/* $OpenBSD: rde_spf.c,v 1.69 2010/02/16 08:22:42 dlg Exp $ */ /* * Copyright (c) 2005 Esben Norby * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include "ospfd.h" #include "ospf.h" #include "log.h" #include "rde.h" extern struct ospfd_conf *rdeconf; TAILQ_HEAD(, vertex) cand_list; RB_HEAD(rt_tree, rt_node) rt; RB_PROTOTYPE(rt_tree, rt_node, entry, rt_compare) RB_GENERATE(rt_tree, rt_node, entry, rt_compare) struct vertex *spf_root = NULL; void calc_nexthop_clear(struct vertex *); void calc_nexthop_add(struct vertex *, struct vertex *, u_int32_t); void calc_nexthop(struct vertex *, struct vertex *, struct area *, struct lsa_rtr_link *); void rt_nexthop_clear(struct rt_node *); void rt_nexthop_add(struct rt_node *, struct v_nexthead *, struct in_addr); void rt_update(struct in_addr, u_int8_t, struct v_nexthead *, u_int32_t, u_int32_t, struct in_addr, struct in_addr, enum path_type, enum dst_type, u_int8_t, u_int32_t); void rt_invalidate(struct area *); int linked(struct vertex *, struct vertex *); void spf_calc(struct area *area) { struct vertex *v, *w; struct lsa_rtr_link *rtr_link = NULL; struct lsa_net_link *net_link; u_int32_t d; int i; struct in_addr addr; /* clear SPF tree */ spf_tree_clr(area); cand_list_clr(); /* initialize SPF tree */ if ((v = spf_root = lsa_find(area, LSA_TYPE_ROUTER, rde_router_id(), rde_router_id())) == NULL) /* empty area because no interface is active */ return; area->transit = 0; spf_root->cost = 0; w = NULL; /* calculate SPF tree */ do { /* loop links */ for (i = 0; i < lsa_num_links(v); i++) { switch (v->type) { case LSA_TYPE_ROUTER: rtr_link = get_rtr_link(v, i); switch (rtr_link->type) { case LINK_TYPE_STUB_NET: /* skip */ continue; case LINK_TYPE_POINTTOPOINT: case LINK_TYPE_VIRTUAL: /* find router LSA */ w = lsa_find(area, LSA_TYPE_ROUTER, rtr_link->id, rtr_link->id); break; case LINK_TYPE_TRANSIT_NET: /* find network LSA */ w = lsa_find_net(area, rtr_link->id); break; default: fatalx("spf_calc: invalid link type"); } break; case LSA_TYPE_NETWORK: net_link = get_net_link(v, i); /* find router LSA */ w = lsa_find(area, LSA_TYPE_ROUTER, net_link->att_rtr, net_link->att_rtr); break; default: fatalx("spf_calc: invalid LSA type"); } if (w == NULL) continue; if (w->lsa->hdr.age == MAX_AGE) continue; if (!linked(w, v)) { addr.s_addr = htonl(w->ls_id); log_debug("spf_calc: w id %s type %d has ", inet_ntoa(addr), w->type); addr.s_addr = htonl(v->ls_id); log_debug(" no link to v id %s type %d", inet_ntoa(addr), v->type); continue; } if (v->type == LSA_TYPE_ROUTER) d = v->cost + ntohs(rtr_link->metric); else d = v->cost; if (cand_list_present(w)) { if (d > w->cost) continue; if (d < w->cost) { w->cost = d; calc_nexthop_clear(w); calc_nexthop(w, v, area, rtr_link); /* * need to readd to candidate list * because the list is sorted */ TAILQ_REMOVE(&cand_list, w, cand); cand_list_add(w); } else /* equal cost path */ calc_nexthop(w, v, area, rtr_link); } else if (w->cost == LS_INFINITY && d < LS_INFINITY) { w->cost = d; calc_nexthop_clear(w); calc_nexthop(w, v, area, rtr_link); cand_list_add(w); } } /* get next vertex */ v = cand_list_pop(); w = NULL; } while (v != NULL); /* spf_dump(area); */ log_debug("spf_calc: area %s calculated", inet_ntoa(area->id)); area->num_spf_calc++; start_spf_timer(); } void rt_calc(struct vertex *v, struct area *area, struct ospfd_conf *conf) { struct vertex *w; struct v_nexthop *vn; struct lsa_rtr_link *rtr_link = NULL; int i; struct in_addr addr, adv_rtr; lsa_age(v); if (ntohs(v->lsa->hdr.age) == MAX_AGE) return; switch (v->type) { case LSA_TYPE_ROUTER: /* stub networks */ if (v->cost >= LS_INFINITY || TAILQ_EMPTY(&v->nexthop)) return; for (i = 0; i < lsa_num_links(v); i++) { rtr_link = get_rtr_link(v, i); if (rtr_link->type != LINK_TYPE_STUB_NET) continue; addr.s_addr = rtr_link->id; adv_rtr.s_addr = htonl(v->adv_rtr); rt_update(addr, mask2prefixlen(rtr_link->data), &v->nexthop, v->cost + ntohs(rtr_link->metric), 0, area->id, adv_rtr, PT_INTRA_AREA, DT_NET, v->lsa->data.rtr.flags, 0); } /* router, only add border and as-external routers */ if ((v->lsa->data.rtr.flags & (OSPF_RTR_B | OSPF_RTR_E)) == 0) return; addr.s_addr = htonl(v->ls_id); adv_rtr.s_addr = htonl(v->adv_rtr); rt_update(addr, 32, &v->nexthop, v->cost, 0, area->id, adv_rtr, PT_INTRA_AREA, DT_RTR, v->lsa->data.rtr.flags, 0); break; case LSA_TYPE_NETWORK: if (v->cost >= LS_INFINITY || TAILQ_EMPTY(&v->nexthop)) return; addr.s_addr = htonl(v->ls_id) & v->lsa->data.net.mask; adv_rtr.s_addr = htonl(v->adv_rtr); rt_update(addr, mask2prefixlen(v->lsa->data.net.mask), &v->nexthop, v->cost, 0, area->id, adv_rtr, PT_INTRA_AREA, DT_NET, 0, 0); break; case LSA_TYPE_SUM_NETWORK: case LSA_TYPE_SUM_ROUTER: /* if ABR only look at area 0.0.0.0 LSA */ if (area_border_router(conf) && area->id.s_addr != INADDR_ANY) return; /* ignore self-originated stuff */ if (v->self) return; /* TODO type 3 area address range check */ if ((w = lsa_find(area, LSA_TYPE_ROUTER, htonl(v->adv_rtr), htonl(v->adv_rtr))) == NULL) return; /* copy nexthops */ calc_nexthop_clear(v); /* XXX needed ??? */ TAILQ_FOREACH(vn, &w->nexthop, entry) calc_nexthop_add(v, w, vn->nexthop.s_addr); v->cost = w->cost + (ntohl(v->lsa->data.sum.metric) & LSA_METRIC_MASK); if (v->cost >= LS_INFINITY || TAILQ_EMPTY(&v->nexthop)) return; adv_rtr.s_addr = htonl(v->adv_rtr); if (v->type == LSA_TYPE_SUM_NETWORK) { addr.s_addr = htonl(v->ls_id) & v->lsa->data.sum.mask; rt_update(addr, mask2prefixlen(v->lsa->data.sum.mask), &v->nexthop, v->cost, 0, area->id, adv_rtr, PT_INTER_AREA, DT_NET, 0, 0); } else { addr.s_addr = htonl(v->ls_id); rt_update(addr, 32, &v->nexthop, v->cost, 0, area->id, adv_rtr, PT_INTER_AREA, DT_RTR, v->lsa->data.rtr.flags, 0); } break; default: /* as-external LSA are stored in a different tree */ fatalx("rt_calc: invalid LSA type"); } } void asext_calc(struct vertex *v) { struct rt_node *r; struct rt_nexthop *rn; u_int32_t cost2; struct in_addr addr, adv_rtr, a; enum path_type type; lsa_age(v); if (ntohs(v->lsa->hdr.age) == MAX_AGE || (ntohl(v->lsa->data.asext.metric) & LSA_METRIC_MASK) >= LS_INFINITY) return; switch (v->type) { case LSA_TYPE_EXTERNAL: /* ignore self-originated stuff */ if (v->self) return; if ((r = rt_lookup(DT_RTR, htonl(v->adv_rtr))) == NULL) return; /* XXX RFC1583Compatibility */ if (v->lsa->data.asext.fw_addr != 0 && (r = rt_lookup(DT_NET, v->lsa->data.asext.fw_addr)) == NULL) return; if (v->lsa->data.asext.fw_addr != 0 && r->p_type != PT_INTRA_AREA && r->p_type != PT_INTER_AREA) return; if (ntohl(v->lsa->data.asext.metric) & LSA_ASEXT_E_FLAG) { v->cost = r->cost; cost2 = ntohl(v->lsa->data.asext.metric) & LSA_METRIC_MASK; type = PT_TYPE2_EXT; } else { v->cost = r->cost + (ntohl(v->lsa->data.asext.metric) & LSA_METRIC_MASK); cost2 = 0; type = PT_TYPE1_EXT; } a.s_addr = 0; adv_rtr.s_addr = htonl(v->adv_rtr); addr.s_addr = htonl(v->ls_id) & v->lsa->data.asext.mask; calc_nexthop_clear(v); TAILQ_FOREACH(rn, &r->nexthop, entry) { if (rn->invalid) continue; if (rn->connected && r->d_type == DT_NET) { if (v->lsa->data.asext.fw_addr != 0) calc_nexthop_add(v, NULL, v->lsa->data.asext.fw_addr); else calc_nexthop_add(v, NULL, htonl(v->adv_rtr)); } else calc_nexthop_add(v, NULL, rn->nexthop.s_addr); } rt_update(addr, mask2prefixlen(v->lsa->data.asext.mask), &v->nexthop, v->cost, cost2, a, adv_rtr, type, DT_NET, 0, ntohl(v->lsa->data.asext.ext_tag)); break; default: fatalx("asext_calc: invalid LSA type"); } } void spf_tree_clr(struct area *area) { struct lsa_tree *tree = &area->lsa_tree; struct vertex *v; RB_FOREACH(v, lsa_tree, tree) { v->cost = LS_INFINITY; calc_nexthop_clear(v); } } void calc_nexthop_clear(struct vertex *v) { struct v_nexthop *vn; while ((vn = TAILQ_FIRST(&v->nexthop))) { TAILQ_REMOVE(&v->nexthop, vn, entry); free(vn); } } void calc_nexthop_add(struct vertex *dst, struct vertex *parent, u_int32_t nexthop) { struct v_nexthop *vn; if (nexthop == 0) /* invalid nexthop, skip it */ return; if ((vn = calloc(1, sizeof(*vn))) == NULL) fatal("calc_nexthop_add"); vn->prev = parent; vn->nexthop.s_addr = nexthop; TAILQ_INSERT_TAIL(&dst->nexthop, vn, entry); } void calc_nexthop(struct vertex *dst, struct vertex *parent, struct area *area, struct lsa_rtr_link *rtr_link) { struct v_nexthop *vn; struct iface *iface; int i; /* case 1 */ if (parent == spf_root) { switch (dst->type) { case LSA_TYPE_ROUTER: if (rtr_link->type != LINK_TYPE_POINTTOPOINT) fatalx("inconsistent SPF tree"); LIST_FOREACH(iface, &area->iface_list, entry) { if (rtr_link->data == iface->addr.s_addr) { calc_nexthop_add(dst, parent, iface->dst.s_addr); return; } } fatalx("no interface found for interface"); case LSA_TYPE_NETWORK: switch (rtr_link->type) { case LINK_TYPE_POINTTOPOINT: case LINK_TYPE_STUB_NET: /* ignore */ break; case LINK_TYPE_TRANSIT_NET: if ((htonl(dst->ls_id) & dst->lsa->data.net.mask) == (rtr_link->data & dst->lsa->data.net.mask)) { calc_nexthop_add(dst, parent, rtr_link->data); } break; default: fatalx("calc_nexthop: invalid link " "type"); } return; default: fatalx("calc_nexthop: invalid dst type"); } return; } /* case 2 */ if (parent->type == LSA_TYPE_NETWORK && dst->type == LSA_TYPE_ROUTER) { TAILQ_FOREACH(vn, &parent->nexthop, entry) { if (vn->prev == spf_root) { for (i = 0; i < lsa_num_links(dst); i++) { rtr_link = get_rtr_link(dst, i); if ((rtr_link->type == LINK_TYPE_TRANSIT_NET) && (rtr_link->data & parent->lsa->data.net.mask) == (htonl(parent->ls_id) & parent->lsa->data.net.mask)) calc_nexthop_add(dst, parent, rtr_link->data); } } else { calc_nexthop_add(dst, parent, vn->nexthop.s_addr); } } return; } /* case 3 */ TAILQ_FOREACH(vn, &parent->nexthop, entry) calc_nexthop_add(dst, parent, vn->nexthop.s_addr); } /* candidate list */ void cand_list_init(void) { TAILQ_INIT(&cand_list); } void cand_list_add(struct vertex *v) { struct vertex *c = NULL; TAILQ_FOREACH(c, &cand_list, cand) { if (c->cost > v->cost) { TAILQ_INSERT_BEFORE(c, v, cand); return; } else if (c->cost == v->cost && c->type == LSA_TYPE_ROUTER && v->type == LSA_TYPE_NETWORK) { TAILQ_INSERT_BEFORE(c, v, cand); return; } } TAILQ_INSERT_TAIL(&cand_list, v, cand); } struct vertex * cand_list_pop(void) { struct vertex *c; if ((c = TAILQ_FIRST(&cand_list)) != NULL) { TAILQ_REMOVE(&cand_list, c, cand); } return (c); } int cand_list_present(struct vertex *v) { struct vertex *c; TAILQ_FOREACH(c, &cand_list, cand) { if (c == v) return (1); } return (0); } void cand_list_clr(void) { struct vertex *c; while ((c = TAILQ_FIRST(&cand_list)) != NULL) { TAILQ_REMOVE(&cand_list, c, cand); } } /* timers */ /* ARGSUSED */ void spf_timer(int fd, short event, void *arg) { struct vertex *v; struct ospfd_conf *conf = arg; struct area *area; struct rt_node *r; switch (conf->spf_state) { case SPF_IDLE: fatalx("spf_timer: invalid state IDLE"); case SPF_HOLDQUEUE: conf->spf_state = SPF_DELAY; /* FALLTHROUGH */ case SPF_DELAY: LIST_FOREACH(area, &conf->area_list, entry) { if (area->dirty) { /* invalidate RIB entries of this area */ rt_invalidate(area); /* calculate SPF tree */ spf_calc(area); /* calculate route table */ RB_FOREACH(v, lsa_tree, &area->lsa_tree) { rt_calc(v, area, conf); } area->dirty = 0; } } /* calculate as-external routes, first invalidate them */ rt_invalidate(NULL); RB_FOREACH(v, lsa_tree, &asext_tree) { asext_calc(v); } RB_FOREACH(r, rt_tree, &rt) { LIST_FOREACH(area, &conf->area_list, entry) rde_summary_update(r, area); if (r->d_type != DT_NET) continue; if (r->invalid) rde_send_delete_kroute(r); else rde_send_change_kroute(r); } LIST_FOREACH(area, &conf->area_list, entry) { lsa_generate_stub_sums(area); lsa_remove_invalid_sums(area); } start_spf_holdtimer(conf); break; case SPF_HOLD: conf->spf_state = SPF_IDLE; break; default: fatalx("spf_timer: unknown state"); } } void start_spf_timer(void) { struct timeval tv; switch (rdeconf->spf_state) { case SPF_IDLE: timerclear(&tv); tv.tv_sec = rdeconf->spf_delay / 1000; tv.tv_usec = (rdeconf->spf_delay % 1000) * 1000; rdeconf->spf_state = SPF_DELAY; if (evtimer_add(&rdeconf->ev, &tv) == -1) fatal("start_spf_timer"); break; case SPF_DELAY: /* ignore */ break; case SPF_HOLD: rdeconf->spf_state = SPF_HOLDQUEUE; break; case SPF_HOLDQUEUE: /* ignore */ break; default: fatalx("start_spf_timer: invalid spf_state"); } } void stop_spf_timer(struct ospfd_conf *conf) { if (evtimer_del(&conf->ev) == -1) fatal("stop_spf_timer"); } void start_spf_holdtimer(struct ospfd_conf *conf) { struct timeval tv; switch (conf->spf_state) { case SPF_DELAY: timerclear(&tv); tv.tv_sec = rdeconf->spf_hold_time / 1000; tv.tv_usec = (rdeconf->spf_hold_time % 1000) * 1000; conf->spf_state = SPF_HOLD; if (evtimer_add(&conf->ev, &tv) == -1) fatal("start_spf_holdtimer"); break; case SPF_IDLE: case SPF_HOLD: case SPF_HOLDQUEUE: fatalx("start_spf_holdtimer: invalid state"); default: fatalx("start_spf_holdtimer: unknown state"); } } /* route table */ void rt_init(void) { RB_INIT(&rt); } int rt_compare(struct rt_node *a, struct rt_node *b) { if (ntohl(a->prefix.s_addr) < ntohl(b->prefix.s_addr)) return (-1); if (ntohl(a->prefix.s_addr) > ntohl(b->prefix.s_addr)) return (1); if (a->prefixlen < b->prefixlen) return (-1); if (a->prefixlen > b->prefixlen) return (1); if (a->d_type > b->d_type) return (-1); if (a->d_type < b->d_type) return (1); return (0); } struct rt_node * rt_find(in_addr_t prefix, u_int8_t prefixlen, enum dst_type d_type) { struct rt_node s; s.prefix.s_addr = prefix; s.prefixlen = prefixlen; s.d_type = d_type; return (RB_FIND(rt_tree, &rt, &s)); } int rt_insert(struct rt_node *r) { if (RB_INSERT(rt_tree, &rt, r) != NULL) { log_warnx("rt_insert failed for %s/%u", inet_ntoa(r->prefix), r->prefixlen); free(r); return (-1); } return (0); } int rt_remove(struct rt_node *r) { if (RB_REMOVE(rt_tree, &rt, r) == NULL) { log_warnx("rt_remove failed for %s/%u", inet_ntoa(r->prefix), r->prefixlen); return (-1); } rt_nexthop_clear(r); free(r); return (0); } void rt_invalidate(struct area *area) { struct rt_node *r, *nr; struct rt_nexthop *rn, *nrn; for (r = RB_MIN(rt_tree, &rt); r != NULL; r = nr) { nr = RB_NEXT(rt_tree, &rt, r); if (area == NULL) { /* look only at as_ext routes */ if (r->p_type != PT_TYPE1_EXT && r->p_type != PT_TYPE2_EXT) continue; } else { /* ignore all as_ext routes */ if (r->p_type == PT_TYPE1_EXT || r->p_type == PT_TYPE2_EXT) continue; /* look only at routes matching the area */ if (r->area.s_addr != area->id.s_addr) continue; } r->invalid = 1; for (rn = TAILQ_FIRST(&r->nexthop); rn != NULL; rn = nrn) { nrn = TAILQ_NEXT(rn, entry); if (rn->invalid) { TAILQ_REMOVE(&r->nexthop, rn, entry); free(rn); } else rn->invalid = 1; } if (TAILQ_EMPTY(&r->nexthop)) rt_remove(r); } } void rt_nexthop_clear(struct rt_node *r) { struct rt_nexthop *rn; while ((rn = TAILQ_FIRST(&r->nexthop)) != NULL) { TAILQ_REMOVE(&r->nexthop, rn, entry); free(rn); } } void rt_nexthop_add(struct rt_node *r, struct v_nexthead *vnh, struct in_addr adv_rtr) { struct v_nexthop *vn; struct rt_nexthop *rn; struct timespec now; TAILQ_FOREACH(vn, vnh, entry) { TAILQ_FOREACH(rn, &r->nexthop, entry) { if (rn->nexthop.s_addr != vn->nexthop.s_addr) continue; rn->adv_rtr.s_addr = adv_rtr.s_addr; rn->connected = vn->prev == spf_root; rn->invalid = 0; r->invalid = 0; break; } if (rn) continue; if ((rn = calloc(1, sizeof(struct rt_nexthop))) == NULL) fatal("rt_nexthop_add"); clock_gettime(CLOCK_MONOTONIC, &now); rn->nexthop.s_addr = vn->nexthop.s_addr; rn->adv_rtr.s_addr = adv_rtr.s_addr; rn->uptime = now.tv_sec; rn->connected = vn->prev == spf_root; rn->invalid = 0; r->invalid = 0; TAILQ_INSERT_TAIL(&r->nexthop, rn, entry); } } void rt_clear(void) { struct rt_node *r; while ((r = RB_MIN(rt_tree, &rt)) != NULL) rt_remove(r); } void rt_dump(struct in_addr area, pid_t pid, u_int8_t r_type) { static struct ctl_rt rtctl; struct timespec now; struct rt_node *r; struct rt_nexthop *rn; clock_gettime(CLOCK_MONOTONIC, &now); RB_FOREACH(r, rt_tree, &rt) { if (r->invalid) continue; if (r->area.s_addr != area.s_addr) continue; switch (r_type) { case RIB_RTR: if (r->d_type != DT_RTR) continue; break; case RIB_NET: if (r->d_type != DT_NET) continue; if (r->p_type == PT_TYPE1_EXT || r->p_type == PT_TYPE2_EXT) continue; break; case RIB_EXT: if (r->p_type != PT_TYPE1_EXT && r->p_type != PT_TYPE2_EXT) continue; break; default: fatalx("rt_dump: invalid RIB type"); } TAILQ_FOREACH(rn, &r->nexthop, entry) { if (rn->invalid) continue; rtctl.prefix.s_addr = r->prefix.s_addr; rtctl.nexthop.s_addr = rn->nexthop.s_addr; rtctl.area.s_addr = r->area.s_addr; rtctl.adv_rtr.s_addr = rn->adv_rtr.s_addr; rtctl.cost = r->cost; rtctl.cost2 = r->cost2; rtctl.p_type = r->p_type; rtctl.d_type = r->d_type; rtctl.flags = r->flags; rtctl.prefixlen = r->prefixlen; rtctl.uptime = now.tv_sec - rn->uptime; rde_imsg_compose_ospfe(IMSG_CTL_SHOW_RIB, 0, pid, &rtctl, sizeof(rtctl)); } } } void rt_update(struct in_addr prefix, u_int8_t prefixlen, struct v_nexthead *vnh, u_int32_t cost, u_int32_t cost2, struct in_addr area, struct in_addr adv_rtr, enum path_type p_type, enum dst_type d_type, u_int8_t flags, u_int32_t tag) { struct rt_node *rte; struct rt_nexthop *rn; int better = 0, equal = 0; if (vnh == NULL || TAILQ_EMPTY(vnh)) /* XXX remove */ fatalx("rt_update: invalid nexthop"); if ((rte = rt_find(prefix.s_addr, prefixlen, d_type)) == NULL) { if ((rte = calloc(1, sizeof(struct rt_node))) == NULL) fatal("rt_update"); TAILQ_INIT(&rte->nexthop); rte->prefix.s_addr = prefix.s_addr; rte->prefixlen = prefixlen; rte->cost = cost; rte->cost2 = cost2; rte->area = area; rte->p_type = p_type; rte->d_type = d_type; rte->flags = flags; rte->ext_tag = tag; rt_nexthop_add(rte, vnh, adv_rtr); rt_insert(rte); } else { /* order: * 1. intra-area * 2. inter-area * 3. type 1 as ext * 4. type 2 as ext */ if (rte->invalid) /* everything is better than invalid */ better = 1; else if (p_type < rte->p_type) better = 1; else if (p_type == rte->p_type) switch (p_type) { case PT_INTRA_AREA: case PT_INTER_AREA: if (cost < rte->cost) better = 1; else if (cost == rte->cost && rte->area.s_addr == area.s_addr) equal = 1; break; case PT_TYPE1_EXT: /* XXX rfc1583 compat */ if (cost < rte->cost) better = 1; else if (cost == rte->cost) equal = 1; break; case PT_TYPE2_EXT: if (cost2 < rte->cost2) better = 1; /* XXX rfc1583 compat */ else if (cost2 == rte->cost2 && cost < rte->cost) better = 1; else if (cost2 == rte->cost2 && cost == rte->cost) equal = 1; break; } if (!better && !equal) return; if (better) { TAILQ_FOREACH(rn, &rte->nexthop, entry) rn->invalid = 1; rte->area = area; rte->cost = cost; rte->cost2 = cost2; rte->p_type = p_type; rte->flags = flags; rte->ext_tag = tag; } if (equal || better) rt_nexthop_add(rte, vnh, adv_rtr); } } struct rt_node * rt_lookup(enum dst_type type, in_addr_t addr) { struct rt_node *rn; u_int8_t i = 32; if (type == DT_RTR) { rn = rt_find(addr, 32, type); if (rn && rn->invalid == 0) return (rn); return (NULL); } /* type == DT_NET */ do { if ((rn = rt_find(addr & prefixlen2mask(i), i, type)) && rn->invalid == 0) return (rn); } while (i-- != 0); return (NULL); } /* router LSA links */ struct lsa_rtr_link * get_rtr_link(struct vertex *v, int idx) { struct lsa_rtr_link *rtr_link = NULL; char *buf = (char *)v->lsa; u_int16_t i, off, nlinks; if (v->type != LSA_TYPE_ROUTER) fatalx("get_rtr_link: invalid LSA type"); off = sizeof(v->lsa->hdr) + sizeof(struct lsa_rtr); /* nlinks validated earlier by lsa_check() */ nlinks = lsa_num_links(v); for (i = 0; i < nlinks; i++) { rtr_link = (struct lsa_rtr_link *)(buf + off); if (i == idx) return (rtr_link); off += sizeof(struct lsa_rtr_link) + rtr_link->num_tos * sizeof(u_int32_t); } fatalx("get_rtr_link: index not found"); } /* network LSA links */ struct lsa_net_link * get_net_link(struct vertex *v, int idx) { struct lsa_net_link *net_link = NULL; char *buf = (char *)v->lsa; u_int16_t i, off, nlinks; if (v->type != LSA_TYPE_NETWORK) fatalx("get_net_link: invalid LSA type"); off = sizeof(v->lsa->hdr) + sizeof(u_int32_t); /* nlinks validated earlier by lsa_check() */ nlinks = lsa_num_links(v); for (i = 0; i < nlinks; i++) { net_link = (struct lsa_net_link *)(buf + off); if (i == idx) return (net_link); off += sizeof(struct lsa_net_link); } fatalx("get_net_link: index not found"); } /* misc */ int linked(struct vertex *w, struct vertex *v) { struct lsa_rtr_link *rtr_link = NULL; struct lsa_net_link *net_link = NULL; int i; switch (w->type) { case LSA_TYPE_ROUTER: for (i = 0; i < lsa_num_links(w); i++) { rtr_link = get_rtr_link(w, i); switch (v->type) { case LSA_TYPE_ROUTER: if (rtr_link->type == LINK_TYPE_POINTTOPOINT && rtr_link->id == htonl(v->ls_id)) return (1); break; case LSA_TYPE_NETWORK: if (rtr_link->id == htonl(v->ls_id)) return (1); break; default: fatalx("spf_calc: invalid type"); } } return (0); case LSA_TYPE_NETWORK: for (i = 0; i < lsa_num_links(w); i++) { net_link = get_net_link(w, i); switch (v->type) { case LSA_TYPE_ROUTER: if (net_link->att_rtr == htonl(v->ls_id)) return (1); break; default: fatalx("spf_calc: invalid type"); } } return (0); default: fatalx("spf_calc: invalid LSA type"); } return (0); }