/* $OpenBSD: util.c,v 1.25 2017/05/31 10:44:00 claudio Exp $ */ /* * Copyright (c) 2006 Claudio Jeker * Copyright (c) 2003, 2004 Henning Brauer * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include "bgpd.h" #include "rde.h" #include "log.h" const char *aspath_delim(u_int8_t, int); const char * log_addr(const struct bgpd_addr *addr) { static char buf[48]; char tbuf[16]; switch (addr->aid) { case AID_INET: case AID_INET6: if (inet_ntop(aid2af(addr->aid), &addr->ba, buf, sizeof(buf)) == NULL) return ("?"); return (buf); case AID_VPN_IPv4: if (inet_ntop(AF_INET, &addr->vpn4.addr, tbuf, sizeof(tbuf)) == NULL) return ("?"); snprintf(buf, sizeof(buf), "%s %s", log_rd(addr->vpn4.rd), tbuf); return (buf); } return ("???"); } const char * log_in6addr(const struct in6_addr *addr) { struct sockaddr_in6 sa_in6; u_int16_t tmp16; bzero(&sa_in6, sizeof(sa_in6)); sa_in6.sin6_len = sizeof(sa_in6); sa_in6.sin6_family = AF_INET6; memcpy(&sa_in6.sin6_addr, addr, sizeof(sa_in6.sin6_addr)); /* XXX thanks, KAME, for this ugliness... adopted from route/show.c */ if (IN6_IS_ADDR_LINKLOCAL(&sa_in6.sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&sa_in6.sin6_addr)) { memcpy(&tmp16, &sa_in6.sin6_addr.s6_addr[2], sizeof(tmp16)); sa_in6.sin6_scope_id = ntohs(tmp16); sa_in6.sin6_addr.s6_addr[2] = 0; sa_in6.sin6_addr.s6_addr[3] = 0; } return (log_sockaddr((struct sockaddr *)&sa_in6)); } const char * log_sockaddr(struct sockaddr *sa) { static char buf[NI_MAXHOST]; if (getnameinfo(sa, sa->sa_len, buf, sizeof(buf), NULL, 0, NI_NUMERICHOST)) return ("(unknown)"); else return (buf); } const char * log_as(u_int32_t as) { static char buf[11]; /* "4294967294\0" */ if (snprintf(buf, sizeof(buf), "%u", as) == -1) return ("?"); return (buf); } const char * log_rd(u_int64_t rd) { static char buf[32]; struct in_addr addr; u_int32_t u32; u_int16_t u16; rd = betoh64(rd); switch (rd >> 48) { case EXT_COMMUNITY_TRANS_TWO_AS: u32 = rd & 0xffffffff; u16 = (rd >> 32) & 0xffff; snprintf(buf, sizeof(buf), "rd %hu:%u", u16, u32); break; case EXT_COMMUNITY_TRANS_FOUR_AS: u32 = (rd >> 16) & 0xffffffff; u16 = rd & 0xffff; snprintf(buf, sizeof(buf), "rd %s:%hu", log_as(u32), u16); break; case EXT_COMMUNITY_TRANS_IPV4: u32 = (rd >> 16) & 0xffffffff; u16 = rd & 0xffff; addr.s_addr = htonl(u32); snprintf(buf, sizeof(buf), "rd %s:%hu", inet_ntoa(addr), u16); break; default: return ("rd ?"); } return (buf); } const struct ext_comm_pairs iana_ext_comms[] = IANA_EXT_COMMUNITIES; /* NOTE: this function does not check if the type/subtype combo is * actually valid. */ const char * log_ext_subtype(u_int8_t type, u_int8_t subtype) { static char etype[6]; const struct ext_comm_pairs *cp; for (cp = iana_ext_comms; cp->subname != NULL; cp++) { if (type == cp->type && subtype == cp->subtype) return (cp->subname); } snprintf(etype, sizeof(etype), "[%u]", subtype); return (etype); } const char * log_shutcomm(const char *communication) { static char buf[(SHUT_COMM_LEN - 1) * 4 + 1]; strnvis(buf, communication, sizeof(buf), VIS_NL | VIS_OCTAL); return buf; } const char * aspath_delim(u_int8_t seg_type, int closing) { static char db[8]; switch (seg_type) { case AS_SET: if (!closing) return ("{ "); else return (" }"); case AS_SEQUENCE: return (""); case AS_CONFED_SEQUENCE: if (!closing) return ("( "); else return (" )"); case AS_CONFED_SET: if (!closing) return ("[ "); else return (" ]"); default: if (!closing) snprintf(db, sizeof(db), "!%u ", seg_type); else snprintf(db, sizeof(db), " !%u", seg_type); return (db); } } int aspath_snprint(char *buf, size_t size, void *data, u_int16_t len) { #define UPDATE() \ do { \ if (r == -1) \ return (-1); \ total_size += r; \ if ((unsigned int)r < size) { \ size -= r; \ buf += r; \ } else { \ buf += size; \ size = 0; \ } \ } while (0) u_int8_t *seg; int r, total_size; u_int16_t seg_size; u_int8_t i, seg_type, seg_len; total_size = 0; seg = data; for (; len > 0; len -= seg_size, seg += seg_size) { seg_type = seg[0]; seg_len = seg[1]; seg_size = 2 + sizeof(u_int32_t) * seg_len; r = snprintf(buf, size, "%s%s", total_size != 0 ? " " : "", aspath_delim(seg_type, 0)); UPDATE(); for (i = 0; i < seg_len; i++) { r = snprintf(buf, size, "%s", log_as(aspath_extract(seg, i))); UPDATE(); if (i + 1 < seg_len) { r = snprintf(buf, size, " "); UPDATE(); } } r = snprintf(buf, size, "%s", aspath_delim(seg_type, 1)); UPDATE(); } /* ensure that we have a valid C-string especially for empty as path */ if (size > 0) *buf = '\0'; return (total_size); #undef UPDATE } int aspath_asprint(char **ret, void *data, u_int16_t len) { size_t slen; int plen; slen = aspath_strlen(data, len) + 1; *ret = malloc(slen); if (*ret == NULL) return (-1); plen = aspath_snprint(*ret, slen, data, len); if (plen == -1) { free(*ret); *ret = NULL; return (-1); } return (0); } size_t aspath_strlen(void *data, u_int16_t len) { u_int8_t *seg; int total_size; u_int32_t as; u_int16_t seg_size; u_int8_t i, seg_type, seg_len; total_size = 0; seg = data; for (; len > 0; len -= seg_size, seg += seg_size) { seg_type = seg[0]; seg_len = seg[1]; seg_size = 2 + sizeof(u_int32_t) * seg_len; if (seg_type == AS_SET) if (total_size != 0) total_size += 3; else total_size += 2; else if (total_size != 0) total_size += 1; for (i = 0; i < seg_len; i++) { as = aspath_extract(seg, i); do { total_size++; } while ((as = as / 10) != 0); if (i + 1 < seg_len) total_size += 1; } if (seg_type == AS_SET) total_size += 2; } return (total_size); } /* we need to be able to search more than one as */ int aspath_match(void *data, u_int16_t len, struct filter_as *f, u_int32_t match) { u_int8_t *seg; int final; u_int16_t seg_size; u_int8_t i, seg_len; u_int32_t as; if (f->type == AS_EMPTY) { if (len == 0) return (1); else return (0); } seg = data; for (; len > 0; len -= seg_size, seg += seg_size) { seg_len = seg[1]; seg_size = 2 + sizeof(u_int32_t) * seg_len; final = (len == seg_size); /* just check the first (leftmost) AS */ if (f->type == AS_PEER) { as = aspath_extract(seg, 0); if (as_compare(f->op, as, match, f->as_min, f->as_max)) return (1); else return (0); } /* just check the final (rightmost) AS */ if (f->type == AS_SOURCE) { /* not yet in the final segment */ if (!final) continue; as = aspath_extract(seg, seg_len - 1); if (as_compare(f->op, as, match, f->as_min, f->as_max)) return (1); else return (0); } /* AS_TRANSIT or AS_ALL */ for (i = 0; i < seg_len; i++) { /* * the source (rightmost) AS is excluded from * AS_TRANSIT matches. */ if (final && i == seg_len - 1 && f->type == AS_TRANSIT) return (0); as = aspath_extract(seg, i); if (as_compare(f->op, as, match, f->as_min, f->as_max)) return (1); } } return (0); } int as_compare(u_int8_t op, u_int32_t as, u_int32_t match, u_int32_t as_min, u_int32_t as_max) { if ((op == OP_NONE || op == OP_EQ) && as == match) return (1); else if (op == OP_NE && as != match) return (1); else if (op == OP_RANGE && as >= as_min && as <= as_max) return (1); else if (op == OP_XRANGE && as > as_min && as < as_max) return (1); return (0); } /* * Extract the asnum out of the as segment at the specified position. * Direct access is not possible because of non-aligned reads. * ATTENTION: no bounds checks are done. */ u_int32_t aspath_extract(const void *seg, int pos) { const u_char *ptr = seg; u_int32_t as; ptr += 2 + sizeof(u_int32_t) * pos; memcpy(&as, ptr, sizeof(u_int32_t)); return (ntohl(as)); } /* * This function will have undefined behaviour if the passed in prefixlen is * to large for the respective bgpd_addr address family. */ int prefix_compare(const struct bgpd_addr *a, const struct bgpd_addr *b, int prefixlen) { in_addr_t mask, aa, ba; int i; u_int8_t m; if (a->aid != b->aid) return (a->aid - b->aid); switch (a->aid) { case AID_INET: if (prefixlen == 0) return (0); if (prefixlen > 32) return (-1); mask = htonl(prefixlen2mask(prefixlen)); aa = ntohl(a->v4.s_addr & mask); ba = ntohl(b->v4.s_addr & mask); if (aa != ba) return (aa - ba); return (0); case AID_INET6: if (prefixlen == 0) return (0); if (prefixlen > 128) return (-1); for (i = 0; i < prefixlen / 8; i++) if (a->v6.s6_addr[i] != b->v6.s6_addr[i]) return (a->v6.s6_addr[i] - b->v6.s6_addr[i]); i = prefixlen % 8; if (i) { m = 0xff00 >> i; if ((a->v6.s6_addr[prefixlen / 8] & m) != (b->v6.s6_addr[prefixlen / 8] & m)) return ((a->v6.s6_addr[prefixlen / 8] & m) - (b->v6.s6_addr[prefixlen / 8] & m)); } return (0); case AID_VPN_IPv4: if (prefixlen > 32) return (-1); if (betoh64(a->vpn4.rd) > betoh64(b->vpn4.rd)) return (1); if (betoh64(a->vpn4.rd) < betoh64(b->vpn4.rd)) return (-1); mask = htonl(prefixlen2mask(prefixlen)); aa = ntohl(a->vpn4.addr.s_addr & mask); ba = ntohl(b->vpn4.addr.s_addr & mask); if (aa != ba) return (aa - ba); if (a->vpn4.labellen > b->vpn4.labellen) return (1); if (a->vpn4.labellen < b->vpn4.labellen) return (-1); return (memcmp(a->vpn4.labelstack, b->vpn4.labelstack, a->vpn4.labellen)); } return (-1); } in_addr_t prefixlen2mask(u_int8_t prefixlen) { if (prefixlen == 0) return (0); return (0xffffffff << (32 - prefixlen)); } void inet6applymask(struct in6_addr *dest, const struct in6_addr *src, int prefixlen) { struct in6_addr mask; int i; bzero(&mask, sizeof(mask)); for (i = 0; i < prefixlen / 8; i++) mask.s6_addr[i] = 0xff; i = prefixlen % 8; if (i) mask.s6_addr[prefixlen / 8] = 0xff00 >> i; for (i = 0; i < 16; i++) dest->s6_addr[i] = src->s6_addr[i] & mask.s6_addr[i]; } /* address family translation functions */ const struct aid aid_vals[AID_MAX] = AID_VALS; const char * aid2str(u_int8_t aid) { if (aid < AID_MAX) return (aid_vals[aid].name); return ("unknown AID"); } int aid2afi(u_int8_t aid, u_int16_t *afi, u_int8_t *safi) { if (aid < AID_MAX) { *afi = aid_vals[aid].afi; *safi = aid_vals[aid].safi; return (0); } return (-1); } int afi2aid(u_int16_t afi, u_int8_t safi, u_int8_t *aid) { u_int8_t i; for (i = 0; i < AID_MAX; i++) if (aid_vals[i].afi == afi && aid_vals[i].safi == safi) { *aid = i; return (0); } return (-1); } sa_family_t aid2af(u_int8_t aid) { if (aid < AID_MAX) return (aid_vals[aid].af); return (AF_UNSPEC); } int af2aid(sa_family_t af, u_int8_t safi, u_int8_t *aid) { u_int8_t i; if (safi == 0) /* default to unicast subclass */ safi = SAFI_UNICAST; for (i = 0; i < AID_MAX; i++) if (aid_vals[i].af == af && aid_vals[i].safi == safi) { *aid = i; return (0); } return (-1); } struct sockaddr * addr2sa(struct bgpd_addr *addr, u_int16_t port) { static struct sockaddr_storage ss; struct sockaddr_in *sa_in = (struct sockaddr_in *)&ss; struct sockaddr_in6 *sa_in6 = (struct sockaddr_in6 *)&ss; if (addr->aid == AID_UNSPEC) return (NULL); bzero(&ss, sizeof(ss)); switch (addr->aid) { case AID_INET: sa_in->sin_family = AF_INET; sa_in->sin_len = sizeof(struct sockaddr_in); sa_in->sin_addr.s_addr = addr->v4.s_addr; sa_in->sin_port = htons(port); break; case AID_INET6: sa_in6->sin6_family = AF_INET6; sa_in6->sin6_len = sizeof(struct sockaddr_in6); memcpy(&sa_in6->sin6_addr, &addr->v6, sizeof(sa_in6->sin6_addr)); sa_in6->sin6_port = htons(port); sa_in6->sin6_scope_id = addr->scope_id; break; } return ((struct sockaddr *)&ss); } void sa2addr(struct sockaddr *sa, struct bgpd_addr *addr) { struct sockaddr_in *sa_in = (struct sockaddr_in *)sa; struct sockaddr_in6 *sa_in6 = (struct sockaddr_in6 *)sa; bzero(addr, sizeof(*addr)); switch (sa->sa_family) { case AF_INET: addr->aid = AID_INET; memcpy(&addr->v4, &sa_in->sin_addr, sizeof(addr->v4)); break; case AF_INET6: addr->aid = AID_INET6; memcpy(&addr->v6, &sa_in6->sin6_addr, sizeof(addr->v6)); addr->scope_id = sa_in6->sin6_scope_id; /* I hate v6 */ break; } }