/* $OpenBSD: rde_attr.c,v 1.126 2022/02/06 09:51:19 claudio Exp $ */ /* * Copyright (c) 2004 Claudio Jeker * Copyright (c) 2016 Job Snijders * Copyright (c) 2016 Peter Hessler * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "bgpd.h" #include "rde.h" #include "log.h" int attr_write(void *p, uint16_t p_len, uint8_t flags, uint8_t type, void *data, uint16_t data_len) { u_char *b = p; uint16_t tmp, tot_len = 2; /* attribute header (without len) */ flags &= ~ATTR_DEFMASK; if (data_len > 255) { tot_len += 2 + data_len; flags |= ATTR_EXTLEN; } else { tot_len += 1 + data_len; } if (tot_len > p_len) return (-1); *b++ = flags; *b++ = type; if (data_len > 255) { tmp = htons(data_len); memcpy(b, &tmp, sizeof(tmp)); b += 2; } else *b++ = (u_char)data_len; if (data == NULL) return (tot_len - data_len); if (data_len != 0) memcpy(b, data, data_len); return (tot_len); } int attr_writebuf(struct ibuf *buf, uint8_t flags, uint8_t type, void *data, uint16_t data_len) { u_char hdr[4]; flags &= ~ATTR_DEFMASK; if (data_len > 255) { flags |= ATTR_EXTLEN; hdr[2] = (data_len >> 8) & 0xff; hdr[3] = data_len & 0xff; } else { hdr[2] = data_len & 0xff; } hdr[0] = flags; hdr[1] = type; if (ibuf_add(buf, hdr, flags & ATTR_EXTLEN ? 4 : 3) == -1) return (-1); if (data && ibuf_add(buf, data, data_len) == -1) return (-1); return (0); } /* optional attribute specific functions */ int attr_diff(struct attr *, struct attr *); struct attr *attr_alloc(uint8_t, uint8_t, const void *, uint16_t); struct attr *attr_lookup(uint8_t, uint8_t, const void *, uint16_t); void attr_put(struct attr *); struct attr_table { struct attr_list *hashtbl; uint64_t hashmask; } attrtable; SIPHASH_KEY attrtablekey; #define ATTR_HASH(x) \ &attrtable.hashtbl[(x) & attrtable.hashmask] void attr_init(uint32_t hashsize) { uint32_t hs, i; arc4random_buf(&attrtablekey, sizeof(attrtablekey)); for (hs = 1; hs < hashsize; hs <<= 1) ; attrtable.hashtbl = calloc(hs, sizeof(struct attr_list)); if (attrtable.hashtbl == NULL) fatal("attr_init"); for (i = 0; i < hs; i++) LIST_INIT(&attrtable.hashtbl[i]); attrtable.hashmask = hs - 1; } void attr_shutdown(void) { uint64_t i; for (i = 0; i <= attrtable.hashmask; i++) if (!LIST_EMPTY(&attrtable.hashtbl[i])) log_warnx("%s: free non-free table", __func__); free(attrtable.hashtbl); } void attr_hash_stats(struct rde_hashstats *hs) { struct attr *a; uint64_t i; int64_t n; memset(hs, 0, sizeof(*hs)); strlcpy(hs->name, "attr hash", sizeof(hs->name)); hs->min = LLONG_MAX; hs->num = attrtable.hashmask + 1; for (i = 0; i <= attrtable.hashmask; i++) { n = 0; LIST_FOREACH(a, &attrtable.hashtbl[i], entry) n++; if (n < hs->min) hs->min = n; if (n > hs->max) hs->max = n; hs->sum += n; hs->sumq += n * n; } } int attr_optadd(struct rde_aspath *asp, uint8_t flags, uint8_t type, void *data, uint16_t len) { uint8_t l; struct attr *a, *t; void *p; /* known optional attributes were validated previously */ if ((a = attr_lookup(flags, type, data, len)) == NULL) a = attr_alloc(flags, type, data, len); /* attribute allowed only once */ for (l = 0; l < asp->others_len; l++) { if (asp->others[l] == NULL) break; if (type == asp->others[l]->type) { if (a->refcnt == 0) attr_put(a); return (-1); } } /* add attribute to the table but first bump refcnt */ a->refcnt++; rdemem.attr_refs++; for (l = 0; l < asp->others_len; l++) { if (asp->others[l] == NULL) { asp->others[l] = a; return (0); } /* list is sorted */ if (a->type < asp->others[l]->type) { t = asp->others[l]; asp->others[l] = a; a = t; } } /* no empty slot found, need to realloc */ if (asp->others_len == UCHAR_MAX) fatalx("attr_optadd: others_len overflow"); asp->others_len++; if ((p = reallocarray(asp->others, asp->others_len, sizeof(struct attr *))) == NULL) fatal("attr_optadd"); asp->others = p; /* l stores the size of others before resize */ asp->others[l] = a; return (0); } struct attr * attr_optget(const struct rde_aspath *asp, uint8_t type) { uint8_t l; for (l = 0; l < asp->others_len; l++) { if (asp->others[l] == NULL) break; if (type == asp->others[l]->type) return (asp->others[l]); if (type < asp->others[l]->type) break; } return (NULL); } void attr_copy(struct rde_aspath *t, const struct rde_aspath *s) { uint8_t l; if (t->others != NULL) attr_freeall(t); t->others_len = s->others_len; if (t->others_len == 0) { t->others = NULL; return; } if ((t->others = calloc(s->others_len, sizeof(struct attr *))) == 0) fatal("attr_copy"); for (l = 0; l < t->others_len; l++) { if (s->others[l] == NULL) break; s->others[l]->refcnt++; rdemem.attr_refs++; t->others[l] = s->others[l]; } } int attr_diff(struct attr *oa, struct attr *ob) { int r; if (ob == NULL) return (1); if (oa == NULL) return (-1); if (oa->flags > ob->flags) return (1); if (oa->flags < ob->flags) return (-1); if (oa->type > ob->type) return (1); if (oa->type < ob->type) return (-1); if (oa->len > ob->len) return (1); if (oa->len < ob->len) return (-1); r = memcmp(oa->data, ob->data, oa->len); if (r > 0) return (1); if (r < 0) return (-1); fatalx("attr_diff: equal attributes encountered"); } int attr_compare(struct rde_aspath *a, struct rde_aspath *b) { uint8_t l, min; min = a->others_len < b->others_len ? a->others_len : b->others_len; for (l = 0; l < min; l++) if (a->others[l] != b->others[l]) return (attr_diff(a->others[l], b->others[l])); if (a->others_len < b->others_len) { for (; l < b->others_len; l++) if (b->others[l] != NULL) return (-1); } else if (a->others_len > b->others_len) { for (; l < a->others_len; l++) if (a->others[l] != NULL) return (1); } return (0); } uint64_t attr_hash(struct rde_aspath *a) { uint64_t hash = 0; uint8_t l; for (l = 0; l < a->others_len; l++) if (a->others[l] != NULL) hash ^= a->others[l]->hash; return (hash); } void attr_free(struct rde_aspath *asp, struct attr *attr) { uint8_t l; for (l = 0; l < asp->others_len; l++) if (asp->others[l] == attr) { attr_put(asp->others[l]); for (++l; l < asp->others_len; l++) asp->others[l - 1] = asp->others[l]; asp->others[asp->others_len - 1] = NULL; return; } /* no realloc() because the slot may be reused soon */ } void attr_freeall(struct rde_aspath *asp) { uint8_t l; for (l = 0; l < asp->others_len; l++) attr_put(asp->others[l]); free(asp->others); asp->others = NULL; asp->others_len = 0; } struct attr * attr_alloc(uint8_t flags, uint8_t type, const void *data, uint16_t len) { struct attr *a; SIPHASH_CTX ctx; a = calloc(1, sizeof(struct attr)); if (a == NULL) fatal("attr_optadd"); rdemem.attr_cnt++; flags &= ~ATTR_DEFMASK; /* normalize mask */ a->flags = flags; a->type = type; a->len = len; if (len != 0) { if ((a->data = malloc(len)) == NULL) fatal("attr_optadd"); rdemem.attr_dcnt++; rdemem.attr_data += len; memcpy(a->data, data, len); } else a->data = NULL; SipHash24_Init(&ctx, &attrtablekey); SipHash24_Update(&ctx, &flags, sizeof(flags)); SipHash24_Update(&ctx, &type, sizeof(type)); SipHash24_Update(&ctx, &len, sizeof(len)); SipHash24_Update(&ctx, a->data, a->len); a->hash = SipHash24_End(&ctx); LIST_INSERT_HEAD(ATTR_HASH(a->hash), a, entry); return (a); } struct attr * attr_lookup(uint8_t flags, uint8_t type, const void *data, uint16_t len) { struct attr_list *head; struct attr *a; uint64_t hash; SIPHASH_CTX ctx; flags &= ~ATTR_DEFMASK; /* normalize mask */ SipHash24_Init(&ctx, &attrtablekey); SipHash24_Update(&ctx, &flags, sizeof(flags)); SipHash24_Update(&ctx, &type, sizeof(type)); SipHash24_Update(&ctx, &len, sizeof(len)); SipHash24_Update(&ctx, data, len); hash = SipHash24_End(&ctx); head = ATTR_HASH(hash); LIST_FOREACH(a, head, entry) { if (hash == a->hash && type == a->type && flags == a->flags && len == a->len && memcmp(data, a->data, len) == 0) return (a); } return (NULL); } void attr_put(struct attr *a) { if (a == NULL) return; rdemem.attr_refs--; if (--a->refcnt > 0) /* somebody still holds a reference */ return; /* unlink */ LIST_REMOVE(a, entry); if (a->len != 0) rdemem.attr_dcnt--; rdemem.attr_data -= a->len; rdemem.attr_cnt--; free(a->data); free(a); } /* aspath specific functions */ static uint16_t aspath_count(const void *, uint16_t); static uint32_t aspath_extract_origin(const void *, uint16_t); static uint16_t aspath_countlength(struct aspath *, uint16_t, int); static void aspath_countcopy(struct aspath *, uint16_t, uint8_t *, uint16_t, int); struct aspath *aspath_lookup(const void *, uint16_t); struct aspath_table { struct aspath_list *hashtbl; uint32_t hashmask; } astable; SIPHASH_KEY astablekey; #define ASPATH_HASH(x) \ &astable.hashtbl[(x) & astable.hashmask] void aspath_init(uint32_t hashsize) { uint32_t hs, i; for (hs = 1; hs < hashsize; hs <<= 1) ; astable.hashtbl = calloc(hs, sizeof(struct aspath_list)); if (astable.hashtbl == NULL) fatal("aspath_init"); for (i = 0; i < hs; i++) LIST_INIT(&astable.hashtbl[i]); astable.hashmask = hs - 1; arc4random_buf(&astablekey, sizeof(astablekey)); } void aspath_shutdown(void) { uint32_t i; for (i = 0; i <= astable.hashmask; i++) if (!LIST_EMPTY(&astable.hashtbl[i])) log_warnx("aspath_shutdown: free non-free table"); free(astable.hashtbl); } void aspath_hash_stats(struct rde_hashstats *hs) { struct aspath *a; uint32_t i; int64_t n; memset(hs, 0, sizeof(*hs)); strlcpy(hs->name, "aspath hash", sizeof(hs->name)); hs->min = LLONG_MAX; hs->num = astable.hashmask + 1; for (i = 0; i <= astable.hashmask; i++) { n = 0; LIST_FOREACH(a, &astable.hashtbl[i], entry) n++; if (n < hs->min) hs->min = n; if (n > hs->max) hs->max = n; hs->sum += n; hs->sumq += n * n; } } struct aspath * aspath_get(void *data, uint16_t len) { struct aspath_list *head; struct aspath *aspath; /* The aspath must already have been checked for correctness. */ aspath = aspath_lookup(data, len); if (aspath == NULL) { aspath = malloc(ASPATH_HEADER_SIZE + len); if (aspath == NULL) fatal("aspath_get"); rdemem.aspath_cnt++; rdemem.aspath_size += ASPATH_HEADER_SIZE + len; aspath->refcnt = 0; aspath->len = len; aspath->ascnt = aspath_count(data, len); aspath->source_as = aspath_extract_origin(data, len); memcpy(aspath->data, data, len); /* link */ head = ASPATH_HASH(SipHash24(&astablekey, aspath->data, aspath->len)); LIST_INSERT_HEAD(head, aspath, entry); } aspath->refcnt++; rdemem.aspath_refs++; return (aspath); } void aspath_put(struct aspath *aspath) { if (aspath == NULL) return; rdemem.aspath_refs--; if (--aspath->refcnt > 0) { /* somebody still holds a reference */ return; } /* unlink */ LIST_REMOVE(aspath, entry); rdemem.aspath_cnt--; rdemem.aspath_size -= ASPATH_HEADER_SIZE + aspath->len; free(aspath); } /* * convert a 4 byte aspath to a 2 byte one. */ u_char * aspath_deflate(u_char *data, uint16_t *len, int *flagnew) { uint8_t *seg, *nseg, *ndata; uint32_t as; int i; uint16_t seg_size, olen, nlen; uint8_t seg_len; /* first calculate the length of the aspath */ nlen = 0; seg = data; olen = *len; for (; olen > 0; olen -= seg_size, seg += seg_size) { seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; nlen += 2 + sizeof(uint16_t) * seg_len; if (seg_size > olen) fatalx("%s: would overflow", __func__); } if ((ndata = malloc(nlen)) == NULL) fatal("aspath_deflate"); /* then copy the aspath */ seg = data; olen = *len; for (nseg = ndata; seg < data + olen; seg += seg_size) { *nseg++ = seg[0]; *nseg++ = seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; for (i = 0; i < seg_len; i++) { as = aspath_extract(seg, i); if (as > USHRT_MAX) { as = AS_TRANS; *flagnew = 1; } *nseg++ = (as >> 8) & 0xff; *nseg++ = as & 0xff; } } *len = nlen; return (ndata); } void aspath_merge(struct rde_aspath *a, struct attr *attr) { uint8_t *np; uint16_t ascnt, diff, nlen, difflen; int hroom = 0; ascnt = aspath_count(attr->data, attr->len); if (ascnt > a->aspath->ascnt) { /* ASPATH is shorter then AS4_PATH no way to merge */ attr_free(a, attr); return; } diff = a->aspath->ascnt - ascnt; if (diff && attr->len > 2 && attr->data[0] == AS_SEQUENCE) hroom = attr->data[1]; difflen = aspath_countlength(a->aspath, diff, hroom); nlen = attr->len + difflen; if ((np = malloc(nlen)) == NULL) fatal("aspath_merge"); /* copy head from old aspath */ aspath_countcopy(a->aspath, diff, np, difflen, hroom); /* copy tail from new aspath */ if (hroom > 0) memcpy(np + nlen - attr->len + 2, attr->data + 2, attr->len - 2); else memcpy(np + nlen - attr->len, attr->data, attr->len); aspath_put(a->aspath); a->aspath = aspath_get(np, nlen); free(np); attr_free(a, attr); } u_char * aspath_dump(struct aspath *aspath) { return (aspath->data); } uint16_t aspath_length(struct aspath *aspath) { return (aspath->len); } uint32_t aspath_neighbor(struct aspath *aspath) { /* * Empty aspath is OK -- internal AS route. * Additionally the RFC specifies that if the path starts with an * AS_SET the neighbor AS is also the local AS. */ if (aspath->len == 0 || aspath->data[0] != AS_SEQUENCE) return (rde_local_as()); return (aspath_extract(aspath->data, 0)); } uint32_t aspath_origin(struct aspath *aspath) { return aspath->source_as; } static uint16_t aspath_count(const void *data, uint16_t len) { const uint8_t *seg; uint16_t cnt, seg_size; uint8_t seg_type, seg_len; cnt = 0; seg = data; for (; len > 0; len -= seg_size, seg += seg_size) { seg_type = seg[0]; seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; if (seg_type == AS_SET) cnt += 1; else cnt += seg_len; if (seg_size > len) fatalx("%s: would overflow", __func__); } return (cnt); } /* * The origin AS number derived from a Route as follows: * o the rightmost AS in the final segment of the AS_PATH attribute * in the Route if that segment is of type AS_SEQUENCE, or * o the BGP speaker's own AS number if that segment is of type * AS_CONFED_SEQUENCE or AS_CONFED_SET or if the AS_PATH is empty, * o the distinguished value "NONE" if the final segment of the * AS_PATH attribute is of any other type. */ static uint32_t aspath_extract_origin(const void *data, uint16_t len) { const uint8_t *seg; uint32_t as = AS_NONE; uint16_t seg_size; uint8_t seg_len; /* AS_PATH is empty */ if (len == 0) return (rde_local_as()); seg = data; for (; len > 0; len -= seg_size, seg += seg_size) { seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; if (len == seg_size && seg[0] == AS_SEQUENCE) { as = aspath_extract(seg, seg_len - 1); } if (seg_size > len) fatalx("%s: would overflow", __func__); } return (as); } static uint16_t aspath_countlength(struct aspath *aspath, uint16_t cnt, int headcnt) { const uint8_t *seg; uint16_t seg_size, len, clen; uint8_t seg_type = 0, seg_len = 0; seg = aspath->data; clen = 0; for (len = aspath->len; len > 0 && cnt > 0; len -= seg_size, seg += seg_size) { seg_type = seg[0]; seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; if (seg_type == AS_SET) cnt -= 1; else if (seg_len > cnt) { seg_len = cnt; clen += 2 + sizeof(uint32_t) * cnt; break; } else cnt -= seg_len; clen += seg_size; if (seg_size > len) fatalx("%s: would overflow", __func__); } if (headcnt > 0 && seg_type == AS_SEQUENCE && headcnt + seg_len < 256) /* no need for additional header from the new aspath. */ clen -= 2; return (clen); } static void aspath_countcopy(struct aspath *aspath, uint16_t cnt, uint8_t *buf, uint16_t size, int headcnt) { const uint8_t *seg; uint16_t seg_size, len; uint8_t seg_type, seg_len; if (headcnt > 0) /* * additional room because we steal the segment header * from the other aspath */ size += 2; seg = aspath->data; for (len = aspath->len; len > 0 && cnt > 0; len -= seg_size, seg += seg_size) { seg_type = seg[0]; seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; if (seg_type == AS_SET) cnt -= 1; else if (seg_len > cnt) { seg_len = cnt + headcnt; seg_size = 2 + sizeof(uint32_t) * cnt; cnt = 0; } else { cnt -= seg_len; if (cnt == 0) seg_len += headcnt; } memcpy(buf, seg, seg_size); buf[0] = seg_type; buf[1] = seg_len; buf += seg_size; if (size < seg_size) fatalx("%s: would overflow", __func__); size -= seg_size; } } int aspath_loopfree(struct aspath *aspath, uint32_t myAS) { uint8_t *seg; uint16_t len, seg_size; uint8_t i, seg_len; seg = aspath->data; for (len = aspath->len; len > 0; len -= seg_size, seg += seg_size) { seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; for (i = 0; i < seg_len; i++) { if (myAS == aspath_extract(seg, i)) return (0); } if (seg_size > len) fatalx("%s: would overflow", __func__); } return (1); } int aspath_compare(struct aspath *a1, struct aspath *a2) { int r; if (a1->len > a2->len) return (1); if (a1->len < a2->len) return (-1); r = memcmp(a1->data, a2->data, a1->len); if (r > 0) return (1); if (r < 0) return (-1); return (0); } struct aspath * aspath_lookup(const void *data, uint16_t len) { struct aspath_list *head; struct aspath *aspath; uint32_t hash; hash = SipHash24(&astablekey, data, len); head = ASPATH_HASH(hash); LIST_FOREACH(aspath, head, entry) { if (len == aspath->len && memcmp(data, aspath->data, len) == 0) return (aspath); } return (NULL); } static int as_compare(struct filter_as *f, uint32_t as, uint32_t neighas) { uint32_t match; if (f->flags & AS_FLAG_AS_SET_NAME) /* should not happen */ return (0); if (f->flags & AS_FLAG_AS_SET) return (as_set_match(f->aset, as)); if (f->flags & AS_FLAG_NEIGHBORAS) match = neighas; else match = f->as_min; switch (f->op) { case OP_NONE: case OP_EQ: if (as == match) return (1); break; case OP_NE: if (as != match) return (1); break; case OP_RANGE: if (as >= f->as_min && as <= f->as_max) return (1); break; case OP_XRANGE: if (as < f->as_min || as > f->as_max) return (1); break; } return (0); } /* we need to be able to search more than one as */ int aspath_match(struct aspath *aspath, struct filter_as *f, uint32_t neighas) { const uint8_t *seg; int final; uint16_t len, seg_size; uint8_t i, seg_len; uint32_t as = AS_NONE; if (f->type == AS_EMPTY) { if (aspath_length(aspath) == 0) return (1); else return (0); } /* just check the leftmost AS */ if (f->type == AS_PEER) { as = aspath_neighbor(aspath); if (as_compare(f, as, neighas)) return (1); else return (0); } seg = aspath->data; len = aspath->len; for (; len >= 6; len -= seg_size, seg += seg_size) { seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; final = (len == seg_size); if (f->type == AS_SOURCE) { /* * Just extract the rightmost AS * but if that segment is an AS_SET then the rightmost * AS of a previous AS_SEQUENCE segment should be used. * Because of that just look at AS_SEQUENCE segments. */ if (seg[0] == AS_SEQUENCE) as = aspath_extract(seg, seg_len - 1); /* not yet in the final segment */ if (!final) continue; if (as_compare(f, as, neighas)) return (1); else return (0); } /* AS_TRANSIT or AS_ALL */ for (i = 0; i < seg_len; i++) { /* * the source (rightmost) AS is excluded from * AS_TRANSIT matches. */ if (final && i == seg_len - 1 && f->type == AS_TRANSIT) return (0); as = aspath_extract(seg, i); if (as_compare(f, as, neighas)) return (1); } if (seg_size > len) fatalx("%s: would overflow", __func__); } return (0); } /* * Returns a new prepended aspath. Old needs to be freed by caller. */ u_char * aspath_prepend(struct aspath *asp, uint32_t as, int quantum, uint16_t *len) { u_char *p; int l, overflow = 0, shift = 0, size, wpos = 0; uint8_t type; /* lunatic prepends are blocked in the parser and limited */ /* first calculate new size */ if (asp->len > 0) { if (asp->len < 2) fatalx("aspath_prepend: bad aspath length"); type = asp->data[0]; size = asp->data[1]; } else { /* empty as path */ type = AS_SET; size = 0; } if (quantum > 255) fatalx("aspath_prepend: preposterous prepend"); if (quantum == 0) { /* no change needed but return a copy */ p = malloc(asp->len); if (p == NULL) fatal("aspath_prepend"); memcpy(p, asp->data, asp->len); *len = asp->len; return (p); } else if (type == AS_SET || size + quantum > 255) { /* need to attach a new AS_SEQUENCE */ l = 2 + quantum * sizeof(uint32_t) + asp->len; if (type == AS_SET) overflow = quantum; else overflow = size + quantum - 255; } else l = quantum * sizeof(uint32_t) + asp->len; quantum -= overflow; p = malloc(l); if (p == NULL) fatal("aspath_prepend"); /* first prepends */ as = htonl(as); if (overflow > 0) { p[wpos++] = AS_SEQUENCE; p[wpos++] = overflow; for (; overflow > 0; overflow--) { memcpy(p + wpos, &as, sizeof(uint32_t)); wpos += sizeof(uint32_t); } } if (quantum > 0) { shift = 2; p[wpos++] = AS_SEQUENCE; p[wpos++] = quantum + size; for (; quantum > 0; quantum--) { memcpy(p + wpos, &as, sizeof(uint32_t)); wpos += sizeof(uint32_t); } } memcpy(p + wpos, asp->data + shift, asp->len - shift); *len = l; return (p); } /* * Returns a new aspath where neighbor_as is replaced by local_as. */ u_char * aspath_override(struct aspath *asp, uint32_t neighbor_as, uint32_t local_as, uint16_t *len) { u_char *p, *seg, *nseg; uint32_t as; uint16_t l, seg_size; uint8_t i, seg_len, seg_type; p = malloc(asp->len); if (p == NULL) fatal("aspath_override"); seg = asp->data; nseg = p; for (l = asp->len; l > 0; l -= seg_size, seg += seg_size) { *nseg++ = seg_type = seg[0]; *nseg++ = seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; for (i = 0; i < seg_len; i++) { as = aspath_extract(seg, i); if (as == neighbor_as) as = local_as; as = htonl(as); memcpy(nseg, &as, sizeof(as)); nseg += sizeof(as); } if (seg_size > l) fatalx("%s: would overflow", __func__); } *len = asp->len; return (p); } int aspath_lenmatch(struct aspath *a, enum aslen_spec type, u_int aslen) { uint8_t *seg; uint32_t as, lastas = 0; u_int count = 0; uint16_t len, seg_size; uint8_t i, seg_len, seg_type; if (type == ASLEN_MAX) { if (aslen < aspath_count(a->data, a->len)) return (1); else return (0); } /* type == ASLEN_SEQ */ seg = a->data; for (len = a->len; len > 0; len -= seg_size, seg += seg_size) { seg_type = seg[0]; seg_len = seg[1]; seg_size = 2 + sizeof(uint32_t) * seg_len; for (i = 0; i < seg_len; i++) { as = aspath_extract(seg, i); if (as == lastas) { if (aslen < ++count) return (1); } else if (seg_type == AS_SET) { /* AS path 3 { 4 3 7 } 3 will have count = 3 */ continue; } else count = 1; lastas = as; } if (seg_size > len) fatalx("%s: would overflow", __func__); } return (0); }