/* $OpenBSD: kroute.c,v 1.44 2015/07/21 04:39:28 renato Exp $ */ /* * Copyright (c) 2009 Michele Marchetto * Copyright (c) 2004 Esben Norby * Copyright (c) 2003, 2004 Henning Brauer * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ldpd.h" #include "log.h" struct { u_int32_t rtseq; pid_t pid; int fib_sync; int fd; struct event ev; } kr_state; struct kroute_node { TAILQ_ENTRY(kroute_node) entry; struct kroute_priority *kprio; /* back pointer */ struct kroute r; }; struct kroute_priority { TAILQ_ENTRY(kroute_priority) entry; struct kroute_prefix *kp; /* back pointer */ u_int8_t priority; TAILQ_HEAD(, kroute_node) nexthops; }; struct kroute_prefix { RB_ENTRY(kroute_prefix) entry; struct in_addr prefix; u_int8_t prefixlen; TAILQ_HEAD(plist, kroute_priority) priorities; }; struct kif_addr { TAILQ_ENTRY(kif_addr) entry; struct kaddr addr; }; struct kif_node { RB_ENTRY(kif_node) entry; TAILQ_HEAD(, kif_addr) addrs; struct kif k; }; void kr_redist_remove(struct kroute *); int kr_redist_eval(struct kroute *); void kr_redistribute(struct kroute_prefix *); int kroute_compare(struct kroute_prefix *, struct kroute_prefix *); int kif_compare(struct kif_node *, struct kif_node *); struct kroute_prefix *kroute_find(in_addr_t, u_int8_t); struct kroute_priority *kroute_find_prio(in_addr_t, u_int8_t, u_int8_t); struct kroute_node *kroute_find_gw(in_addr_t, u_int8_t, u_int8_t, struct in_addr); int kroute_insert(struct kroute *); int kroute_uninstall(struct kroute_node *); int kroute_remove(struct kroute *); void kroute_clear(void); struct kif_node *kif_find(u_short); struct kif_node *kif_insert(u_short); int kif_remove(struct kif_node *); void kif_clear(void); struct kif_node *kif_update(u_short, int, struct if_data *, struct sockaddr_dl *, int *); struct kroute_priority *kroute_match(in_addr_t); u_int8_t prefixlen_classful(in_addr_t); void get_rtaddrs(int, struct sockaddr *, struct sockaddr **); void if_change(u_short, int, struct if_data *, struct sockaddr_dl *); void if_newaddr(u_short, struct sockaddr_in *, struct sockaddr_in *, struct sockaddr_in *); void if_deladdr(u_short, struct sockaddr_in *, struct sockaddr_in *, struct sockaddr_in *); void if_announce(void *); int send_rtmsg(int, int, struct kroute *, u_int32_t); int dispatch_rtmsg(void); int fetchtable(void); int fetchifs(u_short); int rtmsg_process(char *, size_t); RB_HEAD(kroute_tree, kroute_prefix) krt; RB_PROTOTYPE(kroute_tree, kroute_prefix, entry, kroute_compare) RB_GENERATE(kroute_tree, kroute_prefix, entry, kroute_compare) RB_HEAD(kif_tree, kif_node) kit; RB_PROTOTYPE(kif_tree, kif_node, entry, kif_compare) RB_GENERATE(kif_tree, kif_node, entry, kif_compare) int kif_init(void) { RB_INIT(&kit); /* init also krt tree so that we can call kr_shutdown() */ RB_INIT(&krt); kr_state.fib_sync = 0; /* decoupled */ if (fetchifs(0) == -1) return (-1); return (0); } void kif_redistribute(void) { struct kif_node *kif; struct kif_addr *ka; RB_FOREACH(kif, kif_tree, &kit) { TAILQ_FOREACH(ka, &kif->addrs, entry) main_imsg_compose_ldpe(IMSG_NEWADDR, 0, &ka->addr, sizeof(struct kaddr)); } } int kr_init(int fs) { int opt = 0, rcvbuf, default_rcvbuf; socklen_t optlen; unsigned int rtfilter; kr_state.fib_sync = fs; if ((kr_state.fd = socket(AF_ROUTE, SOCK_RAW | SOCK_CLOEXEC | SOCK_NONBLOCK, 0)) == -1) { log_warn("kr_init: socket"); return (-1); } /* not interested in my own messages */ if (setsockopt(kr_state.fd, SOL_SOCKET, SO_USELOOPBACK, &opt, sizeof(opt)) == -1) log_warn("kr_init: setsockopt(SO_USELOOPBACK)"); /* filter out unwanted messages */ rtfilter = ROUTE_FILTER(RTM_ADD) | ROUTE_FILTER(RTM_GET) | ROUTE_FILTER(RTM_CHANGE) | ROUTE_FILTER(RTM_DELETE) | ROUTE_FILTER(RTM_IFINFO) | ROUTE_FILTER(RTM_NEWADDR) | ROUTE_FILTER(RTM_DELADDR) | ROUTE_FILTER(RTM_IFANNOUNCE); if (setsockopt(kr_state.fd, PF_ROUTE, ROUTE_MSGFILTER, &rtfilter, sizeof(rtfilter)) == -1) log_warn("kr_init: setsockopt(ROUTE_MSGFILTER)"); /* grow receive buffer, don't wanna miss messages */ optlen = sizeof(default_rcvbuf); if (getsockopt(kr_state.fd, SOL_SOCKET, SO_RCVBUF, &default_rcvbuf, &optlen) == -1) log_warn("kr_init getsockopt SOL_SOCKET SO_RCVBUF"); else for (rcvbuf = MAX_RTSOCK_BUF; rcvbuf > default_rcvbuf && setsockopt(kr_state.fd, SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf)) == -1 && errno == ENOBUFS; rcvbuf /= 2) ; /* nothing */ kr_state.pid = getpid(); kr_state.rtseq = 1; if (fetchtable() == -1) return (-1); event_set(&kr_state.ev, kr_state.fd, EV_READ | EV_PERSIST, kr_dispatch_msg, NULL); event_add(&kr_state.ev, NULL); return (0); } int kr_change(struct kroute *kroute) { struct kroute_node *kn; int action = RTM_ADD; char buf[16]; kn = kroute_find_gw(kroute->prefix.s_addr, kroute->prefixlen, RTP_ANY, kroute->nexthop); if (kn == NULL) { log_warnx("kr_change: lost FEC %s/%d nexthop %s", inet_ntoa(kroute->prefix), kroute->prefixlen, inet_ntop(AF_INET, &kroute->nexthop, buf, sizeof(buf))); return (-1); } if (kn->r.flags & F_LDPD_INSERTED) action = RTM_CHANGE; kn->r.local_label = kroute->local_label; kn->r.remote_label = kroute->remote_label; kn->r.flags = kn->r.flags | F_LDPD_INSERTED; /* send update */ if (send_rtmsg(kr_state.fd, action, &kn->r, AF_MPLS) == -1) return (-1); if (kn->r.nexthop.s_addr != INADDR_ANY && kn->r.remote_label != NO_LABEL) { if (send_rtmsg(kr_state.fd, RTM_CHANGE, &kn->r, AF_INET) == -1) return (-1); } return (0); } int kr_delete(struct kroute *kroute) { struct kroute_node *kn; int update = 0; kn = kroute_find_gw(kroute->prefix.s_addr, kroute->prefixlen, RTP_ANY, kroute->nexthop); if (kn == NULL) return (0); if (!(kn->r.flags & F_LDPD_INSERTED)) return (0); if (kn->r.nexthop.s_addr != INADDR_ANY && kn->r.remote_label != NO_LABEL) update = 1; /* kill MPLS LSP */ if (send_rtmsg(kr_state.fd, RTM_DELETE, &kn->r, AF_MPLS) == -1) return (-1); kn->r.flags &= ~F_LDPD_INSERTED; kn->r.local_label = NO_LABEL; kn->r.remote_label = NO_LABEL; if (update && send_rtmsg(kr_state.fd, RTM_CHANGE, &kn->r, AF_INET) == -1) return (-1); return (0); } void kr_shutdown(void) { kr_fib_decouple(); kroute_clear(); kif_clear(); } void kr_fib_couple(void) { struct kroute_prefix *kp; struct kroute_priority *kprio; struct kroute_node *kn; if (kr_state.fib_sync == 1) /* already coupled */ return; kr_state.fib_sync = 1; RB_FOREACH(kp, kroute_tree, &krt) { kprio = TAILQ_FIRST(&kp->priorities); if (kprio == NULL) continue; TAILQ_FOREACH(kn, &kprio->nexthops, entry) { if (!(kn->r.flags & F_LDPD_INSERTED)) continue; send_rtmsg(kr_state.fd, RTM_ADD, &kn->r, AF_MPLS); if (kn->r.nexthop.s_addr != INADDR_ANY && kn->r.remote_label != NO_LABEL) { send_rtmsg(kr_state.fd, RTM_CHANGE, &kn->r, AF_INET); } } } log_info("kernel routing table coupled"); } void kr_fib_decouple(void) { struct kroute_prefix *kp; struct kroute_priority *kprio; struct kroute_node *kn; u_int32_t rl; if (kr_state.fib_sync == 0) /* already decoupled */ return; RB_FOREACH(kp, kroute_tree, &krt) { kprio = TAILQ_FIRST(&kp->priorities); if (kprio == NULL) continue; TAILQ_FOREACH(kn, &kprio->nexthops, entry) { if (!(kn->r.flags & F_LDPD_INSERTED)) continue; send_rtmsg(kr_state.fd, RTM_DELETE, &kn->r, AF_MPLS); if (kn->r.nexthop.s_addr != INADDR_ANY && kn->r.remote_label != NO_LABEL) { rl = kn->r.remote_label; kn->r.remote_label = NO_LABEL; send_rtmsg(kr_state.fd, RTM_CHANGE, &kn->r, AF_INET); kn->r.remote_label = rl; } } } kr_state.fib_sync = 0; log_info("kernel routing table decoupled"); } /* ARGSUSED */ void kr_dispatch_msg(int fd, short event, void *bula) { dispatch_rtmsg(); } void kr_show_route(struct imsg *imsg) { struct kroute_prefix *kp; struct kroute_priority *kprio; struct kroute_node *kn; int flags; struct in_addr addr; switch (imsg->hdr.type) { case IMSG_CTL_KROUTE: if (imsg->hdr.len != IMSG_HEADER_SIZE + sizeof(flags)) { log_warnx("kr_show_route: wrong imsg len"); return; } memcpy(&flags, imsg->data, sizeof(flags)); RB_FOREACH(kp, kroute_tree, &krt) TAILQ_FOREACH(kprio, &kp->priorities, entry) TAILQ_FOREACH(kn, &kprio->nexthops, entry) { if (!flags || kn->r.flags & flags) main_imsg_compose_ldpe( IMSG_CTL_KROUTE, imsg->hdr.pid, &kn->r, sizeof(kn->r)); } break; case IMSG_CTL_KROUTE_ADDR: if (imsg->hdr.len != IMSG_HEADER_SIZE + sizeof(struct in_addr)) { log_warnx("kr_show_route: wrong imsg len"); return; } memcpy(&addr, imsg->data, sizeof(addr)); kprio = kroute_match(addr.s_addr); TAILQ_FOREACH(kn, &kprio->nexthops, entry) main_imsg_compose_ldpe(IMSG_CTL_KROUTE, imsg->hdr.pid, &kn->r, sizeof(kn->r)); break; default: log_debug("kr_show_route: error handling imsg"); break; } main_imsg_compose_ldpe(IMSG_CTL_END, imsg->hdr.pid, NULL, 0); } void kr_ifinfo(char *ifname, pid_t pid) { struct kif_node *kif; RB_FOREACH(kif, kif_tree, &kit) if (ifname == NULL || !strcmp(ifname, kif->k.ifname)) { main_imsg_compose_ldpe(IMSG_CTL_IFINFO, pid, &kif->k, sizeof(kif->k)); } main_imsg_compose_ldpe(IMSG_CTL_END, pid, NULL, 0); } void kr_redist_remove(struct kroute *kr) { /* was the route redistributed? */ if ((kr->flags & F_REDISTRIBUTED) == 0) return; /* remove redistributed flag */ kr->flags &= ~F_REDISTRIBUTED; main_imsg_compose_lde(IMSG_NETWORK_DEL, 0, kr, sizeof(struct kroute)); } int kr_redist_eval(struct kroute *kr) { u_int32_t a; /* was the route redistributed? */ if (kr->flags & F_REDISTRIBUTED) goto dont_redistribute; /* Dynamic routes are not redistributable. */ if (kr->flags & F_DYNAMIC) goto dont_redistribute; /* * We consider the loopback net, default route, multicast and * experimental addresses as not redistributable. */ a = ntohl(kr->prefix.s_addr); if (IN_MULTICAST(a) || IN_BADCLASS(a) || (kr->prefixlen == 0) || (a >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) goto dont_redistribute; /* * Consider networks with nexthop loopback as not redistributable * unless it is a reject or blackhole route. */ if (kr->nexthop.s_addr == htonl(INADDR_LOOPBACK) && !(kr->flags & (F_BLACKHOLE|F_REJECT))) goto dont_redistribute; /* prefix should be redistributed */ kr->flags |= F_REDISTRIBUTED; main_imsg_compose_lde(IMSG_NETWORK_ADD, 0, kr, sizeof(struct kroute)); return (1); dont_redistribute: return (1); } void kr_redistribute(struct kroute_prefix *kp) { struct kroute_priority *kprio; struct kroute_node *kn; TAILQ_FOREACH_REVERSE(kprio, &kp->priorities, plist, entry) { if (kprio == TAILQ_FIRST(&kp->priorities)) { TAILQ_FOREACH(kn, &kprio->nexthops, entry) kr_redist_eval(&kn->r); } else { TAILQ_FOREACH(kn, &kprio->nexthops, entry) kr_redist_remove(&kn->r); } } } void kr_reload(void) { /* XXX TODO */ } /* rb-tree compare */ int kroute_compare(struct kroute_prefix *a, struct kroute_prefix *b) { if (ntohl(a->prefix.s_addr) < ntohl(b->prefix.s_addr)) return (-1); if (ntohl(a->prefix.s_addr) > ntohl(b->prefix.s_addr)) return (1); if (a->prefixlen < b->prefixlen) return (-1); if (a->prefixlen > b->prefixlen) return (1); return (0); } int kif_compare(struct kif_node *a, struct kif_node *b) { return (b->k.ifindex - a->k.ifindex); } /* tree management */ struct kroute_prefix * kroute_find(in_addr_t prefix, u_int8_t prefixlen) { struct kroute_prefix s; s.prefix.s_addr = prefix; s.prefixlen = prefixlen; return (RB_FIND(kroute_tree, &krt, &s)); } struct kroute_priority * kroute_find_prio(in_addr_t prefix, u_int8_t prefixlen, u_int8_t prio) { struct kroute_prefix *kp; struct kroute_priority *kprio; if ((kp = kroute_find(prefix, prefixlen)) == NULL) return (NULL); /* RTP_ANY here picks the lowest priority node */ if (prio == RTP_ANY) return (TAILQ_FIRST(&kp->priorities)); TAILQ_FOREACH(kprio, &kp->priorities, entry) if (kprio->priority == prio) return (kprio); return (NULL); } struct kroute_node * kroute_find_gw(in_addr_t prefix, u_int8_t prefixlen, u_int8_t prio, struct in_addr nh) { struct kroute_priority *kprio; struct kroute_node *kn; if ((kprio = kroute_find_prio(prefix, prefixlen, prio)) == NULL) return (NULL); TAILQ_FOREACH(kn, &kprio->nexthops, entry) if (kn->r.nexthop.s_addr == nh.s_addr) return (kn); return (NULL); } int kroute_insert(struct kroute *kr) { struct kroute_prefix *kp; struct kroute_priority *kprio, *tmp = NULL; struct kroute_node *kn; kp = kroute_find(kr->prefix.s_addr, kr->prefixlen); if (kp == NULL) { kp = calloc(1, sizeof(struct kroute_prefix)); if (kp == NULL) fatal("kroute_insert"); kp->prefix.s_addr = kr->prefix.s_addr; kp->prefixlen = kr->prefixlen; TAILQ_INIT(&kp->priorities); RB_INSERT(kroute_tree, &krt, kp); } kprio = kroute_find_prio(kr->prefix.s_addr, kr->prefixlen, kr->priority); if (kprio == NULL) { kprio = calloc(1, sizeof(struct kroute_priority)); if (kprio == NULL) fatal("kroute_insert"); kprio->kp = kp; kprio->priority = kr->priority; TAILQ_INIT(&kprio->nexthops); /* lower priorities first */ TAILQ_FOREACH(tmp, &kp->priorities, entry) { if (tmp->priority > kr->priority) { TAILQ_INSERT_BEFORE(tmp, kprio, entry); goto done; } } TAILQ_INSERT_TAIL(&kp->priorities, kprio, entry); } done: kn = kroute_find_gw(kr->prefix.s_addr, kr->prefixlen, kr->priority, kr->nexthop); if (kn == NULL) { kn = calloc(1, sizeof(struct kroute_node)); if (kn == NULL) fatal("kroute_insert"); kn->kprio = kprio; memcpy(&kn->r, kr, sizeof(struct kroute)); TAILQ_INSERT_TAIL(&kprio->nexthops, kn, entry); } kr_redistribute(kp); return (0); } int kroute_uninstall(struct kroute_node *kn) { /* kill MPLS LSP if one was installed */ if (kn->r.flags & F_LDPD_INSERTED) if (send_rtmsg(kr_state.fd, RTM_DELETE, &kn->r, AF_MPLS) == -1) return (-1); return (0); } int kroute_remove(struct kroute *kr) { struct kroute_prefix *kp; struct kroute_priority *kprio; struct kroute_node *kn; kn = kroute_find_gw(kr->prefix.s_addr, kr->prefixlen, kr->priority, kr->nexthop); if (kn == NULL) { log_warnx("kroute_remove failed to find %s/%u", inet_ntoa(kr->prefix), kr->prefixlen); return (-1); } kprio = kn->kprio; kp = kprio->kp; kr_redist_remove(&kn->r); kroute_uninstall(kn); TAILQ_REMOVE(&kprio->nexthops, kn, entry); free(kn); if (TAILQ_EMPTY(&kprio->nexthops)) { TAILQ_REMOVE(&kp->priorities, kprio, entry); free(kprio); } if (TAILQ_EMPTY(&kp->priorities)) { if (RB_REMOVE(kroute_tree, &krt, kp) == NULL) { log_warnx("kroute_remove failed for %s/%u", inet_ntoa(kp->prefix), kp->prefixlen); return (-1); } free(kp); } else kr_redistribute(kp); return (0); } void kroute_clear(void) { struct kroute_prefix *kp; struct kroute_priority *kprio; struct kroute_node *kn; while ((kp = RB_MIN(kroute_tree, &krt)) != NULL) { while ((kprio = TAILQ_FIRST(&kp->priorities)) != NULL) { while ((kn = TAILQ_FIRST(&kprio->nexthops)) != NULL) { kr_redist_remove(&kn->r); kroute_uninstall(kn); TAILQ_REMOVE(&kprio->nexthops, kn, entry); free(kn); } TAILQ_REMOVE(&kp->priorities, kprio, entry); free(kprio); } RB_REMOVE(kroute_tree, &krt, kp); free(kp); } } struct kif_node * kif_find(u_short ifindex) { struct kif_node s; bzero(&s, sizeof(s)); s.k.ifindex = ifindex; return (RB_FIND(kif_tree, &kit, &s)); } struct kif * kif_findname(char *ifname) { struct kif_node *kif; RB_FOREACH(kif, kif_tree, &kit) if (!strcmp(ifname, kif->k.ifname)) return (&kif->k); return (NULL); } struct kif_node * kif_insert(u_short ifindex) { struct kif_node *kif; if ((kif = calloc(1, sizeof(struct kif_node))) == NULL) return (NULL); kif->k.ifindex = ifindex; TAILQ_INIT(&kif->addrs); if (RB_INSERT(kif_tree, &kit, kif) != NULL) fatalx("kif_insert: RB_INSERT"); return (kif); } int kif_remove(struct kif_node *kif) { struct kif_addr *ka; if (RB_REMOVE(kif_tree, &kit, kif) == NULL) { log_warnx("RB_REMOVE(kif_tree, &kit, kif)"); return (-1); } while ((ka = TAILQ_FIRST(&kif->addrs)) != NULL) { TAILQ_REMOVE(&kif->addrs, ka, entry); free(ka); } free(kif); return (0); } void kif_clear(void) { struct kif_node *kif; while ((kif = RB_MIN(kif_tree, &kit)) != NULL) kif_remove(kif); } struct kif_node * kif_update(u_short ifindex, int flags, struct if_data *ifd, struct sockaddr_dl *sdl, int *link_old) { struct kif_node *kif; if ((kif = kif_find(ifindex)) == NULL) { if ((kif = kif_insert(ifindex)) == NULL) return (NULL); } else *link_old = (kif->k.flags & IFF_UP) && LINK_STATE_IS_UP(kif->k.link_state); kif->k.flags = flags; kif->k.link_state = ifd->ifi_link_state; kif->k.media_type = ifd->ifi_type; kif->k.baudrate = ifd->ifi_baudrate; kif->k.mtu = ifd->ifi_mtu; if (sdl && sdl->sdl_family == AF_LINK) { if (sdl->sdl_nlen >= sizeof(kif->k.ifname)) memcpy(kif->k.ifname, sdl->sdl_data, sizeof(kif->k.ifname) - 1); else if (sdl->sdl_nlen > 0) memcpy(kif->k.ifname, sdl->sdl_data, sdl->sdl_nlen); /* string already terminated via calloc() */ } return (kif); } struct kroute_priority * kroute_match(in_addr_t key) { int i; struct kroute_priority *kprio; /* we will never match the default route */ for (i = 32; i > 0; i--) if ((kprio = kroute_find_prio(key & prefixlen2mask(i), i, RTP_ANY)) != NULL) return (kprio); /* if we don't have a match yet, try to find a default route */ if ((kprio = kroute_find_prio(0, 0, RTP_ANY)) != NULL) return (kprio); return (NULL); } /* misc */ u_int8_t prefixlen_classful(in_addr_t ina) { /* it hurt to write this. */ if (ina >= 0xf0000000U) /* class E */ return (32); else if (ina >= 0xe0000000U) /* class D */ return (4); else if (ina >= 0xc0000000U) /* class C */ return (24); else if (ina >= 0x80000000U) /* class B */ return (16); else /* class A */ return (8); } u_int8_t mask2prefixlen(in_addr_t ina) { if (ina == 0) return (0); else return (33 - ffs(ntohl(ina))); } in_addr_t prefixlen2mask(u_int8_t prefixlen) { if (prefixlen == 0) return (0); return (htonl(0xffffffff << (32 - prefixlen))); } #define ROUNDUP(a) \ (((a) & (sizeof(long) - 1)) ? (1 + ((a) | (sizeof(long) - 1))) : (a)) void get_rtaddrs(int addrs, struct sockaddr *sa, struct sockaddr **rti_info) { int i; for (i = 0; i < RTAX_MAX; i++) { if (addrs & (1 << i)) { rti_info[i] = sa; sa = (struct sockaddr *)((char *)(sa) + ROUNDUP(sa->sa_len)); } else rti_info[i] = NULL; } } void if_change(u_short ifindex, int flags, struct if_data *ifd, struct sockaddr_dl *sdl) { struct kif_node *kif; struct kif_addr *ka; int link_old = 0, link_new; kif = kif_update(ifindex, flags, ifd, sdl, &link_old); if (!kif) { log_warn("if_change: kif_update(%u)", ifindex); return; } link_new = (kif->k.flags & IFF_UP) && LINK_STATE_IS_UP(kif->k.link_state); if (link_new == link_old) return; if (link_new) { main_imsg_compose_ldpe(IMSG_IFSTATUS, 0, &kif->k, sizeof(struct kif)); TAILQ_FOREACH(ka, &kif->addrs, entry) main_imsg_compose_ldpe(IMSG_NEWADDR, 0, &ka->addr, sizeof(struct kaddr)); } else { main_imsg_compose_ldpe(IMSG_IFSTATUS, 0, &kif->k, sizeof(struct kif)); TAILQ_FOREACH(ka, &kif->addrs, entry) main_imsg_compose_ldpe(IMSG_DELADDR, 0, &ka->addr, sizeof(struct kaddr)); } } void if_newaddr(u_short ifindex, struct sockaddr_in *ifa, struct sockaddr_in *mask, struct sockaddr_in *brd) { struct kif_node *kif; struct kif_addr *ka; u_int32_t a; if (ifa == NULL || ifa->sin_family != AF_INET) return; if ((kif = kif_find(ifindex)) == NULL) { log_warnx("if_newaddr: corresponding if %d not found", ifindex); return; } a = ntohl(ifa->sin_addr.s_addr); if (IN_MULTICAST(a) || IN_BADCLASS(a) || (a >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) return; if ((ka = calloc(1, sizeof(struct kif_addr))) == NULL) fatal("if_newaddr"); ka->addr.ifindex = ifindex; ka->addr.addr.s_addr = ifa->sin_addr.s_addr; if (mask) ka->addr.mask.s_addr = mask->sin_addr.s_addr; else ka->addr.mask.s_addr = INADDR_NONE; if (brd) ka->addr.dstbrd.s_addr = brd->sin_addr.s_addr; else ka->addr.dstbrd.s_addr = INADDR_NONE; TAILQ_INSERT_TAIL(&kif->addrs, ka, entry); /* notify ldpe about new address */ main_imsg_compose_ldpe(IMSG_NEWADDR, 0, &ka->addr, sizeof(struct kaddr)); } void if_deladdr(u_short ifindex, struct sockaddr_in *ifa, struct sockaddr_in *mask, struct sockaddr_in *brd) { struct kif_node *kif; struct kif_addr *ka, *nka; if (ifa == NULL || ifa->sin_family != AF_INET) return; if ((kif = kif_find(ifindex)) == NULL) { log_warnx("if_deladdr: corresponding if %d not found", ifindex); return; } for (ka = TAILQ_FIRST(&kif->addrs); ka != NULL; ka = nka) { nka = TAILQ_NEXT(ka, entry); if (ka->addr.addr.s_addr == ifa->sin_addr.s_addr) { TAILQ_REMOVE(&kif->addrs, ka, entry); /* notify ldpe about removed address */ main_imsg_compose_ldpe(IMSG_DELADDR, 0, &ka->addr, sizeof(struct kaddr)); free(ka); return; } } } void if_announce(void *msg) { struct if_announcemsghdr *ifan; struct kif_node *kif; ifan = msg; switch (ifan->ifan_what) { case IFAN_ARRIVAL: kif = kif_insert(ifan->ifan_index); strlcpy(kif->k.ifname, ifan->ifan_name, sizeof(kif->k.ifname)); break; case IFAN_DEPARTURE: kif = kif_find(ifan->ifan_index); kif_remove(kif); break; } } /* rtsock */ int send_rtmsg(int fd, int action, struct kroute *kroute, u_int32_t family) { struct iovec iov[5]; struct rt_msghdr hdr; struct sockaddr_mpls label_in, label_out; struct sockaddr_in dst, mask, nexthop; int iovcnt = 0; if (kr_state.fib_sync == 0) return (0); /* Implicit NULL label should not be added to the FIB */ if (family == AF_MPLS && kroute->local_label == MPLS_LABEL_IMPLNULL) return (0); /* initialize header */ bzero(&hdr, sizeof(hdr)); hdr.rtm_version = RTM_VERSION; hdr.rtm_type = action; hdr.rtm_flags = RTF_UP; hdr.rtm_fmask = RTF_MPLS; hdr.rtm_seq = kr_state.rtseq++; /* overflow doesn't matter */ hdr.rtm_msglen = sizeof(hdr); hdr.rtm_hdrlen = sizeof(struct rt_msghdr); hdr.rtm_priority = kroute->priority; /* adjust iovec */ iov[iovcnt].iov_base = &hdr; iov[iovcnt++].iov_len = sizeof(hdr); if (family == AF_MPLS) { bzero(&label_in, sizeof(label_in)); label_in.smpls_len = sizeof(label_in); label_in.smpls_family = AF_MPLS; label_in.smpls_label = htonl(kroute->local_label << MPLS_LABEL_OFFSET); /* adjust header */ hdr.rtm_flags |= RTF_MPLS | RTF_MPATH; hdr.rtm_addrs |= RTA_DST; hdr.rtm_msglen += sizeof(label_in); /* adjust iovec */ iov[iovcnt].iov_base = &label_in; iov[iovcnt++].iov_len = sizeof(label_in); } else { bzero(&dst, sizeof(dst)); dst.sin_len = sizeof(dst); dst.sin_family = AF_INET; dst.sin_addr.s_addr = kroute->prefix.s_addr; /* adjust header */ hdr.rtm_addrs |= RTA_DST; hdr.rtm_msglen += sizeof(dst); /* adjust iovec */ iov[iovcnt].iov_base = &dst; iov[iovcnt++].iov_len = sizeof(dst); } bzero(&nexthop, sizeof(nexthop)); nexthop.sin_len = sizeof(nexthop); nexthop.sin_family = AF_INET; nexthop.sin_addr.s_addr = kroute->nexthop.s_addr; /* adjust header */ hdr.rtm_flags |= RTF_GATEWAY; hdr.rtm_addrs |= RTA_GATEWAY; hdr.rtm_msglen += sizeof(nexthop); /* adjust iovec */ iov[iovcnt].iov_base = &nexthop; iov[iovcnt++].iov_len = sizeof(nexthop); if (family == AF_INET) { bzero(&mask, sizeof(mask)); mask.sin_len = sizeof(mask); mask.sin_family = AF_INET; mask.sin_addr.s_addr = prefixlen2mask(kroute->prefixlen); /* adjust header */ hdr.rtm_addrs |= RTA_NETMASK; hdr.rtm_msglen += sizeof(mask); /* adjust iovec */ iov[iovcnt].iov_base = &mask; iov[iovcnt++].iov_len = sizeof(mask); } /* If action is RTM_DELETE we have to get rid of MPLS infos */ if (kroute->remote_label != NO_LABEL && action != RTM_DELETE) { bzero(&label_out, sizeof(label_out)); label_out.smpls_len = sizeof(label_out); label_out.smpls_family = AF_MPLS; label_out.smpls_label = htonl(kroute->remote_label << MPLS_LABEL_OFFSET); /* adjust header */ hdr.rtm_addrs |= RTA_SRC; hdr.rtm_flags |= RTF_MPLS; hdr.rtm_msglen += sizeof(label_out); /* adjust iovec */ iov[iovcnt].iov_base = &label_out; iov[iovcnt++].iov_len = sizeof(label_out); if (kroute->remote_label == MPLS_LABEL_IMPLNULL) { if (family == AF_MPLS) hdr.rtm_mpls = MPLS_OP_POP; else return (0); } else { if (family == AF_MPLS) hdr.rtm_mpls = MPLS_OP_SWAP; else hdr.rtm_mpls = MPLS_OP_PUSH; } } retry: if (writev(fd, iov, iovcnt) == -1) { if (errno == ESRCH) { if (hdr.rtm_type == RTM_CHANGE && family == AF_MPLS) { hdr.rtm_type = RTM_ADD; goto retry; } else if (hdr.rtm_type == RTM_DELETE) { log_info("route %s/%u vanished before delete", inet_ntoa(kroute->prefix), kroute->prefixlen); return (0); } } log_warn("send_rtmsg: action %u, AF %d, prefix %s/%u", hdr.rtm_type, family, inet_ntoa(kroute->prefix), kroute->prefixlen); return (0); } return (0); } int fetchtable(void) { size_t len; int mib[7]; char *buf; int rv; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = AF_INET; mib[4] = NET_RT_DUMP; mib[5] = 0; mib[6] = 0; /* rtableid */ if (sysctl(mib, 7, NULL, &len, NULL, 0) == -1) { log_warn("sysctl"); return (-1); } if ((buf = malloc(len)) == NULL) { log_warn("fetchtable"); return (-1); } if (sysctl(mib, 7, buf, &len, NULL, 0) == -1) { log_warn("sysctl"); free(buf); return (-1); } rv = rtmsg_process(buf, len); free(buf); return (rv); } int fetchifs(u_short ifindex) { size_t len; int mib[6]; char *buf; int rv; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; mib[3] = AF_INET; mib[4] = NET_RT_IFLIST; mib[5] = ifindex; if (sysctl(mib, 6, NULL, &len, NULL, 0) == -1) { log_warn("sysctl"); return (-1); } if ((buf = malloc(len)) == NULL) { log_warn("fetchif"); return (-1); } if (sysctl(mib, 6, buf, &len, NULL, 0) == -1) { log_warn("sysctl"); free(buf); return (-1); } rv = rtmsg_process(buf, len); free(buf); return (rv); } int dispatch_rtmsg(void) { char buf[RT_BUF_SIZE]; ssize_t n; if ((n = read(kr_state.fd, &buf, sizeof(buf))) == -1) { if (errno == EAGAIN || errno == EINTR) return (0); log_warn("dispatch_rtmsg: read error"); return (-1); } if (n == 0) { log_warnx("routing socket closed"); return (-1); } return (rtmsg_process(buf, n)); } int rtmsg_process(char *buf, size_t len) { struct rt_msghdr *rtm; struct if_msghdr ifm; struct ifa_msghdr *ifam; struct sockaddr *sa, *rti_info[RTAX_MAX]; struct sockaddr_in *sa_in; struct kroute_priority *kprio; struct kroute_node *kn; struct kroute kr; struct in_addr prefix, nexthop; u_int8_t prefixlen, prio; int flags; u_short ifindex = 0; size_t offset; char *next; for (offset = 0; offset < len; offset += rtm->rtm_msglen) { next = buf + offset; rtm = (struct rt_msghdr *)next; if (len < offset + sizeof(u_short) || len < offset + rtm->rtm_msglen) fatalx("rtmsg_process: partial rtm in buffer"); if (rtm->rtm_version != RTM_VERSION) continue; log_rtmsg(rtm->rtm_type); prefix.s_addr = 0; prefixlen = 0; nexthop.s_addr = 0; prio = 0; flags = 0; sa = (struct sockaddr *)(next + rtm->rtm_hdrlen); get_rtaddrs(rtm->rtm_addrs, sa, rti_info); switch (rtm->rtm_type) { case RTM_ADD: case RTM_GET: case RTM_CHANGE: case RTM_DELETE: if (rtm->rtm_errno) /* failed attempts... */ continue; if (rtm->rtm_tableid != 0) continue; if ((sa = rti_info[RTAX_DST]) == NULL) continue; /* Skip ARP/ND cache and broadcast routes. */ if (rtm->rtm_flags & (RTF_LLINFO|RTF_BROADCAST)) continue; /* LDP should follow the IGP and ignore BGP routes */ if (rtm->rtm_priority == RTP_BGP) continue; prio = rtm->rtm_priority; switch (sa->sa_family) { case AF_INET: prefix.s_addr = ((struct sockaddr_in *)sa)->sin_addr.s_addr; sa_in = (struct sockaddr_in *) rti_info[RTAX_NETMASK]; if (sa_in != NULL) { if (sa_in->sin_len != 0) prefixlen = mask2prefixlen( sa_in->sin_addr.s_addr); } else if (rtm->rtm_flags & RTF_HOST) prefixlen = 32; else prefixlen = prefixlen_classful(prefix.s_addr); if (rtm->rtm_flags & RTF_STATIC) flags |= F_STATIC; if (rtm->rtm_flags & RTF_BLACKHOLE) flags |= F_BLACKHOLE; if (rtm->rtm_flags & RTF_REJECT) flags |= F_REJECT; if (rtm->rtm_flags & RTF_DYNAMIC) flags |= F_DYNAMIC; break; default: continue; } ifindex = rtm->rtm_index; if ((sa = rti_info[RTAX_GATEWAY]) != NULL) { switch (sa->sa_family) { case AF_INET: if (rtm->rtm_flags & RTF_CONNECTED) { flags |= F_CONNECTED; break; } nexthop.s_addr = ((struct sockaddr_in *)sa)->sin_addr.s_addr; break; case AF_LINK: /* * Traditional BSD connected routes have * a gateway of type AF_LINK. */ flags |= F_CONNECTED; break; } } } switch (rtm->rtm_type) { case RTM_CHANGE: /* * The kernel doesn't allow RTM_CHANGE for multipath * routes. If we got this message we know that the * route has only one nexthop and we should remove * it before installing the same route with a new * nexthop. */ if ((kprio = kroute_find_prio(prefix.s_addr, prefixlen, prio)) == NULL) { log_warnx("dispatch_rtmsg route not found"); return (-1); } kn = TAILQ_FIRST(&kprio->nexthops); if (kn && kroute_remove(&kn->r) == -1) return (-1); break; default: break; } switch (rtm->rtm_type) { case RTM_ADD: case RTM_GET: case RTM_CHANGE: if (nexthop.s_addr == 0 && !(flags & F_CONNECTED)) { log_warnx("no nexthop for %s/%u", inet_ntoa(prefix), prefixlen); continue; } /* routes attached to loopback interfaces */ if (prefix.s_addr == nexthop.s_addr) flags |= F_CONNECTED; if (kroute_find_gw(prefix.s_addr, prefixlen, prio, nexthop) != NULL) break; memset(&kr, 0, sizeof(kr)); kr.prefix.s_addr = prefix.s_addr; kr.prefixlen = prefixlen; kr.nexthop.s_addr = nexthop.s_addr; kr.flags = flags; kr.ifindex = ifindex; kr.priority = prio; kr.local_label = NO_LABEL; kr.remote_label = NO_LABEL; kroute_insert(&kr); break; case RTM_DELETE: /* get the correct route */ if ((kn = kroute_find_gw(prefix.s_addr, prefixlen, prio, nexthop)) == NULL) { log_warnx("dispatch_rtmsg route not found"); return (-1); } if (kroute_remove(&kn->r) == -1) return (-1); break; case RTM_IFINFO: memcpy(&ifm, next, sizeof(ifm)); if_change(ifm.ifm_index, ifm.ifm_flags, &ifm.ifm_data, (struct sockaddr_dl *)rti_info[RTAX_IFP]); break; case RTM_NEWADDR: ifam = (struct ifa_msghdr *)rtm; if ((ifam->ifam_addrs & (RTA_NETMASK | RTA_IFA | RTA_BRD)) == 0) break; if_newaddr(ifam->ifam_index, (struct sockaddr_in *)rti_info[RTAX_IFA], (struct sockaddr_in *)rti_info[RTAX_NETMASK], (struct sockaddr_in *)rti_info[RTAX_BRD]); break; case RTM_DELADDR: ifam = (struct ifa_msghdr *)rtm; if ((ifam->ifam_addrs & (RTA_NETMASK | RTA_IFA | RTA_BRD)) == 0) break; if_deladdr(ifam->ifam_index, (struct sockaddr_in *)rti_info[RTAX_IFA], (struct sockaddr_in *)rti_info[RTAX_NETMASK], (struct sockaddr_in *)rti_info[RTAX_BRD]); break; case RTM_IFANNOUNCE: if_announce(next); break; default: /* ignore for now */ break; } } return (offset); }