/* $OpenBSD: machine.c,v 1.53 2006/09/20 21:26:20 ray Exp $ */ /*- * Copyright (c) 1994 Thorsten Lockert * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * AUTHOR: Thorsten Lockert * Adapted from BSD4.4 by Christos Zoulas * Patch for process wait display by Jarl F. Greipsland * Patch for -DORDER by Kenneth Stailey * Patch for new swapctl(2) by Tobias Weingartner */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "top.h" #include "display.h" #include "machine.h" #include "utils.h" #include "loadavg.h" static int swapmode(int *, int *); /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize) /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d %5s %5s %-8s %-6.6s %6s %5.2f%% %.51s" /* process state names for the "STATE" column of the display */ /* * the extra nulls in the string "run" are for adding a slash and the * processor number when needed */ char *state_abbrev[] = { "", "start", "run", "sleep", "stop", "zomb", "dead", "onproc" }; static int stathz; /* these are for calculating cpu state percentages */ static int64_t **cp_time; static int64_t **cp_old; static int64_t **cp_diff; /* these are for detailing the process states */ int process_states[8]; char *procstatenames[] = { "", " starting, ", " running, ", " idle, ", " stopped, ", " zombie, ", " dead, ", " on processor, ", NULL }; /* these are for detailing the cpu states */ int64_t *cpu_states; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[8]; char *memorynames[] = { "Real: ", "K/", "K act/tot ", "Free: ", "K ", "Swap: ", "K/", "K used/tot", NULL }; /* these are names given to allowed sorting orders -- first is default */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc2 *pbase; static struct kinfo_proc2 **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) int ncpu; unsigned int maxslp; static int getstathz(void) { struct clockinfo cinf; size_t size = sizeof(cinf); int mib[2]; mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; if (sysctl(mib, 2, &cinf, &size, NULL, 0) == -1) return (-1); return (cinf.stathz); } int machine_init(struct statics *statics) { size_t size = sizeof(ncpu); int mib[2], pagesize, cpu; mib[0] = CTL_HW; mib[1] = HW_NCPU; if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) return (-1); cpu_states = malloc(ncpu * CPUSTATES * sizeof(int64_t)); if (cpu_states == NULL) err(1, NULL); cp_time = malloc(ncpu * sizeof(int64_t *)); cp_old = malloc(ncpu * sizeof(int64_t *)); cp_diff = malloc(ncpu * sizeof(int64_t *)); if (cp_time == NULL || cp_old == NULL || cp_diff == NULL) err(1, NULL); for (cpu = 0; cpu < ncpu; cpu++) { cp_time[cpu] = calloc(CPUSTATES, sizeof(int64_t)); cp_old[cpu] = calloc(CPUSTATES, sizeof(int64_t)); cp_diff[cpu] = calloc(CPUSTATES, sizeof(int64_t)); if (cp_time[cpu] == NULL || cp_old[cpu] == NULL || cp_diff[cpu] == NULL) err(1, NULL); } stathz = getstathz(); if (stathz == -1) return (-1); pbase = NULL; pref = NULL; onproc = -1; nproc = 0; /* * get the page size with "getpagesize" and calculate pageshift from * it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->order_names = ordernames; return (0); } char * format_header(char *uname_field) { char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') *ptr++ = *uname_field++; return (header); } void get_system_info(struct system_info *si) { static int sysload_mib[] = {CTL_VM, VM_LOADAVG}; static int vmtotal_mib[] = {CTL_VM, VM_METER}; struct loadavg sysload; struct vmtotal vmtotal; double *infoloadp; size_t size; int i; int64_t *tmpstate; if (ncpu > 1) { size = CPUSTATES * sizeof(int64_t); for (i = 0; i < ncpu; i++) { int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, i}; tmpstate = cpu_states + (CPUSTATES * i); if (sysctl(cp_time_mib, 3, cp_time[i], &size, NULL, 0) < 0) warn("sysctl kern.cp_time2 failed"); /* convert cp_time2 counts to percentages */ (void) percentages(CPUSTATES, tmpstate, cp_time[i], cp_old[i], cp_diff[i]); } } else { int cp_time_mib[] = {CTL_KERN, KERN_CPTIME}; long cp_time_tmp[CPUSTATES]; size = sizeof(cp_time_tmp); if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, NULL, 0) < 0) warn("sysctl kern.cp_time failed"); for (i = 0; i < CPUSTATES; i++) cp_time[0][i] = cp_time_tmp[i]; /* convert cp_time counts to percentages */ (void) percentages(CPUSTATES, cpu_states, cp_time[0], cp_old[0], cp_diff[0]); } size = sizeof(sysload); if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0) warn("sysctl failed"); infoloadp = si->load_avg; for (i = 0; i < 3; i++) *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; /* get total -- systemwide main memory usage structure */ size = sizeof(vmtotal); if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0) { warn("sysctl failed"); bzero(&vmtotal, sizeof(vmtotal)); } /* convert memory stats to Kbytes */ memory_stats[0] = -1; memory_stats[1] = pagetok(vmtotal.t_arm); memory_stats[2] = pagetok(vmtotal.t_rm); memory_stats[3] = -1; memory_stats[4] = pagetok(vmtotal.t_free); memory_stats[5] = -1; if (!swapmode(&memory_stats[6], &memory_stats[7])) { memory_stats[6] = 0; memory_stats[7] = 0; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->last_pid = -1; } static struct handle handle; struct kinfo_proc2 * getprocs(int op, int arg, int *cnt) { size_t size; int mib[6] = {CTL_KERN, KERN_PROC2, 0, 0, sizeof(struct kinfo_proc2), 0}; static int maxslp_mib[] = {CTL_VM, VM_MAXSLP}; static struct kinfo_proc2 *procbase; int st; mib[2] = op; mib[3] = arg; size = sizeof(maxslp); if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) < 0) { warn("sysctl vm.maxslp failed"); return (0); } retry: free(procbase); st = sysctl(mib, 6, NULL, &size, NULL, 0); if (st == -1) { /* _kvm_syserr(kd, kd->program, "kvm_getproc2"); */ return (0); } size = 5 * size / 4; /* extra slop */ if ((procbase = malloc(size)) == NULL) return (0); mib[5] = (int)(size / sizeof(struct kinfo_proc2)); st = sysctl(mib, 6, procbase, &size, NULL, 0); if (st == -1) { if (errno == ENOMEM) goto retry; /* _kvm_syserr(kd, kd->program, "kvm_getproc2"); */ return (0); } *cnt = (int)(size / sizeof(struct kinfo_proc2)); return (procbase); } caddr_t get_process_info(struct system_info *si, struct process_select *sel, int (*compare) (const void *, const void *)) { int show_idle, show_system, show_threads, show_uid, show_pid; int total_procs, active_procs; struct kinfo_proc2 **prefp, *pp; if ((pbase = getprocs(KERN_PROC_KTHREAD, 0, &nproc)) == NULL) { /* warnx("%s", kvm_geterr(kd)); */ quit(23); } if (nproc > onproc) pref = (struct kinfo_proc2 **)realloc(pref, sizeof(struct kinfo_proc2 *) * (onproc = nproc)); if (pref == NULL) { warnx("Out of memory."); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_threads = sel->threads; show_uid = sel->uid != (uid_t)-1; show_pid = sel->pid != (pid_t)-1; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *) process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase; pp < &pbase[nproc]; pp++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with SSYS set are system * processes---these get ignored unless show_sysprocs is set. */ if (pp->p_stat != 0 && (show_system || (pp->p_flag & P_SYSTEM) == 0) && (show_threads || (pp->p_flag & P_THREAD) == 0)) { total_procs++; process_states[(unsigned char) pp->p_stat]++; if (pp->p_stat != SZOMB && (show_idle || pp->p_pctcpu != 0 || pp->p_stat == SRUN) && (!show_uid || pp->p_ruid == sel->uid) && (!show_pid || pp->p_pid == sel->pid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) qsort((char *) pref, active_procs, sizeof(struct kinfo_proc2 *), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return ((caddr_t) & handle); } char fmt[MAX_COLS]; /* static area where result is built */ char * state_abbr(struct kinfo_proc2 *pp) { static char buf[10]; if (ncpu > 1 && pp->p_cpuid != KI_NOCPU) snprintf(buf, sizeof buf, "%s/%llu", state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid); else snprintf(buf, sizeof buf, "%s", state_abbrev[(unsigned char)pp->p_stat]); return buf; } char * format_comm(struct kinfo_proc2 *kp) { #define ARG_SIZE 60 static char **s, buf[ARG_SIZE]; size_t siz = 100; char **p; int mib[4]; extern int show_args; if (!show_args) return (kp->p_comm); for (;; siz *= 2) { if ((s = realloc(s, siz)) == NULL) err(1, NULL); mib[0] = CTL_KERN; mib[1] = KERN_PROC_ARGS; mib[2] = kp->p_pid; mib[3] = KERN_PROC_ARGV; if (sysctl(mib, 4, s, &siz, NULL, 0) == 0) break; if (errno != ENOMEM) return (kp->p_comm); } buf[0] = '\0'; for (p = s; *p != NULL; p++) { if (p != s) strlcat(buf, " ", sizeof(buf)); strlcat(buf, *p, sizeof(buf)); } if (buf[0] == '\0') return (kp->p_comm); return (buf); } char * format_next_process(caddr_t handle, char *(*get_userid)(uid_t)) { char *p_wait, waddr[sizeof(void *) * 2 + 3]; /* Hexify void pointer */ struct kinfo_proc2 *pp; struct handle *hp; int cputime; double pct; /* find and remember the next proc structure */ hp = (struct handle *) handle; pp = *(hp->next_proc++); hp->remaining--; if ((pp->p_flag & P_INMEM) == 0) { /* * Print swapped processes as */ char buf[sizeof(pp->p_comm)]; (void) strlcpy(buf, pp->p_comm, sizeof(buf)); (void) snprintf(pp->p_comm, sizeof(pp->p_comm), "<%s>", buf); } cputime = (pp->p_uticks + pp->p_sticks + pp->p_iticks) / stathz; /* calculate the base for cpu percentages */ pct = pctdouble(pp->p_pctcpu); if (pp->p_wchan) { if (pp->p_wmesg) p_wait = pp->p_wmesg; else { snprintf(waddr, sizeof(waddr), "%llx", pp->p_wchan & ~KERNBASE); p_wait = waddr; } } else p_wait = "-"; /* format this entry */ snprintf(fmt, sizeof fmt, Proc_format, pp->p_pid, (*get_userid)(pp->p_ruid), pp->p_priority - PZERO, pp->p_nice - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(pp->p_vm_rssize)), (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ? "idle" : state_abbr(pp), p_wait, format_time(cputime), 100.0 * pct, printable(format_comm(pp))); /* return the result */ return (fmt); } /* comparison routine for qsort */ static unsigned char sorted_state[] = { 0, /* not used */ 4, /* start */ 5, /* run */ 2, /* sleep */ 3, /* stop */ 1 /* zombie */ }; /* * proc_compares - comparison functions for "qsort" */ /* * First, the possible comparison keys. These are defined in such a way * that they can be merely listed in the source code to define the actual * desired ordering. */ #define ORDERKEY_PCTCPU \ if (lresult = (pctcpu)p2->p_pctcpu - (pctcpu)p1->p_pctcpu, \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPUTIME \ if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \ if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char)p2->p_stat] - \ sorted_state[(unsigned char)p1->p_stat]) == 0) #define ORDERKEY_PRIO \ if ((result = p2->p_priority - p1->p_priority) == 0) #define ORDERKEY_RSSIZE \ if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0) #define ORDERKEY_MEM \ if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0) /* compare_cpu - the comparison function for sorting by cpu percentage */ static int compare_cpu(const void *v1, const void *v2) { struct proc **pp1 = (struct proc **) v1; struct proc **pp2 = (struct proc **) v2; struct kinfo_proc2 *p1, *p2; pctcpu lresult; int result; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_size - the comparison function for sorting by total memory usage */ static int compare_size(const void *v1, const void *v2) { struct proc **pp1 = (struct proc **) v1; struct proc **pp2 = (struct proc **) v2; struct kinfo_proc2 *p1, *p2; pctcpu lresult; int result; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_res - the comparison function for sorting by resident set size */ static int compare_res(const void *v1, const void *v2) { struct proc **pp1 = (struct proc **) v1; struct proc **pp2 = (struct proc **) v2; struct kinfo_proc2 *p1, *p2; pctcpu lresult; int result; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_time - the comparison function for sorting by CPU time */ static int compare_time(const void *v1, const void *v2) { struct proc **pp1 = (struct proc **) v1; struct proc **pp2 = (struct proc **) v2; struct kinfo_proc2 *p1, *p2; pctcpu lresult; int result; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_CPUTIME ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_MEM ORDERKEY_RSSIZE ; return (result); } /* compare_prio - the comparison function for sorting by CPU time */ static int compare_prio(const void *v1, const void *v2) { struct proc **pp1 = (struct proc **) v1; struct proc **pp2 = (struct proc **) v2; struct kinfo_proc2 *p1, *p2; pctcpu lresult; int result; /* remove one level of indirection */ p1 = *(struct kinfo_proc2 **) pp1; p2 = *(struct kinfo_proc2 **) pp2; ORDERKEY_PRIO ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } int (*proc_compares[])(const void *, const void *) = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, NULL }; /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMELY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ uid_t proc_owner(pid_t pid) { struct kinfo_proc2 **prefp, *pp; int cnt; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->p_pid == pid) return ((uid_t)pp->p_ruid); } return (uid_t)(-1); } /* * swapmode is rewritten by Tobias Weingartner * to be based on the new swapctl(2) system call. */ static int swapmode(int *used, int *total) { struct swapent *swdev; int nswap, rnswap, i; nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap == 0) return 0; swdev = malloc(nswap * sizeof(*swdev)); if (swdev == NULL) return 0; rnswap = swapctl(SWAP_STATS, swdev, nswap); if (rnswap == -1) { free(swdev); return 0; } /* if rnswap != nswap, then what? */ /* Total things up */ *total = *used = 0; for (i = 0; i < nswap; i++) { if (swdev[i].se_flags & SWF_ENABLE) { *used += (swdev[i].se_inuse / (1024 / DEV_BSIZE)); *total += (swdev[i].se_nblks / (1024 / DEV_BSIZE)); } } free(swdev); return 1; }