/* $OpenBSD: machine.c,v 1.11 1998/08/21 13:55:23 kstailey Exp $ */ /* * top - a top users display for Unix * * SYNOPSIS: For an OpenBSD system * * DESCRIPTION: * This is the machine-dependent module for OpenBSD * Tested on: * i386 * * LIBS: -lkvm * * TERMCAP: -ltermlib * * CFLAGS: -DHAVE_GETOPT -DORDER * * AUTHOR: Thorsten Lockert * Adapted from BSD4.4 by Christos Zoulas * Patch for process wait display by Jarl F. Greipsland * Patch for -DORDER by Kenneth Stailey */ #include #include #include #define DOSWAP #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DOSWAP #include #include #include #endif static int check_nlist __P((struct nlist *)); static int getkval __P((unsigned long, int *, int, char *)); static int swapmode __P((int *, int *)); #include "top.h" #include "display.h" #include "machine.h" #include "utils.h" /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" #define PP(pp, field) ((pp)->kp_proc . field) #define EP(pp, field) ((pp)->kp_eproc . field) #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) /* what we consider to be process size: */ #define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize)) /* definitions for indices in the nlist array */ #define X_CP_TIME 0 #define X_HZ 1 #ifdef DOSWAP #define VM_SWAPMAP 2 #define VM_NSWAPMAP 3 #define VM_SWDEVT 4 #define VM_NSWAP 5 #define VM_NSWDEV 6 #define VM_DMMAX 7 #define VM_NISWAP 8 #define VM_NISWDEV 9 #endif static struct nlist nlst[] = { { "_cp_time" }, /* 0 */ { "_hz" }, /* 1 */ #ifdef DOSWAP { "_swapmap" }, /* 2 */ { "_nswapmap" }, /* 3 */ { "_swdevt" }, /* 4 */ { "_nswap" }, /* 5 */ { "_nswdev" }, /* 6 */ { "_dmmax" }, /* 7 */ { "_niswap" }, /* 8 */ { "_niswdev" }, /* 9 */ #endif { 0 } }; /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d %5s %5s %-5s %-6.6s %6s %5.2f%% %.14s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "start", "run\0\0\0", "sleep", "stop", "zomb", }; static kvm_t *kd; /* these are retrieved from the kernel in _init */ static int hz; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long cp_time_offset; /* these are for calculating cpu state percentages */ static int cp_time[CPUSTATES]; static int cp_old[CPUSTATES]; static int cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[7]; char *procstatenames[] = { "", " starting, ", " running, ", " idle, ", " stopped, ", " zombie, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[8]; char *memorynames[] = { "Real: ", "K/", "K act/tot ", "Free: ", "K ", #ifdef DOSWAP "Swap: ", "K/", "K used/tot", #endif NULL }; #ifdef ORDER /* these are names given to allowed sorting orders -- first is default */ char *ordernames[] = {"cpu", "size", "res", "time", "pri", NULL}; #endif /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) int machine_init(statics) struct statics *statics; { register int i = 0; register int pagesize; char errbuf[_POSIX2_LINE_MAX]; if ((kd = kvm_openfiles(NULL, NULL, NULL, O_RDONLY, errbuf)) == NULL) { warnx("%s", errbuf); return(-1); } setegid(getgid()); setgid(getgid()); /* get the list of symbols we want to access in the kernel */ if (kvm_nlist(kd, nlst) <= 0) { warnx("nlist failed"); return(-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) return(-1); /* get the symbol values out of kmem */ (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), nlst[X_HZ].n_name); /* stash away certain offsets for later use */ cp_time_offset = nlst[X_CP_TIME].n_value; pbase = NULL; pref = NULL; onproc = -1; nproc = 0; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; #ifdef ORDER statics->order_names = ordernames; #endif /* all done! */ return(0); } char *format_header(uname_field) register char *uname_field; { register char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } void get_system_info(si) struct system_info *si; { int total; /* get the cp_time array */ (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), "_cp_time"); /* convert load averages to doubles */ { register int i; register double *infoloadp; struct loadavg sysload; size_t size = sizeof(sysload); static int mib[] = { CTL_VM, VM_LOADAVG }; if (sysctl(mib, 2, &sysload, &size, NULL, 0) < 0) { warn("sysctl failed"); bzero(&total, sizeof(total)); } infoloadp = si->load_avg; for (i = 0; i < 3; i++) *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; } /* convert cp_time counts to percentages */ total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory statistics */ { struct vmtotal total; size_t size = sizeof(total); static int mib[] = { CTL_VM, VM_METER }; /* get total -- systemwide main memory usage structure */ if (sysctl(mib, 2, &total, &size, NULL, 0) < 0) { warn("sysctl failed"); bzero(&total, sizeof(total)); } /* convert memory stats to Kbytes */ memory_stats[0] = -1; memory_stats[1] = pagetok(total.t_arm); memory_stats[2] = pagetok(total.t_rm); memory_stats[3] = -1; memory_stats[4] = pagetok(total.t_free); memory_stats[5] = -1; #ifdef DOSWAP if (!swapmode(&memory_stats[6], &memory_stats[7])) { memory_stats[6] = 0; memory_stats[7] = 0; } #endif } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->last_pid = -1; } static struct handle handle; caddr_t get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare) __P((const void *, const void *)); { register int i; register int total_procs; register int active_procs; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; int show_command; if ((pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc)) == NULL) { warnx("%s", kvm_geterr(kd)); quit(23); } if (nproc > onproc) pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL) { warnx("Out of memory."); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with SSYS set are system * processes---these get ignored unless show_sysprocs is set. */ if (PP(pp, p_stat) != 0 && (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) PP(pp, p_stat)]++; if ((PP(pp, p_stat) != SZOMB) && (show_idle || (PP(pp, p_pctcpu) != 0) || (PP(pp, p_stat) == SRUN)) && (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char fmt[MAX_COLS]; /* static area where result is built */ char *format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid)(); { register struct kinfo_proc *pp; register int cputime; register double pct; struct handle *hp; char waddr[sizeof(void *) * 2 + 3]; /* Hexify void pointer */ char *p_wait; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ if ((PP(pp, p_flag) & P_INMEM) == 0) { /* * Print swapped processes as */ char *comm = PP(pp, p_comm); #define COMSIZ sizeof(PP(pp, p_comm)) char buf[COMSIZ]; (void) strncpy(buf, comm, COMSIZ); comm[0] = '<'; (void) strncpy(&comm[1], buf, COMSIZ - 2); comm[COMSIZ - 2] = '\0'; (void) strncat(comm, ">", COMSIZ - 1); comm[COMSIZ - 1] = '\0'; } cputime = (PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks)) / hz; /* calculate the base for cpu percentages */ pct = pctdouble(PP(pp, p_pctcpu)); if (PP(pp, p_wchan)) if (PP(pp, p_wmesg)) p_wait = EP(pp, e_wmesg); else { snprintf(waddr, sizeof(waddr), "%lx", (unsigned long)(PP(pp, p_wchan)) & ~KERNBASE); p_wait = waddr; } else p_wait = "-"; /* format this entry */ snprintf(fmt, MAX_COLS, Proc_format, PP(pp, p_pid), (*get_userid)(EP(pp, e_pcred.p_ruid)), PP(pp, p_priority) - PZERO, PP(pp, p_nice) - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(VP(pp, vm_rssize))), (PP(pp, p_stat) == SSLEEP && PP(pp, p_slptime) > MAXSLP) ? "idle" : state_abbrev[(unsigned char) PP(pp, p_stat)], p_wait, format_time(cputime), 100.0 * pct, printable(PP(pp, p_comm))); /* return the result */ return(fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ static int check_nlist(nlst) register struct nlist *nlst; { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ (void) fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ static int getkval(offset, ptr, size, refstr) unsigned long offset; int *ptr; int size; char *refstr; { if (kvm_read(kd, offset, (char *) ptr, size) != size) { if (*refstr == '!') { return(0); } else { warn("kvm_read for %s", refstr); quit(23); } } return(1); } /* comparison routine for qsort */ static unsigned char sorted_state[] = { 0, /* not used */ 4, /* start */ 5, /* run */ 2, /* sleep */ 3, /* stop */ 1 /* zombie */ }; #ifdef ORDER /* * proc_compares - comparison functions for "qsort" */ /* * First, the possible comparison keys. These are defined in such a way * that they can be merely listed in the source code to define the actual * desired ordering. */ #define ORDERKEY_PCTCPU \ if (lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu), \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPUTIME \ if ((result = PP(p2, p_rtime.tv_sec) - PP(p1, p_rtime.tv_sec)) == 0) \ if ((result = PP(p2, p_rtime.tv_usec) - \ PP(p1, p_rtime.tv_usec)) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \ sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) #define ORDERKEY_PRIO \ if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) #define ORDERKEY_RSSIZE \ if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) #define ORDERKEY_MEM \ if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0) /* compare_cpu - the comparison function for sorting by cpu percentage */ int compare_cpu(v1, v2) const void *v1, *v2; { register struct proc **pp1 = (struct proc **)v1; register struct proc **pp2 = (struct proc **)v2; register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(v1, v2) const void *v1, *v2; { register struct proc **pp1 = (struct proc **)v1; register struct proc **pp2 = (struct proc **)v2; register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ; return(result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(v1, v2) const void *v1, *v2; { register struct proc **pp1 = (struct proc **)v1; register struct proc **pp2 = (struct proc **)v2; register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ; return(result); } /* compare_time - the comparison function for sorting by CPU time */ int compare_time(v1, v2) const void *v1, *v2; { register struct proc **pp1 = (struct proc **)v1; register struct proc **pp2 = (struct proc **)v2; register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CPUTIME ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_MEM ORDERKEY_RSSIZE ; return(result); } /* compare_prio - the comparison function for sorting by CPU time */ int compare_prio(v1, v2) const void *v1, *v2; { register struct proc **pp1 = (struct proc **)v1; register struct proc **pp2 = (struct proc **)v2; register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PRIO ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return(result); } int (*proc_compares[])() = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, NULL }; #else /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): zombie, sleep, stop, start, run. The array * declaration below maps a process state index into a number that * reflects this ordering. */ int proc_compare(v1, v2) const void *v1, *v2; { register struct proc **pp1 = (struct proc **)v1; register struct proc **pp2 = (struct proc **)v2; register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; /* compare percent cpu (pctcpu) */ if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0) { /* use CPU usage to break the tie */ if ((result = PP(p2, p_rtime).tv_sec - PP(p1, p_rtime).tv_sec) == 0) { /* use process state to break the tie */ if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) { /* use priority to break the tie */ if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) { /* use resident set size (rssize) to break the tie */ if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) { /* use total memory to break the tie */ result = PROCSIZE(p2) - PROCSIZE(p1); } } } } } else { result = lresult < 0 ? -1 : 1; } return(result); } #endif /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) pid_t pid; { register int cnt; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (PP(pp, p_pid) == pid) { return((int)EP(pp, e_pcred.p_ruid)); } } return(-1); } #ifdef DOSWAP /* * swapmode is based on a program called swapinfo written * by Kevin Lahey . */ #define SVAR(var) __STRING(var) /* to force expansion */ #define KGET(idx, var) \ KGET1(idx, &var, sizeof(var), SVAR(var)) #define KGET1(idx, p, s, msg) \ KGET2(nlst[idx].n_value, p, s, msg) #define KGET2(addr, p, s, msg) \ if (kvm_read(kd, (u_long)(addr), p, s) != s) \ warnx("cannot read %s: %s", msg, kvm_geterr(kd)) static int swapmode(used, total) int *used; int *total; { int nswap, nswdev, dmmax, nswapmap, niswap, niswdev; int s, e, i, l, nfree; struct swdevt *sw; long *perdev; struct map *swapmap, *kswapmap; struct mapent *mp, *freemp; KGET(VM_NSWAP, nswap); KGET(VM_NSWDEV, nswdev); KGET(VM_DMMAX, dmmax); KGET(VM_NSWAPMAP, nswapmap); KGET(VM_SWAPMAP, kswapmap); /* kernel `swapmap' is a pointer */ if (nswap == 0) { *used = 0; *total = 0; return (1); } if ((sw = malloc(nswdev * sizeof(*sw))) == NULL || (perdev = malloc(nswdev * sizeof(*perdev))) == NULL || (freemp = mp = malloc(nswapmap * sizeof(*mp))) == NULL) err(1, "malloc"); KGET1(VM_SWDEVT, sw, nswdev * sizeof(*sw), "swdevt"); KGET2((long)kswapmap, mp, nswapmap * sizeof(*mp), "swapmap"); /* Supports sequential swap */ if (nlst[VM_NISWAP].n_value != 0) { KGET(VM_NISWAP, niswap); KGET(VM_NISWDEV, niswdev); } else { niswap = nswap; niswdev = nswdev; } /* First entry in map is `struct map'; rest are mapent's. */ swapmap = (struct map *)mp; if (nswapmap != swapmap->m_limit - (struct mapent *)kswapmap) errx(1, "panic: nswapmap goof"); /* Count up swap space. */ nfree = 0; memset(perdev, 0, nswdev * sizeof(*perdev)); for (mp++; mp->m_addr != 0; mp++) { s = mp->m_addr; /* start of swap region */ e = mp->m_addr + mp->m_size; /* end of region */ nfree += mp->m_size; /* * Swap space is split up among the configured disks. * * For interleaved swap devices, the first dmmax blocks * of swap space some from the first disk, the next dmmax * blocks from the next, and so on up to niswap blocks. * * Sequential swap devices follow the interleaved devices * (i.e. blocks starting at niswap) in the order in which * they appear in the swdev table. The size of each device * will be a multiple of dmmax. * * The list of free space joins adjacent free blocks, * ignoring device boundries. If we want to keep track * of this information per device, we'll just have to * extract it ourselves. We know that dmmax-sized chunks * cannot span device boundaries (interleaved or sequential) * so we loop over such chunks assigning them to devices. */ i = -1; while (s < e) { /* XXX this is inefficient */ int bound = roundup(s+1, dmmax); if (bound > e) bound = e; if (bound <= niswap) { /* Interleaved swap chunk. */ if (i == -1) i = (s / dmmax) % niswdev; perdev[i] += bound - s; if (++i >= niswdev) i = 0; } else { /* Sequential swap chunk. */ if (i < niswdev) { i = niswdev; l = niswap + sw[i].sw_nblks; } while (s >= l) { /* XXX don't die on bogus blocks */ if (i == nswdev-1) break; l += sw[++i].sw_nblks; } perdev[i] += bound - s; } s = bound; } } *total = 0; for (i = 0; i < nswdev; i++) { int xsize, xfree; xsize = sw[i].sw_nblks; xfree = perdev[i]; *total += xsize; } /* * If only one partition has been set up via swapon(8), we don't * need to bother with totals. */ #if DEV_BSHIFT < 10 *used = (*total - nfree) >> (10 - DEV_BSHIFT); *total >>= 10 - DEV_BSHIFT; #elif DEV_BSHIFT > 10 *used = (*total - nfree) >> (DEV_BSHIFT - 10); *total >>= DEV_BSHIFT - 10; #endif free (sw); free (freemp); free (perdev); return 1; } #endif