid *gd, u_int sx) { struct grid *target; struct grid_line *gl; struct grid_cell gc; u_int yy, width, i, at; /* * Create a destination grid. This is just used as a container for the * line data and may not be fully valid. */ target = grid_create(gd->sx, 0, 0); /* * Loop over each source line. */ for (yy = 0; yy < gd->hsize + gd->sy; yy++) { gl = &gd->linedata[yy]; if (gl->flags & GRID_LINE_DEAD) continue; /* * Work out the width of this line. at is the point at which * the available width is hit, and width is the full line * width. */ at = width = 0; if (~gl->flags & GRID_LINE_EXTENDED) { width = gl->cellused; if (width > sx) at = sx; else at = width; } else { for (i = 0; i < gl->cellused; i++) { grid_get_cell1(gl, i, &gc); if (at == 0 && width + gc.data.width > sx) at = i; width += gc.data.width; } } /* * If the line is exactly right, just move it across * unchanged. */ if (width == sx) { grid_reflow_move(target, gl); continue; } /* * If the line is too big, it needs to be split, whether or not * it was previously wrapped. */ if (width > sx) { grid_reflow_split(target, gd, sx, yy, at); continue; } /* * If the line was previously wrapped, join as much as possible * of the next line. */ if (gl->flags & GRID_LINE_WRAPPED) grid_reflow_join(target, gd, sx, yy, width, 0); else grid_reflow_move(target, gl); } /* * Replace the old grid with the new. */ if (target->sy < gd->sy) grid_reflow_add(target, gd->sy - target->sy); gd->hsize = target->sy - gd->sy; if (gd->hscrolled > gd->hsize) gd->hscrolled = gd->hsize; free(gd->linedata); gd->linedata = target->linedata; free(target); } /* Convert to position based on wrapped lines. */ void grid_wrap_position(struct grid *gd, u_int px, u_int py, u_int *wx, u_int *wy) { u_int ax = 0, ay = 0, yy; for (yy = 0; yy < py; yy++) { if (gd->linedata[yy].flags & GRID_LINE_WRAPPED) ax += gd->linedata[yy].cellused; else { ax = 0; ay++; } } if (px >= gd->linedata[yy].cellused) ax = UINT_MAX; else ax += px; *wx = ax; *wy = ay; } /* Convert position based on wrapped lines back. */ void grid_unwrap_position(struct grid *gd, u_int *px, u_int *py, u_int wx, u_int wy) { u_int yy, ay = 0; for (yy = 0; yy < gd->hsize + gd->sy - 1; yy++) { if (ay == wy) break; if (~gd->linedata[yy].flags & GRID_LINE_WRAPPED) ay++; } /* * yy is now 0 on the unwrapped line which contains wx. Walk forwards * until we find the end or the line now containing wx. */ if (wx == UINT_MAX) { while (gd->linedata[yy].flags & GRID_LINE_WRAPPED) yy++; wx = gd->linedata[yy].cellused; } else { while (gd->linedata[yy].flags & GRID_LINE_WRAPPED) { if (wx < gd->linedata[yy].cellused) break; wx -= gd->linedata[yy].cellused; yy++; } } *px = wx; *py = yy; } /* Get length of line. */ u_int grid_line_length(struct grid *gd, u_int py) { struct grid_cell gc; u_int px; px = grid_get_line(gd, py)->cellsize; if (px > gd->sx) px = gd->sx; while (px > 0) { grid_get_cell(gd, px - 1, py, &gc); if ((gc.flags & GRID_FLAG_PADDING) || gc.data.size != 1 || *gc.data.data != ' ') break; px--; } return (px); } /* Check if character is in set. */ int grid_in_set(struct grid *gd, u_int px, u_int py, const char *set) { struct grid_cell gc, tmp_gc; u_int pxx; grid_get_cell(gd, px, py, &gc); if (strchr(set, '\t')) { if (gc.flags & GRID_FLAG_PADDING) { pxx = px; do grid_get_cell(gd, --pxx, py, &tmp_gc); while (pxx > 0 && tmp_gc.flags & GRID_FLAG_PADDING); if (tmp_gc.flags & GRID_FLAG_TAB) return (tmp_gc.data.width - (px - pxx)); } else if (gc.flags & GRID_FLAG_TAB) return (gc.data.width); } if (gc.flags & GRID_FLAG_PADDING) return (0); return (utf8_cstrhas(set, &gc.data)); }