/* * util.c -- set of various support routines. * * Copyright (c) 2001-2006, NLnet Labs. All rights reserved. * * See LICENSE for the license. * */ #include #include #include #include #include #include #include #include #ifdef HAVE_SYSLOG_H #include #endif /* HAVE_SYSLOG_H */ #include #include "util.h" #include "region-allocator.h" #include "dname.h" #include "namedb.h" #include "rdata.h" #ifdef USE_MMAP_ALLOC #include #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #elif defined(MAP_ANONYMOUS) && !defined(MAP_ANON) #define MAP_ANON MAP_ANONYMOUS #endif #endif /* USE_MMAP_ALLOC */ #ifndef NDEBUG unsigned nsd_debug_facilities = 0xffff; int nsd_debug_level = 0; #endif int verbosity = 0; static const char *global_ident = NULL; static log_function_type *current_log_function = log_file; static FILE *current_log_file = NULL; void log_init(const char *ident) { global_ident = ident; current_log_file = stderr; } void log_open(int option, int facility, const char *filename) { #ifdef HAVE_SYSLOG_H openlog(global_ident, option, facility); #endif /* HAVE_SYSLOG_H */ if (filename) { FILE *file = fopen(filename, "a"); if (!file) { log_msg(LOG_ERR, "Cannot open %s for appending (%s), " "logging to stderr", filename, strerror(errno)); } else { current_log_file = file; } } } void log_reopen(const char *filename, uint8_t verbose) { if (filename) { FILE *file = fopen(filename, "a"); if (!file) { if (verbose) VERBOSITY(2, (LOG_WARNING, "Cannot reopen %s for appending (%s), " "keeping old logfile", filename, strerror(errno))); } else { if (current_log_file && current_log_file != stderr) fclose(current_log_file); current_log_file = file; } } } void log_finalize(void) { #ifdef HAVE_SYSLOG_H closelog(); #endif /* HAVE_SYSLOG_H */ if (current_log_file && current_log_file != stderr) { fclose(current_log_file); } current_log_file = NULL; } static lookup_table_type log_priority_table[] = { { LOG_ERR, "error" }, { LOG_WARNING, "warning" }, { LOG_NOTICE, "notice" }, { LOG_INFO, "info" }, { 0, NULL } }; void log_file(int priority, const char *message) { size_t length; lookup_table_type *priority_info; const char *priority_text = "unknown"; assert(global_ident); assert(current_log_file); priority_info = lookup_by_id(log_priority_table, priority); if (priority_info) { priority_text = priority_info->name; } /* Bug #104, add time_t timestamp */ fprintf(current_log_file, "[%d] %s[%d]: %s: %s", (int)time(NULL), global_ident, (int) getpid(), priority_text, message); length = strlen(message); if (length == 0 || message[length - 1] != '\n') { fprintf(current_log_file, "\n"); } fflush(current_log_file); } void log_syslog(int priority, const char *message) { #ifdef HAVE_SYSLOG_H syslog(priority, "%s", message); #endif /* !HAVE_SYSLOG_H */ log_file(priority, message); } void log_set_log_function(log_function_type *log_function) { current_log_function = log_function; } void log_msg(int priority, const char *format, ...) { va_list args; va_start(args, format); log_vmsg(priority, format, args); va_end(args); } void log_vmsg(int priority, const char *format, va_list args) { char message[MAXSYSLOGMSGLEN]; vsnprintf(message, sizeof(message), format, args); current_log_function(priority, message); } void set_bit(uint8_t bits[], size_t index) { /* * The bits are counted from left to right, so bit #0 is the * left most bit. */ bits[index / 8] |= (1 << (7 - index % 8)); } void clear_bit(uint8_t bits[], size_t index) { /* * The bits are counted from left to right, so bit #0 is the * left most bit. */ bits[index / 8] &= ~(1 << (7 - index % 8)); } int get_bit(uint8_t bits[], size_t index) { /* * The bits are counted from left to right, so bit #0 is the * left most bit. */ return bits[index / 8] & (1 << (7 - index % 8)); } lookup_table_type * lookup_by_name(lookup_table_type *table, const char *name) { while (table->name != NULL) { if (strcasecmp(name, table->name) == 0) return table; table++; } return NULL; } lookup_table_type * lookup_by_id(lookup_table_type *table, int id) { while (table->name != NULL) { if (table->id == id) return table; table++; } return NULL; } void * xalloc(size_t size) { void *result = malloc(size); if (!result) { log_msg(LOG_ERR, "malloc failed: %s", strerror(errno)); exit(1); } return result; } void * xalloc_zero(size_t size) { void *result = xalloc(size); memset(result, 0, size); return result; } void * xrealloc(void *ptr, size_t size) { ptr = realloc(ptr, size); if (!ptr) { log_msg(LOG_ERR, "realloc failed: %s", strerror(errno)); exit(1); } return ptr; } #ifdef USE_MMAP_ALLOC void * mmap_alloc(size_t size) { void *base; size += MMAP_ALLOC_HEADER_SIZE; #ifdef HAVE_MMAP base = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (base == MAP_FAILED) { log_msg(LOG_ERR, "mmap failed: %s", strerror(errno)); exit(1); } #else /* !HAVE_MMAP */ log_msg(LOG_ERR, "mmap failed: don't have mmap"); exit(1); #endif /* HAVE_MMAP */ *((size_t*) base) = size; return (void*)((uintptr_t)base + MMAP_ALLOC_HEADER_SIZE); } void mmap_free(void *ptr) { void *base; size_t size; if (!ptr) return; base = (void*)((uintptr_t)ptr - MMAP_ALLOC_HEADER_SIZE); size = *((size_t*) base); #ifdef HAVE_MUNMAP if (munmap(base, size) == -1) { log_msg(LOG_ERR, "munmap failed: %s", strerror(errno)); exit(1); } #else /* !HAVE_MUNMAP */ log_msg(LOG_ERR, "munmap failed: don't have munmap"); exit(1); #endif /* HAVE_MUNMAP */ } #endif /* USE_MMAP_ALLOC */ int write_data(FILE *file, const void *data, size_t size) { size_t result; if (size == 0) return 1; result = fwrite(data, 1, size, file); if (result == 0) { log_msg(LOG_ERR, "write failed: %s", strerror(errno)); return 0; } else if (result < size) { log_msg(LOG_ERR, "short write (disk full?)"); return 0; } else { return 1; } } int write_socket(int s, const void *buf, size_t size) { const char* data = (const char*)buf; size_t total_count = 0; while (total_count < size) { ssize_t count = write(s, data + total_count, size - total_count); if (count == -1) { if (errno != EAGAIN && errno != EINTR) { return 0; } else { continue; } } total_count += count; } return 1; } int timespec_compare(const struct timespec *left, const struct timespec *right) { /* Compare seconds. */ if (left->tv_sec < right->tv_sec) { return -1; } else if (left->tv_sec > right->tv_sec) { return 1; } else { /* Seconds are equal, compare nanoseconds. */ if (left->tv_nsec < right->tv_nsec) { return -1; } else if (left->tv_nsec > right->tv_nsec) { return 1; } else { return 0; } } } /* One second is 1e9 nanoseconds. */ #define NANOSECONDS_PER_SECOND 1000000000L void timespec_add(struct timespec *left, const struct timespec *right) { left->tv_sec += right->tv_sec; left->tv_nsec += right->tv_nsec; if (left->tv_nsec >= NANOSECONDS_PER_SECOND) { /* Carry. */ ++left->tv_sec; left->tv_nsec -= NANOSECONDS_PER_SECOND; } } void timespec_subtract(struct timespec *left, const struct timespec *right) { left->tv_sec -= right->tv_sec; left->tv_nsec -= right->tv_nsec; if (left->tv_nsec < 0L) { /* Borrow. */ --left->tv_sec; left->tv_nsec += NANOSECONDS_PER_SECOND; } } uint32_t strtoserial(const char* nptr, const char** endptr) { uint32_t i = 0; uint32_t serial = 0; for(*endptr = nptr; **endptr; (*endptr)++) { switch (**endptr) { case ' ': case '\t': break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': i *= 10; i += (**endptr - '0'); break; default: break; } } serial += i; return serial; } uint32_t strtottl(const char *nptr, const char **endptr) { uint32_t i = 0; uint32_t seconds = 0; for(*endptr = nptr; **endptr; (*endptr)++) { switch (**endptr) { case ' ': case '\t': break; case 's': case 'S': seconds += i; i = 0; break; case 'm': case 'M': seconds += i * 60; i = 0; break; case 'h': case 'H': seconds += i * 60 * 60; i = 0; break; case 'd': case 'D': seconds += i * 60 * 60 * 24; i = 0; break; case 'w': case 'W': seconds += i * 60 * 60 * 24 * 7; i = 0; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': i *= 10; i += (**endptr - '0'); break; default: seconds += i; return seconds; } } seconds += i; return seconds; } ssize_t hex_ntop(uint8_t const *src, size_t srclength, char *target, size_t targsize) { static char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; size_t i; if (targsize < srclength * 2 + 1) { return -1; } for (i = 0; i < srclength; ++i) { *target++ = hexdigits[src[i] >> 4U]; *target++ = hexdigits[src[i] & 0xfU]; } *target = '\0'; return 2 * srclength; } ssize_t hex_pton(const char* src, uint8_t* target, size_t targsize) { uint8_t *t = target; if(strlen(src) % 2 != 0 || strlen(src)/2 > targsize) { return -1; } while(*src) { if(!isxdigit((int)src[0]) || !isxdigit((int)src[1])) return -1; *t++ = hexdigit_to_int(src[0]) * 16 + hexdigit_to_int(src[1]) ; src += 2; } return t-target; } int b32_ntop(uint8_t const *src, size_t srclength, char *target, size_t targsize) { static char b32[]="0123456789abcdefghijklmnopqrstuv"; char buf[9]; ssize_t len=0; while(srclength > 0) { int t; memset(buf,'\0',sizeof buf); /* xxxxx000 00000000 00000000 00000000 00000000 */ buf[0]=b32[src[0] >> 3]; /* 00000xxx xx000000 00000000 00000000 00000000 */ t=(src[0]&7) << 2; if(srclength > 1) t+=src[1] >> 6; buf[1]=b32[t]; if(srclength == 1) break; /* 00000000 00xxxxx0 00000000 00000000 00000000 */ buf[2]=b32[(src[1] >> 1)&0x1f]; /* 00000000 0000000x xxxx0000 00000000 00000000 */ t=(src[1]&1) << 4; if(srclength > 2) t+=src[2] >> 4; buf[3]=b32[t]; if(srclength == 2) break; /* 00000000 00000000 0000xxxx x0000000 00000000 */ t=(src[2]&0xf) << 1; if(srclength > 3) t+=src[3] >> 7; buf[4]=b32[t]; if(srclength == 3) break; /* 00000000 00000000 00000000 0xxxxx00 00000000 */ buf[5]=b32[(src[3] >> 2)&0x1f]; /* 00000000 00000000 00000000 000000xx xxx00000 */ t=(src[3]&3) << 3; if(srclength > 4) t+=src[4] >> 5; buf[6]=b32[t]; if(srclength == 4) break; /* 00000000 00000000 00000000 00000000 000xxxxx */ buf[7]=b32[src[4]&0x1f]; if(targsize < 8) return -1; src += 5; srclength -= 5; memcpy(target,buf,8); target += 8; targsize -= 8; len += 8; } if(srclength) { if(targsize < strlen(buf)+1) return -1; strlcpy(target, buf, targsize); len += strlen(buf); } else if(targsize < 1) return -1; else *target='\0'; return len; } int b32_pton(const char *src, uint8_t *target, size_t tsize) { char ch; size_t p=0; memset(target,'\0',tsize); while((ch = *src++)) { uint8_t d; size_t b; size_t n; if(p+5 >= tsize*8) return -1; if(isspace(ch)) continue; if(ch >= '0' && ch <= '9') d=ch-'0'; else if(ch >= 'A' && ch <= 'V') d=ch-'A'+10; else if(ch >= 'a' && ch <= 'v') d=ch-'a'+10; else return -1; b=7-p%8; n=p/8; if(b >= 4) target[n]|=d << (b-4); else { target[n]|=d >> (4-b); target[n+1]|=d << (b+4); } p+=5; } return (p+7)/8; } void strip_string(char *str) { char *start = str; char *end = str + strlen(str) - 1; while (isspace(*start)) ++start; if (start > end) { /* Completely blank. */ str[0] = '\0'; } else { while (isspace(*end)) --end; *++end = '\0'; if (str != start) memmove(str, start, end - start + 1); } } int hexdigit_to_int(char ch) { switch (ch) { case '0': return 0; case '1': return 1; case '2': return 2; case '3': return 3; case '4': return 4; case '5': return 5; case '6': return 6; case '7': return 7; case '8': return 8; case '9': return 9; case 'a': case 'A': return 10; case 'b': case 'B': return 11; case 'c': case 'C': return 12; case 'd': case 'D': return 13; case 'e': case 'E': return 14; case 'f': case 'F': return 15; default: abort(); } } /* Number of days per month (except for February in leap years). */ static const int mdays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static int is_leap_year(int year) { return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0); } static int leap_days(int y1, int y2) { --y1; --y2; return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400); } /* * Code adapted from Python 2.4.1 sources (Lib/calendar.py). */ time_t mktime_from_utc(const struct tm *tm) { int year = 1900 + tm->tm_year; time_t days = 365 * (year - 1970) + leap_days(1970, year); time_t hours; time_t minutes; time_t seconds; int i; for (i = 0; i < tm->tm_mon; ++i) { days += mdays[i]; } if (tm->tm_mon > 1 && is_leap_year(year)) { ++days; } days += tm->tm_mday - 1; hours = days * 24 + tm->tm_hour; minutes = hours * 60 + tm->tm_min; seconds = minutes * 60 + tm->tm_sec; return seconds; } /* code to calculate CRC. Lifted from BSD 4.4 crc.c in cksum(1). BSD license. http://www.tsfr.org/~orc/Code/bsd/bsd-current/cksum/crc.c. or http://gobsd.com/code/freebsd/usr.bin/cksum/crc.c The polynomial is 0x04c11db7L. */ static u_long crctab[] = { 0x0, 0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005, 0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd, 0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75, 0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd, 0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039, 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5, 0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d, 0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95, 0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d, 0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072, 0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16, 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca, 0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02, 0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba, 0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692, 0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a, 0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e, 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2, 0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a, 0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb, 0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53, 0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b, 0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff, 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623, 0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b, 0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3, 0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b, 0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3, 0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640, 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c, 0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24, 0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec, 0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654, 0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c, 0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18, 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4, 0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c, 0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4 }; #define COMPUTE(var, ch) (var) = (var) << 8 ^ crctab[(var) >> 24 ^ (ch)] uint32_t compute_crc(uint32_t crc, uint8_t* data, size_t len) { size_t i; for(i=0; i b && a - b > cutoff)) { return -1; } else { return 1; } } uint16_t qid_generate(void) { return (uint16_t) arc4random(); } void cleanup_region(void *data) { region_type *region = (region_type *) data; region_destroy(region); } struct state_pretty_rr* create_pretty_rr(struct region* region) { struct state_pretty_rr* state = (struct state_pretty_rr*) region_alloc(region, sizeof(struct state_pretty_rr)); state->previous_owner_region = region_create(xalloc, free); state->previous_owner = NULL; state->previous_owner_origin = NULL; region_add_cleanup(region, cleanup_region, state->previous_owner_region); return state; } static void set_previous_owner(struct state_pretty_rr *state, const dname_type *dname) { region_free_all(state->previous_owner_region); state->previous_owner = dname_copy(state->previous_owner_region, dname); state->previous_owner_origin = dname_origin( state->previous_owner_region, state->previous_owner); } int print_rr(FILE *out, struct state_pretty_rr *state, rr_type *record) { region_type *region = region_create(xalloc, free); buffer_type *output = buffer_create(region, MAX_RDLENGTH); rrtype_descriptor_type *descriptor = rrtype_descriptor_by_type(record->type); int result; const dname_type *owner = domain_dname(record->owner); const dname_type *owner_origin = dname_origin(region, owner); int owner_changed = (!state->previous_owner || dname_compare(state->previous_owner, owner) != 0); if (owner_changed) { int origin_changed = (!state->previous_owner_origin || dname_compare( state->previous_owner_origin, owner_origin) != 0); if (origin_changed) { buffer_printf( output, "$ORIGIN %s\n", dname_to_string(owner_origin, NULL)); } set_previous_owner(state, owner); buffer_printf(output, "%s", dname_to_string(owner, state->previous_owner_origin)); } buffer_printf(output, "\t%lu\t%s\t%s", (unsigned long) record->ttl, rrclass_to_string(record->klass), rrtype_to_string(record->type)); result = print_rdata(output, descriptor, record); if (!result) { /* * Some RDATA failed to print, so print the record's * RDATA in unknown format. */ result = rdata_atoms_to_unknown_string(output, descriptor, record->rdata_count, record->rdatas); } if (result) { buffer_printf(output, "\n"); buffer_flip(output); (void)write_data(out, buffer_current(output), buffer_remaining(output)); /* fflush(out); */ } region_destroy(region); return result; } const char* rcode2str(int rc) { switch(rc) { case RCODE_OK: return "NO ERROR"; case RCODE_FORMAT: return "FORMAT ERROR"; case RCODE_SERVFAIL: return "SERV FAIL"; case RCODE_NXDOMAIN: return "NAME ERROR"; case RCODE_IMPL: return "NOT IMPL"; case RCODE_REFUSE: return "REFUSED"; case RCODE_YXDOMAIN: return "YXDOMAIN"; case RCODE_YXRRSET: return "YXRRSET"; case RCODE_NXRRSET: return "NXRRSET"; case RCODE_NOTAUTH: return "SERVER NOT AUTHORITATIVE FOR ZONE"; case RCODE_NOTZONE: return "NOTZONE"; default: return "UNKNOWN ERROR"; } return NULL; /* ENOREACH */ } stack_type* stack_create(struct region* region, size_t size) { stack_type* stack = (stack_type*)region_alloc(region, sizeof(stack_type)); stack->capacity = size; stack->num = 0; stack->data = (void**) region_alloc(region, sizeof(void*)*size); memset(stack->data, 0, sizeof(void*)*size); return stack; } void stack_push(stack_type* stack, void* elem) { assert(stack); if(stack->num >= stack->capacity) { /* stack out of capacity, elem falls off stack */ return; } stack->data[stack->num] = elem; stack->num ++; } void* stack_pop(stack_type* stack) { void* elem; assert(stack); if(stack->num <= 0) return NULL; stack->num --; elem = stack->data[stack->num]; stack->data[stack->num] = NULL; return elem; } int addr2ip( #ifdef INET6 struct sockaddr_storage addr #else struct sockaddr_in addr #endif , char *address, socklen_t size) { #ifdef INET6 if (addr.ss_family == AF_INET6) { if (!inet_ntop(AF_INET6, &((struct sockaddr_in6 *)&addr)->sin6_addr, address, size)) return (1); #else if (0) { #endif } else { if (!inet_ntop(AF_INET, &((struct sockaddr_in *)&addr)->sin_addr, address, size)) return (1); } return (0); }