/* $OpenBSD: machine.c,v 1.110 2020/08/26 16:21:28 kn Exp $ */ /*- * Copyright (c) 1994 Thorsten Lockert * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * AUTHOR: Thorsten Lockert * Adapted from BSD4.4 by Christos Zoulas * Patch for process wait display by Jarl F. Greipsland * Patch for -DORDER by Kenneth Stailey * Patch for new swapctl(2) by Tobias Weingartner */ #include /* DEV_BSIZE MAXCOMLEN PZERO */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "top.h" #include "display.h" #include "machine.h" #include "utils.h" static int swapmode(int *, int *); static char *state_abbr(struct kinfo_proc *); static char *format_comm(struct kinfo_proc *); static int cmd_matches(struct kinfo_proc *, char *); static char **get_proc_args(struct kinfo_proc *); /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ }; /* what we consider to be process size: */ #define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize) /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND"; /* offsets in the header line to start alternative columns */ #define UNAME_START 6 #define RTABLE_START 46 #define Proc_format \ "%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s" /* process state names for the "STATE" column of the display */ char *state_abbrev[] = { "", "start", "run", "sleep", "stop", "zomb", "dead", "onproc" }; /* these are for calculating cpu state percentages */ static struct cpustats *cp_time; static struct cpustats *cp_old; static struct cpustats *cp_diff; /* these are for detailing the process states */ int process_states[8]; char *procstatenames[] = { "", " starting, ", " running, ", " idle, ", " stopped, ", " zombie, ", " dead, ", " on processor, ", NULL }; /* these are for detailing the cpu states */ int64_t *cpu_states; char *cpustatenames[] = { "user", "nice", "sys", "spin", "intr", "idle", NULL }; /* this is for tracking which cpus are online */ int *cpu_online; /* these are for detailing the memory statistics */ int memory_stats[10]; char *memorynames[] = { "Real: ", "K/", "K act/tot ", "Free: ", "K ", "Cache: ", "K ", "Swap: ", "K/", "K", NULL }; /* these are names given to allowed sorting orders -- first is default */ char *ordernames[] = { "cpu", "size", "res", "time", "pri", "pid", "command", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) int ncpu; int ncpuonline; int fscale; unsigned int maxslp; int getfscale(void) { int mib[] = { CTL_KERN, KERN_FSCALE }; size_t size = sizeof(fscale); if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &fscale, &size, NULL, 0) == -1) return (-1); return fscale; } int getncpu(void) { int mib[] = { CTL_HW, HW_NCPU }; int numcpu; size_t size = sizeof(numcpu); if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &numcpu, &size, NULL, 0) == -1) return (-1); return (numcpu); } int getncpuonline(void) { int mib[] = { CTL_HW, HW_NCPUONLINE }; int numcpu; size_t size = sizeof(numcpu); if (sysctl(mib, sizeof(mib) / sizeof(mib[0]), &numcpu, &size, NULL, 0) == -1) return (-1); return (numcpu); } int machine_init(struct statics *statics) { int pagesize; ncpu = getncpu(); if (ncpu == -1) return (-1); if (getfscale() == -1) return (-1); cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t)); if (cpu_states == NULL) err(1, NULL); cp_time = calloc(ncpu, sizeof(*cp_time)); cp_old = calloc(ncpu, sizeof(*cp_old)); cp_diff = calloc(ncpu, sizeof(*cp_diff)); if (cp_time == NULL || cp_old == NULL || cp_diff == NULL) err(1, NULL); cpu_online = calloc(ncpu, sizeof(*cpu_online)); if (cpu_online == NULL) err(1, NULL); /* * get the page size with "getpagesize" and calculate pageshift from * it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->order_names = ordernames; return (0); } char * format_header(char *second_field, char *eighth_field) { char *second_fieldp = second_field, *eighth_fieldp = eighth_field, *ptr; ptr = header + UNAME_START; while (*second_fieldp != '\0') *ptr++ = *second_fieldp++; ptr = header + RTABLE_START; while (*eighth_fieldp != '\0') *ptr++ = *eighth_fieldp++; return (header); } void get_system_info(struct system_info *si) { static int cpustats_mib[] = {CTL_KERN, KERN_CPUSTATS, /*fillme*/0}; static int sysload_mib[] = {CTL_VM, VM_LOADAVG}; static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP}; static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT}; struct loadavg sysload; struct uvmexp uvmexp; struct bcachestats bcstats; double *infoloadp; size_t size; int i; int64_t *tmpstate; size = sizeof(*cp_time); for (i = 0; i < ncpu; i++) { cpustats_mib[2] = i; tmpstate = cpu_states + (CPUSTATES * i); if (sysctl(cpustats_mib, 3, &cp_time[i], &size, NULL, 0) == -1) warn("sysctl kern.cpustats failed"); /* convert cpustats counts to percentages */ (void) percentages(CPUSTATES, tmpstate, cp_time[i].cs_time, cp_old[i].cs_time, cp_diff[i].cs_time); /* note whether the cpu is online */ cpu_online[i] = (cp_time[i].cs_flags & CPUSTATS_ONLINE) != 0; } size = sizeof(sysload); if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) == -1) warn("sysctl failed"); infoloadp = si->load_avg; for (i = 0; i < 3; i++) *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; /* get total -- systemwide main memory usage structure */ size = sizeof(uvmexp); if (sysctl(uvmexp_mib, 2, &uvmexp, &size, NULL, 0) == -1) { warn("sysctl failed"); bzero(&uvmexp, sizeof(uvmexp)); } size = sizeof(bcstats); if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) == -1) { warn("sysctl failed"); bzero(&bcstats, sizeof(bcstats)); } /* convert memory stats to Kbytes */ memory_stats[0] = -1; memory_stats[1] = pagetok(uvmexp.active); memory_stats[2] = pagetok(uvmexp.npages - uvmexp.free); memory_stats[3] = -1; memory_stats[4] = pagetok(uvmexp.free); memory_stats[5] = -1; memory_stats[6] = pagetok(bcstats.numbufpages); memory_stats[7] = -1; if (!swapmode(&memory_stats[8], &memory_stats[9])) { memory_stats[8] = 0; memory_stats[9] = 0; } /* set arrays and strings */ si->cpustates = cpu_states; si->cpuonline = cpu_online; si->memory = memory_stats; si->last_pid = -1; } static struct handle handle; struct kinfo_proc * getprocs(int op, int arg, int *cnt) { size_t size; int mib[6] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc), 0}; static int maxslp_mib[] = {CTL_VM, VM_MAXSLP}; static struct kinfo_proc *procbase; int st; mib[2] = op; mib[3] = arg; size = sizeof(maxslp); if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) == -1) { warn("sysctl vm.maxslp failed"); return (0); } retry: free(procbase); st = sysctl(mib, 6, NULL, &size, NULL, 0); if (st == -1) { /* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */ return (0); } size = 5 * size / 4; /* extra slop */ if ((procbase = malloc(size)) == NULL) return (0); mib[5] = (int)(size / sizeof(struct kinfo_proc)); st = sysctl(mib, 6, procbase, &size, NULL, 0); if (st == -1) { if (errno == ENOMEM) goto retry; /* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */ return (0); } *cnt = (int)(size / sizeof(struct kinfo_proc)); return (procbase); } static char ** get_proc_args(struct kinfo_proc *kp) { static char **s; static size_t siz = 1023; int mib[4]; if (!s && !(s = malloc(siz))) err(1, NULL); mib[0] = CTL_KERN; mib[1] = KERN_PROC_ARGS; mib[2] = kp->p_pid; mib[3] = KERN_PROC_ARGV; for (;;) { size_t space = siz; if (sysctl(mib, 4, s, &space, NULL, 0) == 0) break; if (errno != ENOMEM) return NULL; siz *= 2; if ((s = realloc(s, siz)) == NULL) err(1, NULL); } return s; } static int cmd_matches(struct kinfo_proc *proc, char *term) { extern int show_args; char **args = NULL; if (!term) { /* No command filter set */ return 1; } else { /* Filter set, process name needs to contain term */ if (strstr(proc->p_comm, term)) return 1; /* If showing arguments, search those as well */ if (show_args) { args = get_proc_args(proc); if (args == NULL) { /* Failed to get args, so can't search them */ return 0; } while (*args != NULL) { if (strstr(*args, term)) return 1; args++; } } } return 0; } struct handle * get_process_info(struct system_info *si, struct process_select *sel, int (*compare) (const void *, const void *)) { int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd; int show_rtableid, hide_rtableid, hide_uid; int total_procs, active_procs; struct kinfo_proc **prefp, *pp; int what = KERN_PROC_ALL; show_system = sel->system; show_threads = sel->threads; if (show_system) what = KERN_PROC_KTHREAD; if (show_threads) what |= KERN_PROC_SHOW_THREADS; if ((pbase = getprocs(what, 0, &nproc)) == NULL) { /* warnx("%s", kvm_geterr(kd)); */ quit(23); } if (nproc > onproc) pref = reallocarray(pref, (onproc = nproc), sizeof(struct kinfo_proc *)); if (pref == NULL) { warnx("Out of memory."); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_uid = sel->uid != (uid_t)-1; hide_uid = sel->huid != (uid_t)-1; show_pid = sel->pid != (pid_t)-1; show_rtableid = sel->rtableid != -1; hide_rtableid = sel->hrtableid != -1; show_cmd = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *) process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase; pp < &pbase[nproc]; pp++) { /* * When showing threads, we want to ignore the structure * that represents the entire process, which has TID == -1 */ if (show_threads && pp->p_tid == -1) continue; /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. */ if (pp->p_stat != 0) { total_procs++; process_states[(unsigned char) pp->p_stat]++; if ((pp->p_psflags & PS_ZOMBIE) == 0 && (show_idle || pp->p_pctcpu != 0 || pp->p_stat == SRUN) && (!hide_uid || pp->p_ruid != sel->huid) && (!show_uid || pp->p_ruid == sel->uid) && (!show_pid || pp->p_pid == sel->pid) && (!hide_rtableid || pp->p_rtableid != sel->hrtableid) && (!show_rtableid || pp->p_rtableid == sel->rtableid) && (!show_cmd || cmd_matches(pp, sel->command))) { *prefp++ = pp; active_procs++; } } } qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; return &handle; } char fmt[MAX_COLS]; /* static area where result is built */ static char * state_abbr(struct kinfo_proc *pp) { static char buf[10]; if (ncpu > 1 && pp->p_cpuid != KI_NOCPU) snprintf(buf, sizeof buf, "%s/%llu", state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid); else snprintf(buf, sizeof buf, "%s", state_abbrev[(unsigned char)pp->p_stat]); return buf; } static char * format_comm(struct kinfo_proc *kp) { static char buf[MAX_COLS]; char **p, **s; extern int show_args; if (!show_args) return (kp->p_comm); s = get_proc_args(kp); if (s == NULL) return kp->p_comm; buf[0] = '\0'; for (p = s; *p != NULL; p++) { if (p != s) strlcat(buf, " ", sizeof(buf)); strlcat(buf, *p, sizeof(buf)); } if (buf[0] == '\0') return (kp->p_comm); return (buf); } void skip_processes(struct handle *hndl, int n) { hndl->next_proc += n; } char * format_next_process(struct handle *hndl, const char *(*get_userid)(uid_t, int), int rtable, pid_t *pid) { struct kinfo_proc *pp; int cputime; double pct; char second_buf[16], eighth_buf[8]; /* find and remember the next proc structure */ pp = *(hndl->next_proc++); cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000); /* calculate the base for cpu percentages */ pct = (double)pp->p_pctcpu / fscale; if (get_userid == NULL) snprintf(second_buf, sizeof(second_buf), "%8d", pp->p_tid); else strlcpy(second_buf, (*get_userid)(pp->p_ruid, 0), sizeof(second_buf)); if (rtable) snprintf(eighth_buf, sizeof(eighth_buf), "%7d", pp->p_rtableid); else strlcpy(eighth_buf, pp->p_wmesg[0] ? pp->p_wmesg : "-", sizeof(eighth_buf)); /* format this entry */ snprintf(fmt, sizeof(fmt), Proc_format, pp->p_pid, second_buf, pp->p_priority - PZERO, pp->p_nice - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(pp->p_vm_rssize)), (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ? "idle" : state_abbr(pp), eighth_buf, format_time(cputime), 100.0 * pct, printable(format_comm(pp))); *pid = pp->p_pid; /* return the result */ return (fmt); } /* comparison routine for qsort */ static unsigned char sorted_state[] = { 0, /* not used */ 4, /* start */ 5, /* run */ 2, /* sleep */ 3, /* stop */ 1 /* zombie */ }; extern int rev_order; /* * proc_compares - comparison functions for "qsort" */ /* * First, the possible comparison keys. These are defined in such a way * that they can be merely listed in the source code to define the actual * desired ordering. */ #define ORDERKEY_PCTCPU \ if ((result = (int)(p2->p_pctcpu - p1->p_pctcpu)) == 0) #define ORDERKEY_CPUTIME \ if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \ if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char)p2->p_stat] - \ sorted_state[(unsigned char)p1->p_stat]) == 0) #define ORDERKEY_PRIO \ if ((result = p2->p_priority - p1->p_priority) == 0) #define ORDERKEY_RSSIZE \ if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0) #define ORDERKEY_MEM \ if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0) #define ORDERKEY_PID \ if ((result = p1->p_pid - p2->p_pid) == 0) #define ORDERKEY_CMD \ if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0) /* remove one level of indirection and set sort order */ #define SETORDER do { \ if (rev_order) { \ p1 = *(struct kinfo_proc **) v2; \ p2 = *(struct kinfo_proc **) v1; \ } else { \ p1 = *(struct kinfo_proc **) v1; \ p2 = *(struct kinfo_proc **) v2; \ } \ } while (0) /* compare_cpu - the comparison function for sorting by cpu percentage */ static int compare_cpu(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_size - the comparison function for sorting by total memory usage */ static int compare_size(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_res - the comparison function for sorting by resident set size */ static int compare_res(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_time - the comparison function for sorting by CPU time */ static int compare_time(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_CPUTIME ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_MEM ORDERKEY_RSSIZE ; return (result); } /* compare_prio - the comparison function for sorting by CPU time */ static int compare_prio(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_PRIO ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } static int compare_pid(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_PID ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } static int compare_cmd(const void *v1, const void *v2) { struct kinfo_proc *p1, *p2; int result; SETORDER; ORDERKEY_CMD ORDERKEY_PCTCPU ORDERKEY_CPUTIME ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } int (*proc_compares[])(const void *, const void *) = { compare_cpu, compare_size, compare_res, compare_time, compare_prio, compare_pid, compare_cmd, NULL }; /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMELY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ uid_t proc_owner(pid_t pid) { struct kinfo_proc **prefp, *pp; int cnt; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (pp->p_pid == pid) return ((uid_t)pp->p_ruid); } return (uid_t)(-1); } /* * swapmode is rewritten by Tobias Weingartner * to be based on the new swapctl(2) system call. */ static int swapmode(int *used, int *total) { struct swapent *swdev; int nswap, rnswap, i; nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap == 0) return 0; swdev = calloc(nswap, sizeof(*swdev)); if (swdev == NULL) return 0; rnswap = swapctl(SWAP_STATS, swdev, nswap); if (rnswap == -1) { free(swdev); return 0; } /* if rnswap != nswap, then what? */ /* Total things up */ *total = *used = 0; for (i = 0; i < nswap; i++) { if (swdev[i].se_flags & SWF_ENABLE) { *used += (swdev[i].se_inuse / (1024 / DEV_BSIZE)); *total += (swdev[i].se_nblks / (1024 / DEV_BSIZE)); } } free(swdev); return 1; }