/* * zonec.c -- zone compiler. * * Copyright (c) 2001-2006, NLnet Labs. All rights reserved. * * See LICENSE for the license. * */ #include #include #include #include #include #include #include #include #ifdef HAVE_STRINGS_H #include #endif #include #include #include #include #ifdef HAVE_NETDB_H #include #endif #include "zonec.h" #include "dname.h" #include "dns.h" #include "namedb.h" #include "rdata.h" #include "region-allocator.h" #include "util.h" #include "zparser.h" #include "options.h" #include "nsec3.h" const dname_type *error_dname; domain_type *error_domain; /* The database file... */ static const char *dbfile = 0; /* Some global flags... */ static int vflag = 0; /* if -v then print progress each 'progress' RRs */ static int progress = 10000; /* Total errors counter */ static long int totalerrors = 0; static long int totalrrs = 0; extern uint8_t nsecbits[NSEC_WINDOW_COUNT][NSEC_WINDOW_BITS_SIZE]; extern uint16_t nsec_highest_rcode; /* * Allocate SIZE+sizeof(uint16_t) bytes and store SIZE in the first * element. Return a pointer to the allocation. */ static uint16_t * alloc_rdata(region_type *region, size_t size) { uint16_t *result = region_alloc(region, sizeof(uint16_t) + size); *result = size; return result; } uint16_t * alloc_rdata_init(region_type *region, const void *data, size_t size) { uint16_t *result = region_alloc(region, sizeof(uint16_t) + size); *result = size; memcpy(result + 1, data, size); return result; } /* * These are parser function for generic zone file stuff. */ uint16_t * zparser_conv_hex(region_type *region, const char *hex, size_t len) { /* convert a hex value to wireformat */ uint16_t *r = NULL; uint8_t *t; int i; if (len % 2 != 0) { zc_error_prev_line("number of hex digits must be a multiple of 2"); } else if (len > MAX_RDLENGTH * 2) { zc_error_prev_line("hex data exceeds maximum rdata length (%d)", MAX_RDLENGTH); } else { /* the length part */ r = alloc_rdata(region, len/2); t = (uint8_t *)(r + 1); /* Now process octet by octet... */ while (*hex) { *t = 0; for (i = 16; i >= 1; i -= 15) { if (isxdigit((int)*hex)) { *t += hexdigit_to_int(*hex) * i; } else { zc_error_prev_line( "illegal hex character '%c'", (int) *hex); return NULL; } ++hex; } ++t; } } return r; } /* convert hex, precede by a 1-byte length */ uint16_t * zparser_conv_hex_length(region_type *region, const char *hex, size_t len) { uint16_t *r = NULL; uint8_t *t; int i; if (len % 2 != 0) { zc_error_prev_line("number of hex digits must be a multiple of 2"); } else if (len > 255 * 2) { zc_error_prev_line("hex data exceeds 255 bytes"); } else { uint8_t *l; /* the length part */ r = alloc_rdata(region, len/2+1); t = (uint8_t *)(r + 1); l = t++; *l = '\0'; /* Now process octet by octet... */ while (*hex) { *t = 0; for (i = 16; i >= 1; i -= 15) { if (isxdigit((int)*hex)) { *t += hexdigit_to_int(*hex) * i; } else { zc_error_prev_line( "illegal hex character '%c'", (int) *hex); return NULL; } ++hex; } ++t; ++*l; } } return r; } uint16_t * zparser_conv_time(region_type *region, const char *time) { /* convert a time YYHM to wireformat */ uint16_t *r = NULL; struct tm tm; /* Try to scan the time... */ if (!strptime(time, "%Y%m%d%H%M%S", &tm)) { zc_error_prev_line("date and time is expected"); } else { uint32_t l = htonl(mktime_from_utc(&tm)); r = alloc_rdata_init(region, &l, sizeof(l)); } return r; } uint16_t * zparser_conv_services(region_type *region, const char *protostr, char *servicestr) { /* * Convert a protocol and a list of service port numbers * (separated by spaces) in the rdata to wireformat */ uint16_t *r = NULL; uint8_t *p; uint8_t bitmap[65536/8]; char sep[] = " "; char *word; int max_port = -8; /* convert a protocol in the rdata to wireformat */ struct protoent *proto; memset(bitmap, 0, sizeof(bitmap)); proto = getprotobyname(protostr); if (!proto) { proto = getprotobynumber(atoi(protostr)); } if (!proto) { zc_error_prev_line("unknown protocol '%s'", protostr); return NULL; } for (word = strtok(servicestr, sep); word; word = strtok(NULL, sep)) { struct servent *service; int port; service = getservbyname(word, proto->p_name); if (service) { /* Note: ntohs not ntohl! Strange but true. */ port = ntohs((uint16_t) service->s_port); } else { char *end; port = strtol(word, &end, 10); if (*end != '\0') { zc_error_prev_line("unknown service '%s' for protocol '%s'", word, protostr); continue; } } if (port < 0 || port > 65535) { zc_error_prev_line("bad port number %d", port); } else { set_bit(bitmap, port); if (port > max_port) max_port = port; } } r = alloc_rdata(region, sizeof(uint8_t) + max_port / 8 + 1); p = (uint8_t *) (r + 1); *p = proto->p_proto; memcpy(p + 1, bitmap, *r); return r; } uint16_t * zparser_conv_serial(region_type *region, const char *serialstr) { uint16_t *r = NULL; uint32_t serial; const char *t; serial = strtoserial(serialstr, &t); if (*t != '\0') { zc_error_prev_line("serial is expected"); } else { serial = htonl(serial); r = alloc_rdata_init(region, &serial, sizeof(serial)); } return r; } uint16_t * zparser_conv_period(region_type *region, const char *periodstr) { /* convert a time period (think TTL's) to wireformat) */ uint16_t *r = NULL; uint32_t period; const char *end; /* Allocate required space... */ period = strtottl(periodstr, &end); if (*end != '\0') { zc_error_prev_line("time period is expected"); } else { period = htonl(period); r = alloc_rdata_init(region, &period, sizeof(period)); } return r; } uint16_t * zparser_conv_short(region_type *region, const char *text) { uint16_t *r = NULL; uint16_t value; char *end; value = htons((uint16_t) strtol(text, &end, 10)); if (*end != '\0') { zc_error_prev_line("integer value is expected"); } else { r = alloc_rdata_init(region, &value, sizeof(value)); } return r; } uint16_t * zparser_conv_byte(region_type *region, const char *text) { uint16_t *r = NULL; uint8_t value; char *end; value = (uint8_t) strtol(text, &end, 10); if (*end != '\0') { zc_error_prev_line("integer value is expected"); } else { r = alloc_rdata_init(region, &value, sizeof(value)); } return r; } uint16_t * zparser_conv_algorithm(region_type *region, const char *text) { const lookup_table_type *alg; uint8_t id; alg = lookup_by_name(dns_algorithms, text); if (alg) { id = (uint8_t) alg->id; } else { char *end; id = (uint8_t) strtol(text, &end, 10); if (*end != '\0') { zc_error_prev_line("algorithm is expected"); return NULL; } } return alloc_rdata_init(region, &id, sizeof(id)); } uint16_t * zparser_conv_certificate_type(region_type *region, const char *text) { /* convert a algoritm string to integer */ const lookup_table_type *type; uint16_t id; type = lookup_by_name(dns_certificate_types, text); if (type) { id = htons((uint16_t) type->id); } else { char *end; id = htons((uint16_t) strtol(text, &end, 10)); if (*end != '\0') { zc_error_prev_line("certificate type is expected"); return NULL; } } return alloc_rdata_init(region, &id, sizeof(id)); } uint16_t * zparser_conv_a(region_type *region, const char *text) { in_addr_t address; uint16_t *r = NULL; if (inet_pton(AF_INET, text, &address) != 1) { zc_error_prev_line("invalid IPv4 address '%s'", text); } else { r = alloc_rdata_init(region, &address, sizeof(address)); } return r; } uint16_t * zparser_conv_aaaa(region_type *region, const char *text) { uint8_t address[IP6ADDRLEN]; uint16_t *r = NULL; if (inet_pton(AF_INET6, text, address) != 1) { zc_error_prev_line("invalid IPv6 address '%s'", text); } else { r = alloc_rdata_init(region, address, sizeof(address)); } return r; } uint16_t * zparser_conv_text(region_type *region, const char *text, size_t len) { uint16_t *r = NULL; if (len > 255) { zc_error_prev_line("text string is longer than 255 characters," " try splitting it into multiple parts"); } else { uint8_t *p; r = alloc_rdata(region, len + 1); p = (uint8_t *) (r + 1); *p = len; memcpy(p + 1, text, len); } return r; } uint16_t * zparser_conv_dns_name(region_type *region, const uint8_t* name, size_t len) { uint16_t* r = NULL; uint8_t* p = NULL; r = alloc_rdata(region, len); p = (uint8_t *) (r + 1); memcpy(p, name, len); return r; } uint16_t * zparser_conv_b32(region_type *region, const char *b32) { uint8_t buffer[B64BUFSIZE]; uint16_t *r = NULL; int i; if(strcmp(b32, "-") == 0) { return alloc_rdata_init(region, "", 1); } i = b32_pton(b32, buffer+1, B64BUFSIZE-1); if (i == -1 || i > 255) { zc_error_prev_line("invalid base32 data"); } else { buffer[0] = i; /* store length byte */ r = alloc_rdata_init(region, buffer, i+1); } return r; } uint16_t * zparser_conv_b64(region_type *region, const char *b64) { uint8_t buffer[B64BUFSIZE]; uint16_t *r = NULL; int i; i = b64_pton(b64, buffer, B64BUFSIZE); if (i == -1) { zc_error_prev_line("invalid base64 data"); } else { r = alloc_rdata_init(region, buffer, i); } return r; } uint16_t * zparser_conv_rrtype(region_type *region, const char *text) { uint16_t *r = NULL; uint16_t type = rrtype_from_string(text); if (type == 0) { zc_error_prev_line("unrecognized RR type '%s'", text); } else { type = htons(type); r = alloc_rdata_init(region, &type, sizeof(type)); } return r; } uint16_t * zparser_conv_nxt(region_type *region, uint8_t nxtbits[]) { /* nxtbits[] consists of 16 bytes with some zero's in it * copy every byte with zero to r and write the length in * the first byte */ uint16_t i; uint16_t last = 0; for (i = 0; i < 16; i++) { if (nxtbits[i] != 0) last = i + 1; } return alloc_rdata_init(region, nxtbits, last); } /* we potentially have 256 windows, each one is numbered. empty ones * should be discarded */ uint16_t * zparser_conv_nsec(region_type *region, uint8_t nsecbits[NSEC_WINDOW_COUNT][NSEC_WINDOW_BITS_SIZE]) { /* nsecbits contains up to 64K of bits which represent the * types available for a name. Walk the bits according to * nsec++ draft from jakob */ uint16_t *r; uint8_t *ptr; size_t i,j; uint16_t window_count = 0; uint16_t total_size = 0; uint16_t window_max = 0; /* The used windows. */ int used[NSEC_WINDOW_COUNT]; /* The last byte used in each the window. */ int size[NSEC_WINDOW_COUNT]; window_max = 1 + (nsec_highest_rcode / 256); /* used[i] is the i-th window included in the nsec * size[used[0]] is the size of window 0 */ /* walk through the 256 windows */ for (i = 0; i < window_max; ++i) { int empty_window = 1; /* check each of the 32 bytes */ for (j = 0; j < NSEC_WINDOW_BITS_SIZE; ++j) { if (nsecbits[i][j] != 0) { size[i] = j + 1; empty_window = 0; } } if (!empty_window) { used[window_count] = i; window_count++; } } for (i = 0; i < window_count; ++i) { total_size += sizeof(uint16_t) + size[used[i]]; } r = alloc_rdata(region, total_size); ptr = (uint8_t *) (r + 1); /* now walk used and copy it */ for (i = 0; i < window_count; ++i) { ptr[0] = used[i]; ptr[1] = size[used[i]]; memcpy(ptr + 2, &nsecbits[used[i]], size[used[i]]); ptr += size[used[i]] + 2; } return r; } /* Parse an int terminated in the specified range. */ static int parse_int(const char *str, char **end, int *result, const char *name, int min, int max) { *result = (int) strtol(str, end, 10); if (*result < min || *result > max) { zc_error_prev_line("%s must be within the range [%d .. %d]", name, min, max); return 0; } else { return 1; } } /* RFC1876 conversion routines */ static unsigned int poweroften[10] = {1, 10, 100, 1000, 10000, 100000, 1000000,10000000,100000000,1000000000}; /* * Converts ascii size/precision X * 10**Y(cm) to 0xXY. * Sets the given pointer to the last used character. * */ static uint8_t precsize_aton (char *cp, char **endptr) { unsigned int mval = 0, cmval = 0; uint8_t retval = 0; int exponent; int mantissa; while (isdigit((int)*cp)) mval = mval * 10 + hexdigit_to_int(*cp++); if (*cp == '.') { /* centimeters */ cp++; if (isdigit((int)*cp)) { cmval = hexdigit_to_int(*cp++) * 10; if (isdigit((int)*cp)) { cmval += hexdigit_to_int(*cp++); } } } if(mval >= poweroften[7]) { /* integer overflow possible for *100 */ mantissa = mval / poweroften[7]; exponent = 9; /* max */ } else { cmval = (mval * 100) + cmval; for (exponent = 0; exponent < 9; exponent++) if (cmval < poweroften[exponent+1]) break; mantissa = cmval / poweroften[exponent]; } if (mantissa > 9) mantissa = 9; retval = (mantissa << 4) | exponent; if (*cp == 'm') cp++; *endptr = cp; return (retval); } /* * Parses a specific part of rdata. * * Returns: * * number of elements parsed * zero on error * */ uint16_t * zparser_conv_loc(region_type *region, char *str) { uint16_t *r; uint32_t *p; int i; int deg, min, secs; /* Secs is stored times 1000. */ uint32_t lat = 0, lon = 0, alt = 0; /* encoded defaults: version=0 sz=1m hp=10000m vp=10m */ uint8_t vszhpvp[4] = {0, 0x12, 0x16, 0x13}; char *start; double d; for(;;) { deg = min = secs = 0; /* Degrees */ if (*str == '\0') { zc_error_prev_line("unexpected end of LOC data"); return NULL; } if (!parse_int(str, &str, °, "degrees", 0, 180)) return NULL; if (!isspace((int)*str)) { zc_error_prev_line("space expected after degrees"); return NULL; } ++str; /* Minutes? */ if (isdigit((int)*str)) { if (!parse_int(str, &str, &min, "minutes", 0, 60)) return NULL; if (!isspace((int)*str)) { zc_error_prev_line("space expected after minutes"); return NULL; } ++str; } /* Seconds? */ if (isdigit((int)*str)) { start = str; if (!parse_int(str, &str, &i, "seconds", 0, 60)) { return NULL; } if (*str == '.' && !parse_int(str + 1, &str, &i, "seconds fraction", 0, 999)) { return NULL; } if (!isspace((int)*str)) { zc_error_prev_line("space expected after seconds"); return NULL; } if (sscanf(start, "%lf", &d) != 1) { zc_error_prev_line("error parsing seconds"); } if (d < 0.0 || d > 60.0) { zc_error_prev_line("seconds not in range 0.0 .. 60.0"); } secs = (int) (d * 1000.0 + 0.5); ++str; } switch(*str) { case 'N': case 'n': lat = ((uint32_t)1<<31) + (deg * 3600000 + min * 60000 + secs); break; case 'E': case 'e': lon = ((uint32_t)1<<31) + (deg * 3600000 + min * 60000 + secs); break; case 'S': case 's': lat = ((uint32_t)1<<31) - (deg * 3600000 + min * 60000 + secs); break; case 'W': case 'w': lon = ((uint32_t)1<<31) - (deg * 3600000 + min * 60000 + secs); break; default: zc_error_prev_line("invalid latitude/longtitude: '%c'", *str); return NULL; } ++str; if (lat != 0 && lon != 0) break; if (!isspace((int)*str)) { zc_error_prev_line("space expected after latitude/longitude"); return NULL; } ++str; } /* Altitude */ if (*str == '\0') { zc_error_prev_line("unexpected end of LOC data"); return NULL; } if (!isspace((int)*str)) { zc_error_prev_line("space expected before altitude"); return NULL; } ++str; start = str; /* Sign */ if (*str == '+' || *str == '-') { ++str; } /* Meters of altitude... */ (void) strtol(str, &str, 10); switch(*str) { case ' ': case '\0': case 'm': break; case '.': if (!parse_int(str + 1, &str, &i, "altitude fraction", 0, 99)) { return NULL; } if (!isspace((int)*str) && *str != '\0' && *str != 'm') { zc_error_prev_line("altitude fraction must be a number"); return NULL; } break; default: zc_error_prev_line("altitude must be expressed in meters"); return NULL; } if (!isspace((int)*str) && *str != '\0') ++str; if (sscanf(start, "%lf", &d) != 1) { zc_error_prev_line("error parsing altitude"); } alt = (uint32_t) (10000000.0 + d * 100 + 0.5); if (!isspace((int)*str) && *str != '\0') { zc_error_prev_line("unexpected character after altitude"); return NULL; } /* Now parse size, horizontal precision and vertical precision if any */ for(i = 1; isspace((int)*str) && i <= 3; i++) { vszhpvp[i] = precsize_aton(str + 1, &str); if (!isspace((int)*str) && *str != '\0') { zc_error_prev_line("invalid size or precision"); return NULL; } } /* Allocate required space... */ r = alloc_rdata(region, 16); p = (uint32_t *) (r + 1); memmove(p, vszhpvp, 4); write_uint32(p + 1, lat); write_uint32(p + 2, lon); write_uint32(p + 3, alt); return r; } /* * Convert an APL RR RDATA element. */ uint16_t * zparser_conv_apl_rdata(region_type *region, char *str) { int negated = 0; uint16_t address_family; uint8_t prefix; uint8_t maximum_prefix; uint8_t length; uint8_t address[IP6ADDRLEN]; char *colon = strchr(str, ':'); char *slash = strchr(str, '/'); int af; int rc; uint16_t rdlength; uint16_t *r; uint8_t *t; char *end; long p; if (!colon) { zc_error("address family separator is missing"); return NULL; } if (!slash) { zc_error("prefix separator is missing"); return NULL; } *colon = '\0'; *slash = '\0'; if (*str == '!') { negated = 1; ++str; } if (strcmp(str, "1") == 0) { address_family = htons(1); af = AF_INET; length = sizeof(in_addr_t); maximum_prefix = length * 8; } else if (strcmp(str, "2") == 0) { address_family = htons(2); af = AF_INET6; length = IP6ADDRLEN; maximum_prefix = length * 8; } else { zc_error("invalid address family '%s'", str); return NULL; } rc = inet_pton(af, colon + 1, address); if (rc == 0) { zc_error("invalid address '%s'", colon + 1); return NULL; } else if (rc == -1) { zc_error("inet_pton failed: %s", strerror(errno)); return NULL; } /* Strip trailing zero octets. */ while (length > 0 && address[length - 1] == 0) --length; p = strtol(slash + 1, &end, 10); if (p < 0 || p > maximum_prefix) { zc_error("prefix not in the range 0 .. %d", maximum_prefix); return NULL; } else if (*end != '\0') { zc_error("invalid prefix '%s'", slash + 1); return NULL; } prefix = (uint8_t) p; rdlength = (sizeof(address_family) + sizeof(prefix) + sizeof(length) + length); r = alloc_rdata(region, rdlength); t = (uint8_t *) (r + 1); memcpy(t, &address_family, sizeof(address_family)); t += sizeof(address_family); memcpy(t, &prefix, sizeof(prefix)); t += sizeof(prefix); memcpy(t, &length, sizeof(length)); if (negated) { *t |= APL_NEGATION_MASK; } t += sizeof(length); memcpy(t, address, length); return r; } /* * Below some function that also convert but not to wireformat * but to "normal" (int,long,char) types */ uint32_t zparser_ttl2int(const char *ttlstr, int* error) { /* convert a ttl value to a integer * return the ttl in a int * -1 on error */ uint32_t ttl; const char *t; ttl = strtottl(ttlstr, &t); if (*t != 0) { zc_error_prev_line("invalid TTL value: %s",ttlstr); *error = 1; } return ttl; } void zadd_rdata_wireformat(uint16_t *data) { if (parser->current_rr.rdata_count > MAXRDATALEN) { zc_error_prev_line("too many rdata elements"); } else { parser->current_rr.rdatas[parser->current_rr.rdata_count].data = data; ++parser->current_rr.rdata_count; } } void zadd_rdata_domain(domain_type *domain) { if (parser->current_rr.rdata_count > MAXRDATALEN) { zc_error_prev_line("too many rdata elements"); } else { parser->current_rr.rdatas[parser->current_rr.rdata_count].domain = domain; ++parser->current_rr.rdata_count; } } void parse_unknown_rdata(uint16_t type, uint16_t *wireformat) { buffer_type packet; uint16_t size; ssize_t rdata_count; ssize_t i; rdata_atom_type *rdatas; if (wireformat) { size = *wireformat; } else { return; } buffer_create_from(&packet, wireformat + 1, *wireformat); rdata_count = rdata_wireformat_to_rdata_atoms(parser->region, parser->db->domains, type, size, &packet, &rdatas); if (rdata_count == -1) { zc_error_prev_line("bad unknown RDATA"); return; } for (i = 0; i < rdata_count; ++i) { if (rdata_atom_is_domain(type, i)) { zadd_rdata_domain(rdatas[i].domain); } else { zadd_rdata_wireformat(rdatas[i].data); } } } /* * Compares two rdata arrays. * * Returns: * * zero if they are equal * non-zero if not * */ static int zrdatacmp(uint16_t type, rr_type *a, rr_type *b) { int i = 0; assert(a); assert(b); /* One is shorter than another */ if (a->rdata_count != b->rdata_count) return 1; /* Compare element by element */ for (i = 0; i < a->rdata_count; ++i) { if (rdata_atom_is_domain(type, i)) { if (rdata_atom_domain(a->rdatas[i]) != rdata_atom_domain(b->rdatas[i])) { return 1; } } else { if (rdata_atom_size(a->rdatas[i]) != rdata_atom_size(b->rdatas[i])) { return 1; } if (memcmp(rdata_atom_data(a->rdatas[i]), rdata_atom_data(b->rdatas[i]), rdata_atom_size(a->rdatas[i])) != 0) { return 1; } } } /* Otherwise they are equal */ return 0; } /* * * Opens a zone file. * * Returns: * * - pointer to the parser structure * - NULL on error and errno set * */ static int zone_open(const char *filename, uint32_t ttl, uint16_t klass, const dname_type *origin) { /* Open the zone file... */ if (strcmp(filename, "-") == 0) { yyin = stdin; filename = ""; } else if (!(yyin = fopen(filename, "r"))) { return 0; } /* Open the network database */ setprotoent(1); setservent(1); zparser_init(filename, ttl, klass, origin); return 1; } void set_bitnsec(uint8_t bits[NSEC_WINDOW_COUNT][NSEC_WINDOW_BITS_SIZE], uint16_t index) { /* * The bits are counted from left to right, so bit #0 is the * left most bit. */ uint8_t window = index / 256; uint8_t bit = index % 256; bits[window][bit / 8] |= (1 << (7 - bit % 8)); } static void cleanup_rrset(void *r) { rrset_type *rrset = (rrset_type *) r; if (rrset) { free(rrset->rrs); } } int process_rr(void) { zone_type *zone = parser->current_zone; rr_type *rr = &parser->current_rr; rrset_type *rrset; size_t max_rdlength; int i; rrtype_descriptor_type *descriptor = rrtype_descriptor_by_type(rr->type); /* We only support IN class */ if (rr->klass != CLASS_IN) { zc_error_prev_line("only class IN is supported"); return 0; } /* Make sure the maximum RDLENGTH does not exceed 65535 bytes. */ max_rdlength = rdata_maximum_wireformat_size( descriptor, rr->rdata_count, rr->rdatas); if (max_rdlength > MAX_RDLENGTH) { zc_error_prev_line("maximum rdata length exceeds %d octets", MAX_RDLENGTH); return 0; } /* Do we have the zone already? */ if (!zone) { zone = (zone_type *) region_alloc(parser->region, sizeof(zone_type)); zone->apex = parser->default_apex; zone->soa_rrset = NULL; zone->soa_nx_rrset = NULL; zone->ns_rrset = NULL; zone->opts = NULL; zone->is_secure = 0; zone->updated = 1; zone->next = parser->db->zones; parser->db->zones = zone; parser->current_zone = zone; } if (rr->type == TYPE_SOA) { /* * This is a SOA record, start a new zone or continue * an existing one. */ if (rr->owner->is_apex) zc_error_prev_line("this SOA record was already encountered"); else if (rr->owner == parser->default_apex) { zone->apex = rr->owner; rr->owner->is_apex = 1; } /* parser part */ parser->current_zone = zone; } if (!dname_is_subdomain(domain_dname(rr->owner), domain_dname(zone->apex))) { zc_error_prev_line("out of zone data"); return 0; } /* Do we have this type of rrset already? */ rrset = domain_find_rrset(rr->owner, zone, rr->type); if (!rrset) { rrset = (rrset_type *) region_alloc(parser->region, sizeof(rrset_type)); rrset->zone = zone; rrset->rr_count = 1; rrset->rrs = (rr_type *) xalloc(sizeof(rr_type)); rrset->rrs[0] = *rr; region_add_cleanup(parser->region, cleanup_rrset, rrset); /* Add it */ domain_add_rrset(rr->owner, rrset); } else { if (rr->type != TYPE_RRSIG && rrset->rrs[0].ttl != rr->ttl) { zc_warning_prev_line( "TTL does not match the TTL of the RRset"); } /* Search for possible duplicates... */ for (i = 0; i < rrset->rr_count; i++) { if (!zrdatacmp(rr->type, rr, &rrset->rrs[i])) { break; } } /* Discard the duplicates... */ if (i < rrset->rr_count) { return 0; } /* Add it... */ rrset->rrs = (rr_type *) xrealloc( rrset->rrs, (rrset->rr_count + 1) * sizeof(rr_type)); rrset->rrs[rrset->rr_count] = *rr; ++rrset->rr_count; } if(rr->type == TYPE_DNAME && rrset->rr_count > 1) { zc_error_prev_line("multiple DNAMEs at the same name"); } if(rr->type == TYPE_CNAME && rrset->rr_count > 1) { zc_error_prev_line("multiple CNAMEs at the same name"); } if((rr->type == TYPE_DNAME && domain_find_rrset(rr->owner, zone, TYPE_CNAME)) ||(rr->type == TYPE_CNAME && domain_find_rrset(rr->owner, zone, TYPE_DNAME))) { zc_error_prev_line("DNAME and CNAME at the same name"); } if(domain_find_rrset(rr->owner, zone, TYPE_CNAME) && domain_find_non_cname_rrset(rr->owner, zone)) { zc_error_prev_line("CNAME and other data at the same name"); } if (rr->type == TYPE_RRSIG && rr_rrsig_type_covered(rr) == TYPE_SOA) { rrset->zone->is_secure = 1; } /* Check we have SOA */ if (zone->soa_rrset == NULL) { if (rr->type == TYPE_SOA) { if (rr->owner != zone->apex) { zc_error_prev_line( "SOA record with invalid domain name"); } else { zone->soa_rrset = rrset; } } } else if (rr->type == TYPE_SOA) { zc_error_prev_line("duplicate SOA record discarded"); --rrset->rr_count; } /* Is this a zone NS? */ if (rr->type == TYPE_NS && rr->owner == zone->apex) { zone->ns_rrset = rrset; } if (vflag > 1 && totalrrs > 0 && (totalrrs % progress == 0)) { fprintf(stdout, "%ld\n", totalrrs); } ++totalrrs; return 1; } /* * Find rrset type for any zone */ static rrset_type* domain_find_rrset_any(domain_type *domain, uint16_t type) { rrset_type *result = domain->rrsets; while (result) { if (rrset_rrtype(result) == type) { return result; } result = result->next; } return NULL; } /* * Check for DNAME type. Nothing is allowed below it */ static void check_dname(namedb_type* db) { domain_type* domain; RBTREE_FOR(domain, domain_type*, db->domains->names_to_domains) { if(domain->is_existing) { /* there may not be DNAMEs above it */ domain_type* parent = domain->parent; #ifdef NSEC3 if(domain_has_only_NSEC3(domain, NULL)) continue; #endif while(parent) { if(domain_find_rrset_any(parent, TYPE_DNAME)) { zc_error("While checking node %s,", dname_to_string(domain_dname(domain), NULL)); zc_error("DNAME at %s has data below it. " "This is not allowed (rfc 2672).", dname_to_string(domain_dname(parent), NULL)); exit(1); } parent = parent->parent; } } } } /* * Reads the specified zone into the memory * nsd_options can be NULL if no config file is passed. * */ static void zone_read(const char *name, const char *zonefile, nsd_options_t* nsd_options) { const dname_type *dname; dname = dname_parse(parser->region, name); if (!dname) { zc_error("incorrect zone name '%s'", name); return; } #ifndef ROOT_SERVER /* Is it a root zone? Are we a root server then? Idiot proof. */ if (dname->label_count == 1) { zc_error("not configured as a root server"); return; } #endif /* Open the zone file */ if (!zone_open(zonefile, 3600, CLASS_IN, dname)) { if(nsd_options) { /* check for secondary zone, they can start with no zone info */ zone_options_t* zopt = zone_options_find(nsd_options, dname); if(zopt && zone_is_slave(zopt)) { zc_warning("slave zone %s with no zonefile '%s'(%s) will " "force zone transfer.", name, zonefile, strerror(errno)); return; } } /* cannot happen with stdin - so no fix needed for zonefile */ zc_error("cannot open '%s': %s", zonefile, strerror(errno)); return; } /* Parse and process all RRs. */ yyparse(); /* check if zone file contained a correct SOA record */ if (parser->current_zone && parser->current_zone->soa_rrset && parser->current_zone->soa_rrset->rr_count!=0) { if(dname_compare(domain_dname( parser->current_zone->soa_rrset->rrs[0].owner), dname) != 0) { zc_error("zone configured as '%s', but SOA has owner '%s'.", name, dname_to_string( domain_dname(parser->current_zone-> soa_rrset->rrs[0].owner), NULL)); } } fclose(yyin); fflush(stdout); totalerrors += parser->errors; parser->filename = NULL; } static void usage (void) { #ifndef NDEBUG fprintf(stderr, "usage: nsd-zonec [-v|-h|-C|-F|-L] [-c configfile] [-o origin] [-d directory] [-f database] [-z zonefile]\n\n"); #else fprintf(stderr, "usage: nsd-zonec [-v|-h|-C] [-c configfile] [-o origin] [-d directory] [-f database] [-z zonefile]\n\n"); #endif fprintf(stderr, "\tNSD zone compiler, creates database from zone files.\n"); fprintf(stderr, "\tVersion %s. Report bugs to <%s>.\n\n", PACKAGE_VERSION, PACKAGE_BUGREPORT); fprintf(stderr, "\t-v\tBe more verbose.\n"); fprintf(stderr, "\t-h\tPrint this help information.\n"); fprintf(stderr, "\t-c\tSpecify config file to read instead of default nsd.conf.\n"); fprintf(stderr, "\t-C\tNo config file is read.\n"); fprintf(stderr, "\t-d\tSet working directory to open files from.\n"); fprintf(stderr, "\t-o\tSpecify a zone's origin (only used with -z).\n"); fprintf(stderr, "\t-f\tSpecify database file to use.\n"); fprintf(stderr, "\t-z\tSpecify a zonefile to read (read from stdin with \'-\').\n"); #ifndef NDEBUG fprintf(stderr, "\t-F\tSet debug facilities.\n"); fprintf(stderr, "\t-L\tSet debug level.\n"); #endif } extern char *optarg; extern int optind; int main (int argc, char **argv) { struct namedb *db; char *origin = NULL; int c; region_type *global_region; region_type *rr_region; const char* configfile= CONFIGFILE; const char* zonesdir = NULL; const char* singlefile = NULL; nsd_options_t* nsd_options = NULL; log_init("nsd-zonec"); global_region = region_create(xalloc, free); rr_region = region_create(xalloc, free); totalerrors = 0; /* Parse the command line... */ while ((c = getopt(argc, argv, "d:f:vhCF:L:o:c:z:")) != -1) { switch (c) { case 'c': configfile = optarg; break; case 'v': ++vflag; break; case 'f': dbfile = optarg; break; case 'd': zonesdir = optarg; break; case 'C': configfile = 0; break; #ifndef NDEBUG case 'F': sscanf(optarg, "%x", &nsd_debug_facilities); break; case 'L': sscanf(optarg, "%d", &nsd_debug_level); break; #endif /* NDEBUG */ case 'o': origin = optarg; break; case 'z': singlefile = optarg; break; case 'h': usage(); exit(0); case '?': default: usage(); exit(1); } } argc -= optind; argv += optind; if (argc != 0) { usage(); exit(1); } /* Read options */ if(configfile != 0) { nsd_options = nsd_options_create(global_region); if(!parse_options_file(nsd_options, configfile)) { fprintf(stderr, "nsd-zonec: could not read config: %s\n", configfile); exit(1); } } if(nsd_options && zonesdir == 0) zonesdir = nsd_options->zonesdir; if(zonesdir && zonesdir[0]) { if (chdir(zonesdir)) { fprintf(stderr, "nsd-zonec: cannot chdir to %s: %s\n", zonesdir, strerror(errno)); exit(1); } } if(dbfile == 0) { if(nsd_options && nsd_options->database) dbfile = nsd_options->database; else dbfile = DBFILE; } /* Create the database */ if ((db = namedb_new(dbfile)) == NULL) { fprintf(stderr, "nsd-zonec: error creating the database (%s): %s\n", dbfile, strerror(errno)); exit(1); } parser = zparser_create(global_region, rr_region, db); if (!parser) { fprintf(stderr, "nsd-zonec: error creating the parser\n"); exit(1); } /* Unique pointers used to mark errors. */ error_dname = (dname_type *) region_alloc(global_region, 0); error_domain = (domain_type *) region_alloc(global_region, 0); if (singlefile || origin) { /* * Read a single zone file with the specified origin */ if(!singlefile) { fprintf(stderr, "nsd-zonec: must have -z zonefile when reading single zone.\n"); exit(1); } if(!origin) { fprintf(stderr, "nsd-zonec: must have -o origin when reading single zone.\n"); exit(1); } if (vflag > 0) fprintf(stdout, "nsd-zonec: reading zone \"%s\".\n", origin); zone_read(origin, singlefile, nsd_options); if (vflag > 0) fprintf(stdout, "nsd-zonec: processed %ld RRs in \"%s\".\n", totalrrs, origin); } else { zone_options_t* zone; if(!nsd_options) { fprintf(stderr, "nsd-zonec: no zones specified.\n"); exit(1); } /* read all zones */ RBTREE_FOR(zone, zone_options_t*, nsd_options->zone_options) { if (vflag > 0) fprintf(stdout, "nsd-zonec: reading zone \"%s\".\n", zone->name); zone_read(zone->name, zone->zonefile, nsd_options); if (vflag > 0) fprintf(stdout, "nsd-zonec: processed %ld RRs in \"%s\".\n", totalrrs, zone->name); totalrrs = 0; } } check_dname(db); #ifndef NDEBUG if (vflag > 0) { fprintf(stdout, "global_region: "); region_dump_stats(global_region, stdout); fprintf(stdout, "\n"); fprintf(stdout, "db->region: "); region_dump_stats(db->region, stdout); fprintf(stdout, "\n"); } #endif /* NDEBUG */ /* Close the database */ if (namedb_save(db) != 0) { fprintf(stderr, "nsd-zonec: error writing the database (%s): %s\n", db->filename, strerror(errno)); namedb_discard(db); exit(1); } /* Print the total number of errors */ if (vflag > 0 || totalerrors > 0) { fprintf(stderr, "\nnsd-zonec: done with %ld errors.\n", totalerrors); } /* Disable this to save some time. */ #if 0 region_destroy(global_region); #endif return totalerrors ? 1 : 0; }