/* $NetBSD: vmstat.c,v 1.29.4.1 1996/06/05 00:21:05 cgd Exp $ */ /* $OpenBSD: vmstat.c,v 1.155 2022/12/04 23:50:50 cheloha Exp $ */ /* * Copyright (c) 1980, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dkstats.h" struct nlist namelist[] = { #define X_UVMEXP 0 /* sysctl */ { "_uvmexp" }, #define X_TIME_UPTIME 1 { "_time_uptime" }, #define X_NCHSTATS 2 /* sysctl */ { "_nchstats" }, #define X_KMEMSTAT 3 /* sysctl */ { "_kmemstats" }, #define X_KMEMBUCKETS 4 /* sysctl */ { "_bucket" }, #define X_FORKSTAT 5 /* sysctl */ { "_forkstat" }, #define X_POOLHEAD 6 /* sysctl */ { "_pool_head" }, #define X_NAPTIME 7 { "_naptime" }, { NULL }, }; /* Objects defined in dkstats.c */ extern struct _disk cur, last; extern char **dr_name; extern int *dk_select, dk_ndrive; struct uvmexp uvmexp, ouvmexp; int ndrives; int winlines = 20; kvm_t *kd; #define FORKSTAT 0x01 #define INTRSTAT 0x02 #define MEMSTAT 0x04 #define SUMSTAT 0x08 #define TIMESTAT 0x10 #define VMSTAT 0x20 void cpustats(void); time_t getuptime(void); void dkstats(void); void dointr(void); void domem(void); void dopool(void); void dosum(void); void dovmstat(u_int, int); void kread(int, void *, size_t); void usage(void); void dotimes(void); void doforkst(void); void needhdr(int); int pct(int64_t, int64_t); void printhdr(void); char **choosedrives(char **); /* Namelist and memory file names. */ char *nlistf, *memf; extern char *__progname; int verbose = 0; int zflag = 0; int main(int argc, char *argv[]) { char errbuf[_POSIX2_LINE_MAX]; int c, todo = 0, reps = 0; struct winsize winsize; const char *errstr; u_int interval = 0; while ((c = getopt(argc, argv, "c:fiM:mN:stw:vz")) != -1) { switch (c) { case 'c': reps = strtonum(optarg, 0, INT_MAX, &errstr); if (errstr) errx(1, "-c %s: %s", optarg, errstr); break; case 'f': todo |= FORKSTAT; break; case 'i': todo |= INTRSTAT; break; case 'M': memf = optarg; break; case 'm': todo |= MEMSTAT; break; case 'N': nlistf = optarg; break; case 's': todo |= SUMSTAT; break; case 't': todo |= TIMESTAT; break; case 'w': interval = (u_int)strtonum(optarg, 0, 1000, &errstr); if (errstr) errx(1, "-w %s: %s", optarg, errstr); break; case 'v': verbose = 1; break; case 'z': zflag = 1; break; default: usage(); } } argc -= optind; argv += optind; if (todo == 0) todo = VMSTAT; if (nlistf != NULL || memf != NULL) { kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, errbuf); if (kd == 0) errx(1, "kvm_openfiles: %s", errbuf); if ((c = kvm_nlist(kd, namelist)) != 0) { if (c > 0) { (void)fprintf(stderr, "%s: undefined symbols:", __progname); for (c = 0; c < sizeof(namelist)/sizeof(namelist[0]); c++) if (namelist[c].n_type == 0) fprintf(stderr, " %s", namelist[c].n_name); (void)fputc('\n', stderr); exit(1); } else errx(1, "kvm_nlist: %s", kvm_geterr(kd)); } } if (todo & VMSTAT) { dkinit(0); /* Initialize disk stats, no disks selected. */ argv = choosedrives(argv); /* Select disks. */ } if (unveil("/", "") == -1) err(1, "unveil /"); if (unveil(NULL, NULL) == -1) err(1, "unveil"); winsize.ws_row = 0; if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &winsize) == 0) { if (winsize.ws_row > 0) winlines = winsize.ws_row; } #define BACKWARD_COMPATIBILITY #ifdef BACKWARD_COMPATIBILITY if (*argv) { interval = (u_int)strtonum(*argv, 0, 1000, &errstr); if (errstr) errx(1, "interval %s: %s", *argv, errstr); if (*++argv) { reps = strtonum(*argv, 0, INT_MAX, &errstr); if (errstr) errx(1, "reps %s: %s", *argv, errstr); } } #endif if (interval) { if (!reps) reps = -1; } else if (reps) interval = 1; if (todo & FORKSTAT) doforkst(); if (todo & MEMSTAT) { domem(); dopool(); } if (todo & SUMSTAT) dosum(); if (todo & TIMESTAT) dotimes(); if (todo & INTRSTAT) dointr(); if (todo & VMSTAT) dovmstat(interval, reps); exit(0); } char ** choosedrives(char **argv) { int i; /* * Choose drives to be displayed. Priority goes to (in order) drives * supplied as arguments, default drives. If everything isn't filled * in and there are drives not taken care of, display the first few * that fit. */ #define BACKWARD_COMPATIBILITY for (ndrives = 0; *argv; ++argv) { #ifdef BACKWARD_COMPATIBILITY if (isdigit((unsigned char)**argv)) break; #endif for (i = 0; i < dk_ndrive; i++) { if (strcmp(dr_name[i], *argv)) continue; dk_select[i] = 1; ++ndrives; break; } if (i == dk_ndrive) errx(1, "invalid interval or drive name: %s", *argv); } for (i = 0; i < dk_ndrive && ndrives < 2; i++) { if (dk_select[i]) continue; dk_select[i] = 1; ++ndrives; } return(argv); } time_t getuptime(void) { struct timespec uptime; time_t time_uptime, naptime; if (nlistf == NULL && memf == NULL) { if (clock_gettime(CLOCK_UPTIME, &uptime) == -1) err(1, "clock_gettime"); return (uptime.tv_sec); } kread(X_NAPTIME, &naptime, sizeof(naptime)); kread(X_TIME_UPTIME, &time_uptime, sizeof(time_uptime)); return (time_uptime - naptime); } int hz; volatile sig_atomic_t hdrcnt; void dovmstat(u_int interval, int reps) { time_t uptime, halfuptime; struct clockinfo clkinfo; struct vmtotal total; size_t size; int mib[2]; uptime = getuptime(); halfuptime = uptime / 2; (void)signal(SIGCONT, needhdr); mib[0] = CTL_KERN; mib[1] = KERN_CLOCKRATE; size = sizeof(clkinfo); if (sysctl(mib, 2, &clkinfo, &size, NULL, 0) == -1) { warn("could not read kern.clockrate"); return; } hz = clkinfo.stathz; for (hdrcnt = 1;;) { /* Read new disk statistics */ dkreadstats(); if (!--hdrcnt || last.dk_ndrive != cur.dk_ndrive) printhdr(); if (nlistf == NULL && memf == NULL) { size = sizeof(struct uvmexp); mib[0] = CTL_VM; mib[1] = VM_UVMEXP; if (sysctl(mib, 2, &uvmexp, &size, NULL, 0) == -1) { warn("could not get vm.uvmexp"); memset(&uvmexp, 0, sizeof(struct uvmexp)); } } else { kread(X_UVMEXP, &uvmexp, sizeof(struct uvmexp)); } size = sizeof(total); mib[0] = CTL_VM; mib[1] = VM_METER; if (sysctl(mib, 2, &total, &size, NULL, 0) == -1) { warn("could not read vm.vmmeter"); memset(&total, 0, sizeof(total)); } (void)printf("%2u %3u", total.t_rq - 1, total.t_sl); #define rate(x) ((unsigned)((((unsigned)x) + halfuptime) / uptime)) /* round */ #define pgtok(a) ((a) * ((unsigned int)uvmexp.pagesize >> 10)) (void)printf("%5uM %6uM ", pgtok(uvmexp.active + uvmexp.swpginuse) / 1024, pgtok(uvmexp.free) / 1024); (void)printf("%4u ", rate(uvmexp.faults - ouvmexp.faults)); (void)printf("%3u ", rate(uvmexp.pdreact - ouvmexp.pdreact)); (void)printf("%3u ", rate(uvmexp.pageins - ouvmexp.pageins)); (void)printf("%3u %3u ", rate(uvmexp.pdpageouts - ouvmexp.pdpageouts), 0); (void)printf("%3u ", rate(uvmexp.pdscans - ouvmexp.pdscans)); dkstats(); (void)printf("%4u %5u %4u ", rate(uvmexp.intrs - ouvmexp.intrs), rate(uvmexp.syscalls - ouvmexp.syscalls), rate(uvmexp.swtch - ouvmexp.swtch)); cpustats(); (void)printf("\n"); (void)fflush(stdout); if (reps >= 0 && --reps <= 0) break; ouvmexp = uvmexp; uptime = interval; /* * We round upward to avoid losing low-frequency events * (i.e., >= 1 per interval but < 1 per second). */ halfuptime = uptime == 1 ? 0 : (uptime + 1) / 2; (void)sleep(interval); } } void printhdr(void) { int i; static int printedhdr; if (printedhdr && !isatty(STDOUT_FILENO)) return; (void)printf(" procs memory page%*s", 20, ""); if (ndrives > 0) (void)printf("%s %*straps cpu\n", ((ndrives > 1) ? "disks" : "disk"), ((ndrives > 1) ? ndrives * 4 - 5 : 0), ""); else (void)printf("%*s traps cpu\n", ndrives * 3, ""); (void)printf(" r s avm fre flt re pi po fr sr "); for (i = 0; i < dk_ndrive; i++) if (dk_select[i]) (void)printf("%c%c%c ", dr_name[i][0], dr_name[i][1], dr_name[i][strlen(dr_name[i]) - 1]); (void)printf(" int sys cs us sy id\n"); hdrcnt = winlines - 2; printedhdr = 1; } /* * Force a header to be prepended to the next output. */ void needhdr(__unused int signo) { hdrcnt = 1; } void dotimes(void) { u_int pgintime, rectime; size_t size; int mib[2]; /* XXX Why are these set to 0 ? This doesn't look right. */ pgintime = 0; rectime = 0; if (nlistf == NULL && memf == NULL) { size = sizeof(struct uvmexp); mib[0] = CTL_VM; mib[1] = VM_UVMEXP; if (sysctl(mib, 2, &uvmexp, &size, NULL, 0) == -1) { warn("could not read vm.uvmexp"); memset(&uvmexp, 0, sizeof(struct uvmexp)); } } else { kread(X_UVMEXP, &uvmexp, sizeof(struct uvmexp)); } (void)printf("%u reactivates, %u total time (usec)\n", uvmexp.pdreact, rectime); if (uvmexp.pdreact != 0) (void)printf("average: %u usec / reclaim\n", rectime / uvmexp.pdreact); (void)printf("\n"); (void)printf("%u page ins, %u total time (msec)\n", uvmexp.pageins, pgintime / 10); if (uvmexp.pageins != 0) (void)printf("average: %8.1f msec / page in\n", pgintime / (uvmexp.pageins * 10.0)); } int pct(int64_t top, int64_t bot) { int ans; if (bot == 0) return(0); ans = top * 100 / bot; return (ans); } void dosum(void) { struct nchstats nchstats; int mib[2]; long long nchtotal; size_t size; if (nlistf == NULL && memf == NULL) { size = sizeof(struct uvmexp); mib[0] = CTL_VM; mib[1] = VM_UVMEXP; if (sysctl(mib, 2, &uvmexp, &size, NULL, 0) == -1) { warn("could not read vm.uvmexp"); memset(&uvmexp, 0, sizeof(struct uvmexp)); } } else { kread(X_UVMEXP, &uvmexp, sizeof(struct uvmexp)); } /* vm_page constants */ (void)printf("%11u bytes per page\n", uvmexp.pagesize); /* vm_page counters */ (void)printf("%11u pages managed\n", uvmexp.npages); (void)printf("%11u pages free\n", uvmexp.free); (void)printf("%11u pages active\n", uvmexp.active); (void)printf("%11u pages inactive\n", uvmexp.inactive); (void)printf("%11u pages being paged out\n", uvmexp.paging); (void)printf("%11u pages wired\n", uvmexp.wired); (void)printf("%11u pages zeroed\n", uvmexp.zeropages); (void)printf("%11u pages reserved for pagedaemon\n", uvmexp.reserve_pagedaemon); (void)printf("%11u pages reserved for kernel\n", uvmexp.reserve_kernel); /* swap */ (void)printf("%11u swap pages\n", uvmexp.swpages); (void)printf("%11u swap pages in use\n", uvmexp.swpginuse); /* stat counters */ (void)printf("%11u page faults\n", uvmexp.faults); (void)printf("%11u traps\n", uvmexp.traps); (void)printf("%11u interrupts\n", uvmexp.intrs); (void)printf("%11u cpu context switches\n", uvmexp.swtch); (void)printf("%11u fpu context switches\n", uvmexp.fpswtch); (void)printf("%11u software interrupts\n", uvmexp.softs); (void)printf("%11u syscalls\n", uvmexp.syscalls); (void)printf("%11u pagein operations\n", uvmexp.pageins); (void)printf("%11u forks\n", uvmexp.forks); (void)printf("%11u forks where vmspace is shared\n", uvmexp.forks_sharevm); (void)printf("%11u kernel map entries\n", uvmexp.kmapent); (void)printf("%11u zeroed page hits\n", uvmexp.pga_zerohit); (void)printf("%11u zeroed page misses\n", uvmexp.pga_zeromiss); /* daemon counters */ (void)printf("%11u number of times the pagedaemon woke up\n", uvmexp.pdwoke); (void)printf("%11u revolutions of the clock hand\n", uvmexp.pdrevs); (void)printf("%11u pages freed by pagedaemon\n", uvmexp.pdfreed); (void)printf("%11u pages scanned by pagedaemon\n", uvmexp.pdscans); (void)printf("%11u pages reactivated by pagedaemon\n", uvmexp.pdreact); (void)printf("%11u busy pages found by pagedaemon\n", uvmexp.pdbusy); if (nlistf == NULL && memf == NULL) { size = sizeof(nchstats); mib[0] = CTL_KERN; mib[1] = KERN_NCHSTATS; if (sysctl(mib, 2, &nchstats, &size, NULL, 0) == -1) { warn("could not read kern.nchstats"); memset(&nchstats, 0, sizeof(nchstats)); } } else { kread(X_NCHSTATS, &nchstats, sizeof(nchstats)); } nchtotal = nchstats.ncs_goodhits + nchstats.ncs_neghits + nchstats.ncs_badhits + nchstats.ncs_falsehits + nchstats.ncs_miss + nchstats.ncs_long; (void)printf("%11lld total name lookups\n", nchtotal); (void)printf("%11s cache hits (%d%% pos + %d%% neg) system %d%% " "per-directory\n", "", pct(nchstats.ncs_goodhits, nchtotal), pct(nchstats.ncs_neghits, nchtotal), pct(nchstats.ncs_pass2, nchtotal)); (void)printf("%11s deletions %d%%, falsehits %d%%, toolong %d%%\n", "", pct(nchstats.ncs_badhits, nchtotal), pct(nchstats.ncs_falsehits, nchtotal), pct(nchstats.ncs_long, nchtotal)); } void doforkst(void) { struct forkstat fks; size_t size; int mib[2]; if (nlistf == NULL && memf == NULL) { size = sizeof(struct forkstat); mib[0] = CTL_KERN; mib[1] = KERN_FORKSTAT; if (sysctl(mib, 2, &fks, &size, NULL, 0) == -1) { warn("could not read kern.forkstat"); memset(&fks, 0, sizeof(struct forkstat)); } } else { kread(X_FORKSTAT, &fks, sizeof(struct forkstat)); } (void)printf("%u forks, %llu pages, average %.2f\n", fks.cntfork, fks.sizfork, (double)fks.sizfork / fks.cntfork); (void)printf("%u vforks, %llu pages, average %.2f\n", fks.cntvfork, fks.sizvfork, (double)fks.sizvfork / (fks.cntvfork ? fks.cntvfork : 1)); (void)printf("%u __tforks, %llu pages, average %.2f\n", fks.cnttfork, fks.siztfork, (double)fks.siztfork / (fks.cnttfork ? fks.cnttfork : 1)); (void)printf("%u kthread creations, %llu pages, average %.2f\n", fks.cntkthread, fks.sizkthread, (double)fks.sizkthread / (fks.cntkthread ? fks.cntkthread : 1)); } void dkstats(void) { int dn, state; double etime; /* Calculate disk stat deltas. */ dkswap(); etime = 0; for (state = 0; state < CPUSTATES; ++state) { etime += cur.cp_time[state]; } if (etime == 0) etime = 1; etime /= hz; for (dn = 0; dn < dk_ndrive; ++dn) { if (!dk_select[dn]) continue; (void)printf("%3.0f ", (cur.dk_rxfer[dn] + cur.dk_rxfer[dn]) / etime); } } void cpustats(void) { double percent, total; int state; total = 0; for (state = 0; state < CPUSTATES; ++state) total += cur.cp_time[state]; if (total) percent = 100 / total; else percent = 0; (void)printf("%2.0f ", (cur.cp_time[CP_USER] + cur.cp_time[CP_NICE]) * percent); (void)printf("%2.0f ", (cur.cp_time[CP_SYS] + cur.cp_time[CP_SPIN] + cur.cp_time[CP_INTR]) * percent); (void)printf("%2.0f", cur.cp_time[CP_IDLE] * percent); } void dointr(void) { int nintr, mib[4], i; char intrname[128]; u_int64_t inttotal; time_t uptime; size_t siz; if (nlistf != NULL || memf != NULL) { errx(1, "interrupt statistics are only available on live kernels"); } uptime = getuptime(); mib[0] = CTL_KERN; mib[1] = KERN_INTRCNT; mib[2] = KERN_INTRCNT_NUM; siz = sizeof(nintr); if (sysctl(mib, 3, &nintr, &siz, NULL, 0) == -1) { warnx("could not read kern.intrcnt.nintrcnt"); return; } (void)printf("%-16s %20s %8s\n", "interrupt", "total", "rate"); inttotal = 0; for (i = 0; i < nintr; i++) { char name[128]; uint64_t cnt; int vector; mib[0] = CTL_KERN; mib[1] = KERN_INTRCNT; mib[2] = KERN_INTRCNT_NAME; mib[3] = i; siz = sizeof(name); if (sysctl(mib, 4, name, &siz, NULL, 0) == -1) { warnx("could not read kern.intrcnt.name.%d", i); return; } mib[0] = CTL_KERN; mib[1] = KERN_INTRCNT; mib[2] = KERN_INTRCNT_VECTOR; mib[3] = i; siz = sizeof(vector); if (sysctl(mib, 4, &vector, &siz, NULL, 0) == -1) { strlcpy(intrname, name, sizeof(intrname)); } else { snprintf(intrname, sizeof(intrname), "irq%d/%s", vector, name); } mib[0] = CTL_KERN; mib[1] = KERN_INTRCNT; mib[2] = KERN_INTRCNT_CNT; mib[3] = i; siz = sizeof(cnt); if (sysctl(mib, 4, &cnt, &siz, NULL, 0) == -1) { warnx("could not read kern.intrcnt.cnt.%d", i); return; } if (cnt || zflag) (void)printf("%-16.16s %20llu %8llu\n", intrname, cnt, cnt / uptime); inttotal += cnt; } (void)printf("%-16s %20llu %8llu\n", "Total", inttotal, inttotal / uptime); } /* * These names are defined in . */ const char *kmemnames[] = INITKMEMNAMES; void domem(void) { struct kmembuckets buckets[MINBUCKET + 16], *kp; struct kmemstats kmemstats[M_LAST], *ks; int i, j, len, size, first, mib[4]; u_long totuse = 0, totfree = 0; char buf[BUFSIZ], *bufp, *ap; unsigned long long totreq = 0; const char *name; size_t siz; if (memf == NULL && nlistf == NULL) { mib[0] = CTL_KERN; mib[1] = KERN_MALLOCSTATS; mib[2] = KERN_MALLOC_BUCKETS; siz = sizeof(buf); if (sysctl(mib, 3, buf, &siz, NULL, 0) == -1) { warnx("could not read kern.malloc.buckets"); return; } bufp = buf; mib[2] = KERN_MALLOC_BUCKET; siz = sizeof(struct kmembuckets); i = 0; while ((ap = strsep(&bufp, ",")) != NULL) { const char *errstr; mib[3] = strtonum(ap, 0, INT_MAX, &errstr); if (errstr) { warnx("kernel lied about %d being a number", mib[3]); return; } if (sysctl(mib, 4, &buckets[MINBUCKET + i], &siz, NULL, 0) == -1) { warn("could not read kern.malloc.bucket.%d", mib[3]); return; } i++; } } else { kread(X_KMEMBUCKETS, buckets, sizeof(buckets)); } for (first = 1, i = MINBUCKET, kp = &buckets[i]; i < MINBUCKET + 16; i++, kp++) { if (kp->kb_calls == 0 && !verbose) continue; if (first) { (void)printf("Memory statistics by bucket size\n"); (void)printf( " Size In Use Free Requests HighWater Couldfree\n"); first = 0; } size = 1 << i; (void)printf("%8d %8llu %6llu %18llu %7llu %10llu\n", size, (unsigned long long)(kp->kb_total - kp->kb_totalfree), (unsigned long long)kp->kb_totalfree, (unsigned long long)kp->kb_calls, (unsigned long long)kp->kb_highwat, (unsigned long long)kp->kb_couldfree); totfree += size * kp->kb_totalfree; } /* * If kmem statistics are not being gathered by the kernel, * first will still be 1. */ if (first) { printf( "Kmem statistics are not being gathered by the kernel.\n"); return; } if (memf == NULL && nlistf == NULL) { memset(kmemstats, 0, sizeof(kmemstats)); for (i = 0; i < M_LAST; i++) { mib[0] = CTL_KERN; mib[1] = KERN_MALLOCSTATS; mib[2] = KERN_MALLOC_KMEMSTATS; mib[3] = i; siz = sizeof(struct kmemstats); /* * Skip errors -- these are presumed to be unallocated * entries. */ if (sysctl(mib, 4, &kmemstats[i], &siz, NULL, 0) == -1) continue; } } else { kread(X_KMEMSTAT, kmemstats, sizeof(kmemstats)); } (void)printf("\nMemory usage type by bucket size\n"); (void)printf(" Size Type(s)\n"); kp = &buckets[MINBUCKET]; for (j = 1 << MINBUCKET; j < 1 << (MINBUCKET + 16); j <<= 1, kp++) { if (kp->kb_calls == 0) continue; first = 1; len = 8; for (i = 0, ks = &kmemstats[0]; i < M_LAST; i++, ks++) { if (ks->ks_calls == 0) continue; if ((ks->ks_size & j) == 0) continue; name = kmemnames[i] ? kmemnames[i] : "undefined"; len += 2 + strlen(name); if (first) printf("%8d %s", j, name); else printf(","); if (len >= 80) { printf("\n\t "); len = 10 + strlen(name); } if (!first) printf(" %s", name); first = 0; } printf("\n"); } (void)printf( "\nMemory statistics by type Type Kern\n"); (void)printf( " Type InUse MemUse HighUse Limit Requests Limit Size(s)\n"); for (i = 0, ks = &kmemstats[0]; i < M_LAST; i++, ks++) { if (ks->ks_calls == 0) continue; (void)printf("%14s%6ld%6ldK%7ldK%6ldK%9ld%5u", kmemnames[i] ? kmemnames[i] : "undefined", ks->ks_inuse, (ks->ks_memuse + 1023) / 1024, (ks->ks_maxused + 1023) / 1024, (ks->ks_limit + 1023) / 1024, ks->ks_calls, ks->ks_limblocks); first = 1; for (j = 1 << MINBUCKET; j < 1 << (MINBUCKET + 16); j <<= 1) { if ((ks->ks_size & j) == 0) continue; if (first) printf(" %d", j); else printf(",%d", j); first = 0; } printf("\n"); totuse += ks->ks_memuse; totreq += ks->ks_calls; } (void)printf("\nMemory Totals: In Use Free Requests\n"); (void)printf(" %7luK %6luK %8llu\n", (totuse + 1023) / 1024, (totfree + 1023) / 1024, totreq); } static void print_pool(struct kinfo_pool *pp, char *name) { static int first = 1; char maxp[32]; int ovflw; if (first) { (void)printf("Memory resource pool statistics\n"); (void)printf( "%-11s%5s%9s%5s%9s%6s%6s%6s%6s%6s%6s%5s\n", "Name", "Size", "Requests", "Fail", "InUse", "Pgreq", "Pgrel", "Npage", "Hiwat", "Minpg", "Maxpg", "Idle"); first = 0; } /* Skip unused pools unless verbose output. */ if (pp->pr_nget == 0 && !verbose) return; if (pp->pr_maxpages == UINT_MAX) snprintf(maxp, sizeof maxp, "inf"); else snprintf(maxp, sizeof maxp, "%u", pp->pr_maxpages); /* * Print single word. `ovflow' is number of characters didn't fit * on the last word. `fmt' is a format string to print this word. * It must contain asterisk for field width. `width' is a width * occupied by this word. `fixed' is a number of constant chars in * `fmt'. `val' is a value to be printed using format string `fmt'. */ #define PRWORD(ovflw, fmt, width, fixed, val) do { \ (ovflw) += printf((fmt), \ (width) - (fixed) - (ovflw) > 0 ? \ (width) - (fixed) - (ovflw) : 0, \ (val)) - (width); \ if ((ovflw) < 0) \ (ovflw) = 0; \ } while (/* CONSTCOND */0) ovflw = 0; PRWORD(ovflw, "%-*s", 11, 0, name); PRWORD(ovflw, " %*u", 5, 1, pp->pr_size); PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget); PRWORD(ovflw, " %*lu", 5, 1, pp->pr_nfail); PRWORD(ovflw, " %*lu", 9, 1, pp->pr_nget - pp->pr_nput); PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagealloc); PRWORD(ovflw, " %*lu", 6, 1, pp->pr_npagefree); PRWORD(ovflw, " %*d", 6, 1, pp->pr_npages); PRWORD(ovflw, " %*d", 6, 1, pp->pr_hiwat); PRWORD(ovflw, " %*d", 6, 1, pp->pr_minpages); PRWORD(ovflw, " %*s", 6, 1, maxp); PRWORD(ovflw, " %*lu\n", 5, 1, pp->pr_nidle); } static void dopool_kvm(void); static void dopool_sysctl(void); void dopool(void) { if (nlistf == NULL && memf == NULL) dopool_sysctl(); else dopool_kvm(); } void dopool_sysctl(void) { int mib[4], npools, i; long total = 0, inuse = 0; struct kinfo_pool pool; size_t size; mib[0] = CTL_KERN; mib[1] = KERN_POOL; mib[2] = KERN_POOL_NPOOLS; size = sizeof(npools); if (sysctl(mib, 3, &npools, &size, NULL, 0) == -1) { warn("can't figure out number of pools in kernel"); return; } for (i = 1; npools; i++) { char name[32]; mib[0] = CTL_KERN; mib[1] = KERN_POOL; mib[2] = KERN_POOL_POOL; mib[3] = i; size = sizeof(pool); if (sysctl(mib, 4, &pool, &size, NULL, 0) == -1) { if (errno == ENOENT) continue; warn("error getting pool"); return; } npools--; mib[2] = KERN_POOL_NAME; size = sizeof(name); if (sysctl(mib, 4, &name, &size, NULL, 0) == -1) { warn("error getting pool name"); return; } print_pool(&pool, name); inuse += (pool.pr_nget - pool.pr_nput) * pool.pr_size; total += pool.pr_npages * pool.pr_pgsize; } inuse /= 1024; total /= 1024; printf("\nIn use %ldK, total allocated %ldK; utilization %.1f%%\n", inuse, total, (double)(100 * inuse) / total); } void dopool_kvm(void) { SIMPLEQ_HEAD(,pool) pool_head; struct pool pool, *pp = &pool; struct kinfo_pool pi; long total = 0, inuse = 0; u_long addr; kread(X_POOLHEAD, &pool_head, sizeof(pool_head)); addr = (u_long)SIMPLEQ_FIRST(&pool_head); while (addr != 0) { char name[32]; if (kvm_read(kd, addr, (void *)pp, sizeof *pp) != sizeof *pp) { (void)fprintf(stderr, "vmstat: pool chain trashed: %s\n", kvm_geterr(kd)); exit(1); } if (kvm_read(kd, (u_long)pp->pr_wchan, name, sizeof name) < 0) { (void)fprintf(stderr, "vmstat: pool name trashed: %s\n", kvm_geterr(kd)); exit(1); } name[31] = '\0'; memset(&pi, 0, sizeof(pi)); pi.pr_size = pp->pr_size; pi.pr_pgsize = pp->pr_pgsize; pi.pr_itemsperpage = pp->pr_itemsperpage; pi.pr_npages = pp->pr_npages; pi.pr_minpages = pp->pr_minpages; pi.pr_maxpages = pp->pr_maxpages; pi.pr_hardlimit = pp->pr_hardlimit; pi.pr_nout = pp->pr_nout; pi.pr_nitems = pp->pr_nitems; pi.pr_nget = pp->pr_nget; pi.pr_nput = pp->pr_nput; pi.pr_nfail = pp->pr_nfail; pi.pr_npagealloc = pp->pr_npagealloc; pi.pr_npagefree = pp->pr_npagefree; pi.pr_hiwat = pp->pr_hiwat; pi.pr_nidle = pp->pr_nidle; print_pool(&pi, name); inuse += (pi.pr_nget - pi.pr_nput) * pi.pr_size; total += pi.pr_npages * pi.pr_pgsize; addr = (u_long)SIMPLEQ_NEXT(pp, pr_poollist); } inuse /= 1024; total /= 1024; printf("\nIn use %ldK, total allocated %ldK; utilization %.1f%%\n", inuse, total, (double)(100 * inuse) / total); } /* * kread reads something from the kernel, given its nlist index. */ void kread(int nlx, void *addr, size_t size) { char *sym; if (namelist[nlx].n_type == 0 || namelist[nlx].n_value == 0) { sym = namelist[nlx].n_name; if (*sym == '_') ++sym; errx(1, "symbol %s not defined", sym); } if (kvm_read(kd, namelist[nlx].n_value, addr, size) != size) { sym = namelist[nlx].n_name; if (*sym == '_') ++sym; errx(1, "%s: %s", sym, kvm_geterr(kd)); } } void usage(void) { (void)fprintf(stderr, "usage: %s [-fimstvz] [-c count] [-M core] " "[-N system] [-w wait] [disk ...]\n", __progname); exit(1); }