/*- * Copyright (c) 1998 Brian Somers * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $OpenBSD: bundle.c,v 1.71 2005/09/21 15:04:28 brad Exp $ */ #include #include #include #include #include /* For TUNS* ioctls */ #include #include #include #include #include #include #ifdef __OpenBSD__ #include #else #include #endif #include #include #include #include #include #include #include #include #include #include "layer.h" #include "defs.h" #include "command.h" #include "mbuf.h" #include "log.h" #include "id.h" #include "timer.h" #include "fsm.h" #include "iplist.h" #include "lqr.h" #include "hdlc.h" #include "throughput.h" #include "slcompress.h" #include "ncpaddr.h" #include "ip.h" #include "ipcp.h" #include "filter.h" #include "descriptor.h" #include "route.h" #include "lcp.h" #include "ccp.h" #include "link.h" #include "mp.h" #ifndef NORADIUS #include "radius.h" #endif #include "ipv6cp.h" #include "ncp.h" #include "bundle.h" #include "async.h" #include "physical.h" #include "auth.h" #include "proto.h" #include "chap.h" #include "tun.h" #include "prompt.h" #include "chat.h" #include "cbcp.h" #include "datalink.h" #include "iface.h" #include "server.h" #include "probe.h" #ifndef NODES #include "mppe.h" #endif #define SCATTER_SEGMENTS 7 /* version, datalink, name, physical, throughput, throughput, device */ #define SEND_MAXFD 3 /* Max file descriptors passed through the local domain socket */ static int bundle_RemainingIdleTime(struct bundle *); static const char * const PhaseNames[] = { "Dead", "Establish", "Authenticate", "Network", "Terminate" }; const char * bundle_PhaseName(struct bundle *bundle) { return bundle->phase <= PHASE_TERMINATE ? PhaseNames[bundle->phase] : "unknown"; } void bundle_NewPhase(struct bundle *bundle, u_int new) { if (new == bundle->phase) return; if (new <= PHASE_TERMINATE) log_Printf(LogPHASE, "bundle: %s\n", PhaseNames[new]); switch (new) { case PHASE_DEAD: bundle->phase = new; #ifndef NODES MPPE_MasterKeyValid = 0; #endif log_DisplayPrompts(); break; case PHASE_ESTABLISH: bundle->phase = new; break; case PHASE_AUTHENTICATE: bundle->phase = new; log_DisplayPrompts(); break; case PHASE_NETWORK: if (ncp_fsmStart(&bundle->ncp, bundle)) { bundle->phase = new; log_DisplayPrompts(); } else { log_Printf(LogPHASE, "bundle: All NCPs are disabled\n"); bundle_Close(bundle, NULL, CLOSE_STAYDOWN); } break; case PHASE_TERMINATE: bundle->phase = new; mp_Down(&bundle->ncp.mp); log_DisplayPrompts(); break; } } static void bundle_LayerStart(void *v, struct fsm *fp) { /* The given FSM is about to start up ! */ } void bundle_Notify(struct bundle *bundle, char c) { if (bundle->notify.fd != -1) { int ret; ret = write(bundle->notify.fd, &c, 1); if (c != EX_REDIAL && c != EX_RECONNECT) { if (ret == 1) log_Printf(LogCHAT, "Parent notified of %s\n", c == EX_NORMAL ? "success" : "failure"); else log_Printf(LogERROR, "Failed to notify parent of success\n"); close(bundle->notify.fd); bundle->notify.fd = -1; } else if (ret == 1) log_Printf(LogCHAT, "Parent notified of %s\n", ex_desc(c)); else log_Printf(LogERROR, "Failed to notify parent of %s\n", ex_desc(c)); } } static void bundle_ClearQueues(void *v) { struct bundle *bundle = (struct bundle *)v; struct datalink *dl; log_Printf(LogPHASE, "Clearing choked output queue\n"); timer_Stop(&bundle->choked.timer); /* * Emergency time: * * We've had a full queue for PACKET_DEL_SECS seconds without being * able to get rid of any of the packets. We've probably given up * on the redials at this point, and the queued data has almost * definitely been timed out by the layer above. As this is preventing * us from reading the TUN_NAME device (we don't want to buffer stuff * indefinitely), we may as well nuke this data and start with a clean * slate ! * * Unfortunately, this has the side effect of shafting any compression * dictionaries in use (causing the relevant RESET_REQ/RESET_ACK). */ ncp_DeleteQueues(&bundle->ncp); for (dl = bundle->links; dl; dl = dl->next) physical_DeleteQueue(dl->physical); } static void bundle_LinkAdded(struct bundle *bundle, struct datalink *dl) { bundle->phys_type.all |= dl->physical->type; if (dl->state == DATALINK_OPEN) bundle->phys_type.open |= dl->physical->type; #ifndef NORADIUS if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) != bundle->phys_type.open && bundle->session.timer.state == TIMER_STOPPED) if (bundle->radius.sessiontime) bundle_StartSessionTimer(bundle, 0); #endif if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) != bundle->phys_type.open && bundle->idle.timer.state == TIMER_STOPPED) /* We may need to start our idle timer */ bundle_StartIdleTimer(bundle, 0); } void bundle_LinksRemoved(struct bundle *bundle) { struct datalink *dl; bundle->phys_type.all = bundle->phys_type.open = 0; for (dl = bundle->links; dl; dl = dl->next) bundle_LinkAdded(bundle, dl); bundle_CalculateBandwidth(bundle); mp_CheckAutoloadTimer(&bundle->ncp.mp); if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) == bundle->phys_type.open) { #ifndef NORADIUS if (bundle->radius.sessiontime) bundle_StopSessionTimer(bundle); #endif bundle_StopIdleTimer(bundle); } } static void bundle_LayerUp(void *v, struct fsm *fp) { /* * The given fsm is now up * If it's an LCP, adjust our phys_mode.open value and check the * autoload timer. * If it's the first NCP, calculate our bandwidth * If it's the first NCP, set our ``upat'' time * If it's the first NCP, start the idle timer. * If it's an NCP, tell our -background parent to go away. * If it's the first NCP, start the autoload timer */ struct bundle *bundle = (struct bundle *)v; if (fp->proto == PROTO_LCP) { struct physical *p = link2physical(fp->link); bundle_LinkAdded(bundle, p->dl); mp_CheckAutoloadTimer(&bundle->ncp.mp); } else if (isncp(fp->proto)) { if (ncp_LayersOpen(&fp->bundle->ncp) == 1) { bundle_CalculateBandwidth(fp->bundle); time(&bundle->upat); #ifndef NORADIUS if (bundle->radius.sessiontime) bundle_StartSessionTimer(bundle, 0); #endif bundle_StartIdleTimer(bundle, 0); mp_CheckAutoloadTimer(&fp->bundle->ncp.mp); } bundle_Notify(bundle, EX_NORMAL); } else if (fp->proto == PROTO_CCP) bundle_CalculateBandwidth(fp->bundle); /* Against ccp_MTUOverhead */ } static void bundle_LayerDown(void *v, struct fsm *fp) { /* * The given FSM has been told to come down. * If it's our last NCP, stop the idle timer. * If it's our last NCP, clear our ``upat'' value. * If it's our last NCP, stop the autoload timer * If it's an LCP, adjust our phys_type.open value and any timers. * If it's an LCP and we're in multilink mode, adjust our tun * If it's the last LCP, down all NCPs * speed and make sure our minimum sequence number is adjusted. */ struct bundle *bundle = (struct bundle *)v; if (isncp(fp->proto)) { if (ncp_LayersOpen(&fp->bundle->ncp) == 0) { #ifndef NORADIUS if (bundle->radius.sessiontime) bundle_StopSessionTimer(bundle); #endif bundle_StopIdleTimer(bundle); bundle->upat = 0; mp_StopAutoloadTimer(&bundle->ncp.mp); } } else if (fp->proto == PROTO_LCP) { struct datalink *dl; struct datalink *lost; int others_active; bundle_LinksRemoved(bundle); /* adjust timers & phys_type values */ lost = NULL; others_active = 0; for (dl = bundle->links; dl; dl = dl->next) { if (fp == &dl->physical->link.lcp.fsm) lost = dl; else if (dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP) others_active++; } if (bundle->ncp.mp.active) { bundle_CalculateBandwidth(bundle); if (lost) mp_LinkLost(&bundle->ncp.mp, lost); else log_Printf(LogALERT, "Oops, lost an unrecognised datalink (%s) !\n", fp->link->name); } if (!others_active) { /* Down the NCPs. We don't expect to get fsm_Close()d ourself ! */ ncp2initial(&bundle->ncp); mp_Down(&bundle->ncp.mp); } } } static void bundle_LayerFinish(void *v, struct fsm *fp) { /* The given fsm is now down (fp cannot be NULL) * * If it's the last NCP, fsm_Close all LCPs * If it's the last NCP, bring any MP layer down */ struct bundle *bundle = (struct bundle *)v; struct datalink *dl; if (isncp(fp->proto) && !ncp_LayersUnfinished(&bundle->ncp)) { if (bundle_Phase(bundle) != PHASE_DEAD) bundle_NewPhase(bundle, PHASE_TERMINATE); for (dl = bundle->links; dl; dl = dl->next) if (dl->state == DATALINK_OPEN) datalink_Close(dl, CLOSE_STAYDOWN); fsm2initial(fp); mp_Down(&bundle->ncp.mp); } } void bundle_Close(struct bundle *bundle, const char *name, int how) { /* * Please close the given datalink. * If name == NULL or name is the last datalink, fsm_Close all NCPs * (except our MP) * If it isn't the last datalink, just Close that datalink. */ struct datalink *dl, *this_dl; int others_active; others_active = 0; this_dl = NULL; for (dl = bundle->links; dl; dl = dl->next) { if (name && !strcasecmp(name, dl->name)) this_dl = dl; if (name == NULL || this_dl == dl) { switch (how) { case CLOSE_LCP: datalink_DontHangup(dl); break; case CLOSE_STAYDOWN: datalink_StayDown(dl); break; } } else if (dl->state != DATALINK_CLOSED && dl->state != DATALINK_HANGUP) others_active++; } if (name && this_dl == NULL) { log_Printf(LogWARN, "%s: Invalid datalink name\n", name); return; } if (!others_active) { #ifndef NORADIUS if (bundle->radius.sessiontime) bundle_StopSessionTimer(bundle); #endif bundle_StopIdleTimer(bundle); if (ncp_LayersUnfinished(&bundle->ncp)) ncp_Close(&bundle->ncp); else { ncp2initial(&bundle->ncp); mp_Down(&bundle->ncp.mp); for (dl = bundle->links; dl; dl = dl->next) datalink_Close(dl, how); } } else if (this_dl && this_dl->state != DATALINK_CLOSED && this_dl->state != DATALINK_HANGUP) datalink_Close(this_dl, how); } void bundle_Down(struct bundle *bundle, int how) { struct datalink *dl; for (dl = bundle->links; dl; dl = dl->next) datalink_Down(dl, how); } static int bundle_UpdateSet(struct fdescriptor *d, fd_set *r, fd_set *w, fd_set *e, int *n) { struct bundle *bundle = descriptor2bundle(d); struct datalink *dl; int result, nlinks; u_short ifqueue; size_t queued; result = 0; /* If there are aren't many packets queued, look for some more. */ for (nlinks = 0, dl = bundle->links; dl; dl = dl->next) nlinks++; if (nlinks) { queued = r ? ncp_FillPhysicalQueues(&bundle->ncp, bundle) : ncp_QueueLen(&bundle->ncp); if (r && (bundle->phase == PHASE_NETWORK || bundle->phys_type.all & PHYS_AUTO)) { /* enough surplus so that we can tell if we're getting swamped */ ifqueue = nlinks > bundle->cfg.ifqueue ? nlinks : bundle->cfg.ifqueue; if (queued < ifqueue) { /* Not enough - select() for more */ if (bundle->choked.timer.state == TIMER_RUNNING) timer_Stop(&bundle->choked.timer); /* Not needed any more */ FD_SET(bundle->dev.fd, r); if (*n < bundle->dev.fd + 1) *n = bundle->dev.fd + 1; log_Printf(LogTIMER, "%s: fdset(r) %d\n", TUN_NAME, bundle->dev.fd); result++; } else if (bundle->choked.timer.state == TIMER_STOPPED) { bundle->choked.timer.func = bundle_ClearQueues; bundle->choked.timer.name = "output choke"; bundle->choked.timer.load = bundle->cfg.choked.timeout * SECTICKS; bundle->choked.timer.arg = bundle; timer_Start(&bundle->choked.timer); } } } #ifndef NORADIUS result += descriptor_UpdateSet(&bundle->radius.desc, r, w, e, n); #endif /* Which links need a select() ? */ for (dl = bundle->links; dl; dl = dl->next) result += descriptor_UpdateSet(&dl->desc, r, w, e, n); /* * This *MUST* be called after the datalink UpdateSet()s as it * might be ``holding'' one of the datalinks (death-row) and * wants to be able to de-select() it from the descriptor set. */ result += descriptor_UpdateSet(&bundle->ncp.mp.server.desc, r, w, e, n); return result; } static int bundle_IsSet(struct fdescriptor *d, const fd_set *fdset) { struct bundle *bundle = descriptor2bundle(d); struct datalink *dl; for (dl = bundle->links; dl; dl = dl->next) if (descriptor_IsSet(&dl->desc, fdset)) return 1; #ifndef NORADIUS if (descriptor_IsSet(&bundle->radius.desc, fdset)) return 1; #endif if (descriptor_IsSet(&bundle->ncp.mp.server.desc, fdset)) return 1; return FD_ISSET(bundle->dev.fd, fdset); } static void bundle_DescriptorRead(struct fdescriptor *d, struct bundle *bundle, const fd_set *fdset) { struct datalink *dl; unsigned secs; u_int32_t af; if (descriptor_IsSet(&bundle->ncp.mp.server.desc, fdset)) descriptor_Read(&bundle->ncp.mp.server.desc, bundle, fdset); for (dl = bundle->links; dl; dl = dl->next) if (descriptor_IsSet(&dl->desc, fdset)) descriptor_Read(&dl->desc, bundle, fdset); #ifndef NORADIUS if (descriptor_IsSet(&bundle->radius.desc, fdset)) descriptor_Read(&bundle->radius.desc, bundle, fdset); #endif if (FD_ISSET(bundle->dev.fd, fdset)) { struct tun_data tun; int n, pri; u_char *data; size_t sz; if (bundle->dev.header) { data = (u_char *)&tun; sz = sizeof tun; } else { data = tun.data; sz = sizeof tun.data; } /* something to read from tun */ n = read(bundle->dev.fd, data, sz); if (n < 0) { log_Printf(LogWARN, "%s: read: %s\n", bundle->dev.Name, strerror(errno)); return; } if (bundle->dev.header) { n -= sz - sizeof tun.data; if (n <= 0) { log_Printf(LogERROR, "%s: read: Got only %d bytes of data !\n", bundle->dev.Name, n); return; } af = ntohl(tun.header.family); #ifndef NOINET6 if (af != AF_INET && af != AF_INET6) #else if (af != AF_INET) #endif /* XXX: Should be maintaining drop/family counts ! */ return; } else af = AF_INET; if (af == AF_INET && ((struct ip *)tun.data)->ip_dst.s_addr == bundle->ncp.ipcp.my_ip.s_addr) { /* we've been asked to send something addressed *to* us :( */ if (Enabled(bundle, OPT_LOOPBACK)) { pri = PacketCheck(bundle, af, tun.data, n, &bundle->filter.in, NULL, NULL); if (pri >= 0) { n += sz - sizeof tun.data; write(bundle->dev.fd, data, n); log_Printf(LogDEBUG, "Looped back packet addressed to myself\n"); } return; } else log_Printf(LogDEBUG, "Oops - forwarding packet addressed to myself\n"); } /* * Process on-demand dialup. Output packets are queued within the tunnel * device until the appropriate NCP is opened. */ if (bundle_Phase(bundle) == PHASE_DEAD) { /* * Note, we must be in AUTO mode :-/ otherwise our interface should * *not* be UP and we can't receive data */ pri = PacketCheck(bundle, af, tun.data, n, &bundle->filter.dial, NULL, NULL); if (pri >= 0) bundle_Open(bundle, NULL, PHYS_AUTO, 0); else /* * Drop the packet. If we were to queue it, we'd just end up with * a pile of timed-out data in our output queue by the time we get * around to actually dialing. We'd also prematurely reach the * threshold at which we stop select()ing to read() the tun * device - breaking auto-dial. */ return; } secs = 0; pri = PacketCheck(bundle, af, tun.data, n, &bundle->filter.out, NULL, &secs); if (pri >= 0) { /* Prepend the number of seconds timeout given in the filter */ tun.header.timeout = secs; ncp_Enqueue(&bundle->ncp, af, pri, (char *)&tun, n + sizeof tun.header); } } } static int bundle_DescriptorWrite(struct fdescriptor *d, struct bundle *bundle, const fd_set *fdset) { struct datalink *dl; int result = 0; /* This is not actually necessary as struct mpserver doesn't Write() */ if (descriptor_IsSet(&bundle->ncp.mp.server.desc, fdset)) if (descriptor_Write(&bundle->ncp.mp.server.desc, bundle, fdset) == 1) result++; for (dl = bundle->links; dl; dl = dl->next) if (descriptor_IsSet(&dl->desc, fdset)) switch (descriptor_Write(&dl->desc, bundle, fdset)) { case -1: datalink_ComeDown(dl, CLOSE_NORMAL); break; case 1: result++; } return result; } void bundle_LockTun(struct bundle *bundle) { FILE *lockfile; char pidfile[PATH_MAX]; snprintf(pidfile, sizeof pidfile, "%stun%d.pid", _PATH_VARRUN, bundle->unit); lockfile = ID0fopen(pidfile, "w"); if (lockfile != NULL) { fprintf(lockfile, "%d\n", (int)getpid()); fclose(lockfile); } #ifndef RELEASE_CRUNCH else log_Printf(LogERROR, "Warning: Can't create %s: %s\n", pidfile, strerror(errno)); #endif } static void bundle_UnlockTun(struct bundle *bundle) { char pidfile[PATH_MAX]; snprintf(pidfile, sizeof pidfile, "%stun%d.pid", _PATH_VARRUN, bundle->unit); ID0unlink(pidfile); } struct bundle * bundle_Create(const char *prefix, int type, int unit) { static struct bundle bundle; /* there can be only one */ int enoentcount, err, minunit, maxunit; const char *ifname; #if defined(__FreeBSD__) && !defined(NOKLDLOAD) int kldtried; #endif #if defined(TUNSIFMODE) || defined(TUNSLMODE) || defined(TUNSIFHEAD) int iff; #endif if (bundle.iface != NULL) { /* Already allocated ! */ log_Printf(LogALERT, "bundle_Create: There's only one BUNDLE !\n"); return NULL; } if (unit == -1) { minunit = 0; maxunit = -1; } else { minunit = unit; maxunit = unit + 1; } err = ENOENT; enoentcount = 0; #if defined(__FreeBSD__) && !defined(NOKLDLOAD) kldtried = 0; #endif for (bundle.unit = minunit; bundle.unit != maxunit; bundle.unit++) { snprintf(bundle.dev.Name, sizeof bundle.dev.Name, "%s%d", prefix, bundle.unit); bundle.dev.fd = ID0open(bundle.dev.Name, O_RDWR); if (bundle.dev.fd >= 0) break; else if (errno == ENXIO || errno == ENOENT) { #if defined(__FreeBSD__) && !defined(NOKLDLOAD) if (bundle.unit == minunit && !kldtried++) { /* * Attempt to load the tunnel interface KLD if it isn't loaded * already. */ if (loadmodules(LOAD_VERBOSLY, "if_tun", NULL)) bundle.unit--; continue; } #endif if (errno != ENOENT || ++enoentcount > 2) { err = errno; break; } } else err = errno; } if (bundle.dev.fd < 0) { if (unit == -1) log_Printf(LogWARN, "No available tunnel devices found (%s)\n", strerror(err)); else log_Printf(LogWARN, "%s%d: %s\n", prefix, unit, strerror(err)); return NULL; } log_SetTun(bundle.unit); ifname = strrchr(bundle.dev.Name, '/'); if (ifname == NULL) ifname = bundle.dev.Name; else ifname++; bundle.iface = iface_Create(ifname); if (bundle.iface == NULL) { close(bundle.dev.fd); return NULL; } #ifdef TUNSIFMODE /* Make sure we're POINTOPOINT & IFF_MULTICAST */ iff = IFF_POINTOPOINT | IFF_MULTICAST; if (ID0ioctl(bundle.dev.fd, TUNSIFMODE, &iff) < 0) log_Printf(LogERROR, "bundle_Create: ioctl(TUNSIFMODE): %s\n", strerror(errno)); #endif #ifdef TUNSLMODE /* Make sure we're not prepending sockaddrs */ iff = 0; if (ID0ioctl(bundle.dev.fd, TUNSLMODE, &iff) < 0) log_Printf(LogERROR, "bundle_Create: ioctl(TUNSLMODE): %s\n", strerror(errno)); #endif #ifdef TUNSIFHEAD /* We want the address family please ! */ iff = 1; if (ID0ioctl(bundle.dev.fd, TUNSIFHEAD, &iff) < 0) { log_Printf(LogERROR, "bundle_Create: ioctl(TUNSIFHEAD): %s\n", strerror(errno)); bundle.dev.header = 0; } else bundle.dev.header = 1; #else #ifdef __OpenBSD__ /* Always present for OpenBSD */ bundle.dev.header = 1; #else /* * If TUNSIFHEAD isn't available and we're not OpenBSD, assume * everything's AF_INET (hopefully the tun device won't pass us * anything else !). */ bundle.dev.header = 0; #endif #endif log_Printf(LogPHASE, "Using interface: %s\n", ifname); bundle.bandwidth = 0; bundle.routing_seq = 0; bundle.phase = PHASE_DEAD; bundle.CleaningUp = 0; bundle.NatEnabled = 0; bundle.fsm.LayerStart = bundle_LayerStart; bundle.fsm.LayerUp = bundle_LayerUp; bundle.fsm.LayerDown = bundle_LayerDown; bundle.fsm.LayerFinish = bundle_LayerFinish; bundle.fsm.object = &bundle; bundle.cfg.idle.timeout = NCP_IDLE_TIMEOUT; bundle.cfg.idle.min_timeout = 0; *bundle.cfg.auth.name = '\0'; *bundle.cfg.auth.key = '\0'; bundle.cfg.optmask = (1ull << OPT_IDCHECK) | (1ull << OPT_LOOPBACK) | (1ull << OPT_SROUTES) | (1ull << OPT_TCPMSSFIXUP) | (1ull << OPT_THROUGHPUT) | (1ull << OPT_UTMP) | (1ull << OPT_NAS_IP_ADDRESS) | (1ull << OPT_NAS_IDENTIFIER); #ifndef NOINET6 opt_enable(&bundle, OPT_IPCP); if (probe.ipv6_available) opt_enable(&bundle, OPT_IPV6CP); #endif *bundle.cfg.label = '\0'; bundle.cfg.ifqueue = DEF_IFQUEUE; bundle.cfg.choked.timeout = CHOKED_TIMEOUT; bundle.phys_type.all = type; bundle.phys_type.open = 0; bundle.upat = 0; bundle.links = datalink_Create("deflink", &bundle, type); if (bundle.links == NULL) { log_Printf(LogALERT, "Cannot create data link: %s\n", strerror(errno)); iface_Destroy(bundle.iface); bundle.iface = NULL; close(bundle.dev.fd); return NULL; } bundle.desc.type = BUNDLE_DESCRIPTOR; bundle.desc.UpdateSet = bundle_UpdateSet; bundle.desc.IsSet = bundle_IsSet; bundle.desc.Read = bundle_DescriptorRead; bundle.desc.Write = bundle_DescriptorWrite; ncp_Init(&bundle.ncp, &bundle); memset(&bundle.filter, '\0', sizeof bundle.filter); bundle.filter.in.fragok = bundle.filter.in.logok = 1; bundle.filter.in.name = "IN"; bundle.filter.out.fragok = bundle.filter.out.logok = 1; bundle.filter.out.name = "OUT"; bundle.filter.dial.name = "DIAL"; bundle.filter.dial.logok = 1; bundle.filter.alive.name = "ALIVE"; bundle.filter.alive.logok = 1; { int i; for (i = 0; i < MAXFILTERS; i++) { bundle.filter.in.rule[i].f_action = A_NONE; bundle.filter.out.rule[i].f_action = A_NONE; bundle.filter.dial.rule[i].f_action = A_NONE; bundle.filter.alive.rule[i].f_action = A_NONE; } } memset(&bundle.idle.timer, '\0', sizeof bundle.idle.timer); bundle.idle.done = 0; bundle.notify.fd = -1; memset(&bundle.choked.timer, '\0', sizeof bundle.choked.timer); #ifndef NORADIUS radius_Init(&bundle.radius); #endif /* Clean out any leftover crud */ iface_Clear(bundle.iface, &bundle.ncp, 0, IFACE_CLEAR_ALL); bundle_LockTun(&bundle); return &bundle; } static void bundle_DownInterface(struct bundle *bundle) { route_IfDelete(bundle, 1); iface_ClearFlags(bundle->iface->name, IFF_UP); } void bundle_Destroy(struct bundle *bundle) { struct datalink *dl; /* * Clean up the interface. We don't really need to do the timer_Stop()s, * mp_Down(), iface_Clear() and bundle_DownInterface() unless we're getting * out under exceptional conditions such as a descriptor exception. */ timer_Stop(&bundle->idle.timer); timer_Stop(&bundle->choked.timer); mp_Down(&bundle->ncp.mp); iface_Clear(bundle->iface, &bundle->ncp, 0, IFACE_CLEAR_ALL); bundle_DownInterface(bundle); #ifndef NORADIUS /* Tell the radius server the bad news */ radius_Destroy(&bundle->radius); #endif /* Again, these are all DATALINK_CLOSED unless we're abending */ dl = bundle->links; while (dl) dl = datalink_Destroy(dl); ncp_Destroy(&bundle->ncp); close(bundle->dev.fd); bundle_UnlockTun(bundle); /* In case we never made PHASE_NETWORK */ bundle_Notify(bundle, EX_ERRDEAD); iface_Destroy(bundle->iface); bundle->iface = NULL; } void bundle_LinkClosed(struct bundle *bundle, struct datalink *dl) { /* * Our datalink has closed. * CleanDatalinks() (called from DoLoop()) will remove closed * BACKGROUND, FOREGROUND and DIRECT links. * If it's the last data link, enter phase DEAD. * * NOTE: dl may not be in our list (bundle_SendDatalink()) ! */ struct datalink *odl; int other_links; log_SetTtyCommandMode(dl); other_links = 0; for (odl = bundle->links; odl; odl = odl->next) if (odl != dl && odl->state != DATALINK_CLOSED) other_links++; if (!other_links) { if (dl->physical->type != PHYS_AUTO) /* Not in -auto mode */ bundle_DownInterface(bundle); ncp2initial(&bundle->ncp); mp_Down(&bundle->ncp.mp); bundle_NewPhase(bundle, PHASE_DEAD); #ifndef NORADIUS if (bundle->radius.sessiontime) bundle_StopSessionTimer(bundle); #endif bundle_StopIdleTimer(bundle); } } void bundle_Open(struct bundle *bundle, const char *name, int mask, int force) { /* * Please open the given datalink, or all if name == NULL */ struct datalink *dl; for (dl = bundle->links; dl; dl = dl->next) if (name == NULL || !strcasecmp(dl->name, name)) { if ((mask & dl->physical->type) && (dl->state == DATALINK_CLOSED || (force && dl->state == DATALINK_OPENING && dl->dial.timer.state == TIMER_RUNNING) || dl->state == DATALINK_READY)) { timer_Stop(&dl->dial.timer); /* We're finished with this */ datalink_Up(dl, 1, 1); if (mask & PHYS_AUTO) break; /* Only one AUTO link at a time */ } if (name != NULL) break; } } struct datalink * bundle2datalink(struct bundle *bundle, const char *name) { struct datalink *dl; if (name != NULL) { for (dl = bundle->links; dl; dl = dl->next) if (!strcasecmp(dl->name, name)) return dl; } else if (bundle->links && !bundle->links->next) return bundle->links; return NULL; } int bundle_ShowLinks(struct cmdargs const *arg) { struct datalink *dl; struct pppThroughput *t; unsigned long long octets; int secs; for (dl = arg->bundle->links; dl; dl = dl->next) { octets = MAX(dl->physical->link.stats.total.in.OctetsPerSecond, dl->physical->link.stats.total.out.OctetsPerSecond); prompt_Printf(arg->prompt, "Name: %s [%s, %s]", dl->name, mode2Nam(dl->physical->type), datalink_State(dl)); if (dl->physical->link.stats.total.rolling && dl->state == DATALINK_OPEN) prompt_Printf(arg->prompt, " bandwidth %d, %llu bps (%llu bytes/sec)", dl->mp.bandwidth ? dl->mp.bandwidth : physical_GetSpeed(dl->physical), octets * 8, octets); prompt_Printf(arg->prompt, "\n"); } t = &arg->bundle->ncp.mp.link.stats.total; octets = MAX(t->in.OctetsPerSecond, t->out.OctetsPerSecond); secs = t->downtime ? 0 : throughput_uptime(t); if (secs > t->SamplePeriod) secs = t->SamplePeriod; if (secs) prompt_Printf(arg->prompt, "Currently averaging %llu bps (%llu bytes/sec)" " over the last %d secs\n", octets * 8, octets, secs); return 0; } static const char * optval(struct bundle *bundle, int opt) { return Enabled(bundle, opt) ? "enabled" : "disabled"; } int bundle_ShowStatus(struct cmdargs const *arg) { int remaining; prompt_Printf(arg->prompt, "Phase %s\n", bundle_PhaseName(arg->bundle)); prompt_Printf(arg->prompt, " Device: %s\n", arg->bundle->dev.Name); prompt_Printf(arg->prompt, " Interface: %s @ %lubps", arg->bundle->iface->name, arg->bundle->bandwidth); if (arg->bundle->upat) { int secs = bundle_Uptime(arg->bundle); prompt_Printf(arg->prompt, ", up time %d:%02d:%02d", secs / 3600, (secs / 60) % 60, secs % 60); } prompt_Printf(arg->prompt, "\n Queued: %lu of %u\n", (unsigned long)ncp_QueueLen(&arg->bundle->ncp), arg->bundle->cfg.ifqueue); prompt_Printf(arg->prompt, "\nDefaults:\n"); prompt_Printf(arg->prompt, " Label: %s\n", arg->bundle->cfg.label); prompt_Printf(arg->prompt, " Auth name: %s\n", arg->bundle->cfg.auth.name); prompt_Printf(arg->prompt, " Diagnostic socket: "); if (*server.cfg.sockname != '\0') { prompt_Printf(arg->prompt, "%s", server.cfg.sockname); if (server.cfg.mask != (mode_t)-1) prompt_Printf(arg->prompt, ", mask 0%03o", (int)server.cfg.mask); prompt_Printf(arg->prompt, "%s\n", server.fd == -1 ? " (not open)" : ""); } else if (server.cfg.port != 0) prompt_Printf(arg->prompt, "TCP port %d%s\n", server.cfg.port, server.fd == -1 ? " (not open)" : ""); else prompt_Printf(arg->prompt, "none\n"); prompt_Printf(arg->prompt, " Choked Timer: %ds\n", arg->bundle->cfg.choked.timeout); #ifndef NORADIUS radius_Show(&arg->bundle->radius, arg->prompt); #endif prompt_Printf(arg->prompt, " Idle Timer: "); if (arg->bundle->cfg.idle.timeout) { prompt_Printf(arg->prompt, "%ds", arg->bundle->cfg.idle.timeout); if (arg->bundle->cfg.idle.min_timeout) prompt_Printf(arg->prompt, ", min %ds", arg->bundle->cfg.idle.min_timeout); remaining = bundle_RemainingIdleTime(arg->bundle); if (remaining != -1) prompt_Printf(arg->prompt, " (%ds remaining)", remaining); prompt_Printf(arg->prompt, "\n"); } else prompt_Printf(arg->prompt, "disabled\n"); prompt_Printf(arg->prompt, " Filter Decap: %-20.20s", optval(arg->bundle, OPT_FILTERDECAP)); prompt_Printf(arg->prompt, " ID check: %s\n", optval(arg->bundle, OPT_IDCHECK)); prompt_Printf(arg->prompt, " Iface-Alias: %-20.20s", optval(arg->bundle, OPT_IFACEALIAS)); #ifndef NOINET6 prompt_Printf(arg->prompt, " IPCP: %s\n", optval(arg->bundle, OPT_IPCP)); prompt_Printf(arg->prompt, " IPV6CP: %-20.20s", optval(arg->bundle, OPT_IPV6CP)); #endif prompt_Printf(arg->prompt, " Keep-Session: %s\n", optval(arg->bundle, OPT_KEEPSESSION)); prompt_Printf(arg->prompt, " Loopback: %-20.20s", optval(arg->bundle, OPT_LOOPBACK)); prompt_Printf(arg->prompt, " PasswdAuth: %s\n", optval(arg->bundle, OPT_PASSWDAUTH)); prompt_Printf(arg->prompt, " Proxy: %-20.20s", optval(arg->bundle, OPT_PROXY)); prompt_Printf(arg->prompt, " Proxyall: %s\n", optval(arg->bundle, OPT_PROXYALL)); prompt_Printf(arg->prompt, " Sticky Routes: %-20.20s", optval(arg->bundle, OPT_SROUTES)); prompt_Printf(arg->prompt, " TCPMSS Fixup: %s\n", optval(arg->bundle, OPT_TCPMSSFIXUP)); prompt_Printf(arg->prompt, " Throughput: %-20.20s", optval(arg->bundle, OPT_THROUGHPUT)); prompt_Printf(arg->prompt, " Utmp Logging: %s\n", optval(arg->bundle, OPT_UTMP)); prompt_Printf(arg->prompt, " NAS-IP-Address: %-20.20s", optval(arg->bundle, OPT_NAS_IP_ADDRESS)); prompt_Printf(arg->prompt, " NAS-Identifier: %s\n", optval(arg->bundle, OPT_NAS_IDENTIFIER)); return 0; } static void bundle_IdleTimeout(void *v) { struct bundle *bundle = (struct bundle *)v; log_Printf(LogPHASE, "Idle timer expired\n"); bundle_StopIdleTimer(bundle); bundle_Close(bundle, NULL, CLOSE_STAYDOWN); } /* * Start Idle timer. If timeout is reached, we call bundle_Close() to * close LCP and link. */ void bundle_StartIdleTimer(struct bundle *bundle, unsigned secs) { timer_Stop(&bundle->idle.timer); if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) != bundle->phys_type.open && bundle->cfg.idle.timeout) { time_t now = time(NULL); if (secs == 0) secs = bundle->cfg.idle.timeout; /* We want at least `secs' */ if (bundle->cfg.idle.min_timeout > secs && bundle->upat) { int up = now - bundle->upat; if ((long long)bundle->cfg.idle.min_timeout - up > (long long)secs) /* Only increase from the current `remaining' value */ secs = bundle->cfg.idle.min_timeout - up; } bundle->idle.timer.func = bundle_IdleTimeout; bundle->idle.timer.name = "idle"; bundle->idle.timer.load = secs * SECTICKS; bundle->idle.timer.arg = bundle; timer_Start(&bundle->idle.timer); bundle->idle.done = now + secs; } } void bundle_SetIdleTimer(struct bundle *bundle, int timeout, int min_timeout) { bundle->cfg.idle.timeout = timeout; if (min_timeout >= 0) bundle->cfg.idle.min_timeout = min_timeout; if (ncp_LayersOpen(&bundle->ncp)) bundle_StartIdleTimer(bundle, 0); } void bundle_StopIdleTimer(struct bundle *bundle) { timer_Stop(&bundle->idle.timer); bundle->idle.done = 0; } static int bundle_RemainingIdleTime(struct bundle *bundle) { if (bundle->idle.done) return bundle->idle.done - time(NULL); return -1; } #ifndef NORADIUS static void bundle_SessionTimeout(void *v) { struct bundle *bundle = (struct bundle *)v; log_Printf(LogPHASE, "Session-Timeout timer expired\n"); bundle_StopSessionTimer(bundle); bundle_Close(bundle, NULL, CLOSE_STAYDOWN); } void bundle_StartSessionTimer(struct bundle *bundle, unsigned secs) { timer_Stop(&bundle->session.timer); if ((bundle->phys_type.open & (PHYS_DEDICATED|PHYS_DDIAL)) != bundle->phys_type.open && bundle->radius.sessiontime) { time_t now = time(NULL); if (secs == 0) secs = bundle->radius.sessiontime; bundle->session.timer.func = bundle_SessionTimeout; bundle->session.timer.name = "session"; bundle->session.timer.load = secs * SECTICKS; bundle->session.timer.arg = bundle; timer_Start(&bundle->session.timer); bundle->session.done = now + secs; } } void bundle_StopSessionTimer(struct bundle *bundle) { timer_Stop(&bundle->session.timer); bundle->session.done = 0; } #endif int bundle_IsDead(struct bundle *bundle) { return !bundle->links || (bundle->phase == PHASE_DEAD && bundle->CleaningUp); } static struct datalink * bundle_DatalinkLinkout(struct bundle *bundle, struct datalink *dl) { struct datalink **dlp; for (dlp = &bundle->links; *dlp; dlp = &(*dlp)->next) if (*dlp == dl) { *dlp = dl->next; dl->next = NULL; bundle_LinksRemoved(bundle); return dl; } return NULL; } static void bundle_DatalinkLinkin(struct bundle *bundle, struct datalink *dl) { struct datalink **dlp = &bundle->links; while (*dlp) dlp = &(*dlp)->next; *dlp = dl; dl->next = NULL; bundle_LinkAdded(bundle, dl); mp_CheckAutoloadTimer(&bundle->ncp.mp); } void bundle_CleanDatalinks(struct bundle *bundle) { struct datalink **dlp = &bundle->links; int found = 0; while (*dlp) if ((*dlp)->state == DATALINK_CLOSED && (*dlp)->physical->type & (PHYS_DIRECT|PHYS_BACKGROUND|PHYS_FOREGROUND)) { *dlp = datalink_Destroy(*dlp); found++; } else dlp = &(*dlp)->next; if (found) bundle_LinksRemoved(bundle); } int bundle_DatalinkClone(struct bundle *bundle, struct datalink *dl, const char *name) { if (bundle2datalink(bundle, name)) { log_Printf(LogWARN, "Clone: %s: name already exists\n", name); return 0; } bundle_DatalinkLinkin(bundle, datalink_Clone(dl, name)); return 1; } void bundle_DatalinkRemove(struct bundle *bundle, struct datalink *dl) { dl = bundle_DatalinkLinkout(bundle, dl); if (dl) datalink_Destroy(dl); } void bundle_SetLabel(struct bundle *bundle, const char *label) { if (label) strncpy(bundle->cfg.label, label, sizeof bundle->cfg.label - 1); else *bundle->cfg.label = '\0'; } const char * bundle_GetLabel(struct bundle *bundle) { return *bundle->cfg.label ? bundle->cfg.label : NULL; } int bundle_LinkSize() { struct iovec iov[SCATTER_SEGMENTS]; int niov, expect, f; iov[0].iov_len = strlen(Version) + 1; iov[0].iov_base = NULL; niov = 1; if (datalink2iov(NULL, iov, &niov, SCATTER_SEGMENTS, NULL, NULL) == -1) { log_Printf(LogERROR, "Cannot determine space required for link\n"); return 0; } for (f = expect = 0; f < niov; f++) expect += iov[f].iov_len; return expect; } void bundle_ReceiveDatalink(struct bundle *bundle, int s) { char cmsgbuf[sizeof(struct cmsghdr) + sizeof(int) * SEND_MAXFD]; int niov, expect, f, *fd, nfd, onfd, got; struct iovec iov[SCATTER_SEGMENTS]; struct cmsghdr *cmsg; struct msghdr msg; struct datalink *dl; pid_t pid; log_Printf(LogPHASE, "Receiving datalink\n"); /* * Create our scatter/gather array - passing NULL gets the space * allocation requirement rather than actually flattening the * structures. */ iov[0].iov_len = strlen(Version) + 1; iov[0].iov_base = NULL; niov = 1; if (datalink2iov(NULL, iov, &niov, SCATTER_SEGMENTS, NULL, NULL) == -1) { log_Printf(LogERROR, "Cannot determine space required for link\n"); return; } /* Allocate the scatter/gather array for recvmsg() */ for (f = expect = 0; f < niov; f++) { if ((iov[f].iov_base = malloc(iov[f].iov_len)) == NULL) { log_Printf(LogERROR, "Cannot allocate space to receive link\n"); return; } if (f) expect += iov[f].iov_len; } /* Set up our message */ cmsg = (struct cmsghdr *)cmsgbuf; cmsg->cmsg_len = sizeof cmsgbuf; cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = 0; memset(&msg, '\0', sizeof msg); msg.msg_name = NULL; msg.msg_namelen = 0; msg.msg_iov = iov; msg.msg_iovlen = 1; /* Only send the version at the first pass */ msg.msg_control = cmsgbuf; msg.msg_controllen = sizeof cmsgbuf; log_Printf(LogDEBUG, "Expecting %u scatter/gather bytes\n", (unsigned)iov[0].iov_len); if ((got = recvmsg(s, &msg, MSG_WAITALL)) != iov[0].iov_len) { if (got == -1) log_Printf(LogERROR, "Failed recvmsg: %s\n", strerror(errno)); else log_Printf(LogERROR, "Failed recvmsg: Got %d, not %u\n", got, (unsigned)iov[0].iov_len); while (niov--) free(iov[niov].iov_base); return; } if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) { log_Printf(LogERROR, "Recvmsg: no descriptors received !\n"); while (niov--) free(iov[niov].iov_base); return; } fd = (int *)CMSG_DATA(cmsg); nfd = ((caddr_t)cmsg + cmsg->cmsg_len - (caddr_t)fd) / sizeof(int); if (nfd < 2) { log_Printf(LogERROR, "Recvmsg: %d descriptor%s received (too few) !\n", nfd, nfd == 1 ? "" : "s"); while (nfd--) close(fd[nfd]); while (niov--) free(iov[niov].iov_base); return; } /* * We've successfully received two or more open file descriptors * through our socket, plus a version string. Make sure it's the * correct version, and drop the connection if it's not. */ if (strncmp(Version, iov[0].iov_base, iov[0].iov_len)) { log_Printf(LogWARN, "Cannot receive datalink, incorrect version" " (\"%.*s\", not \"%s\")\n", (int)iov[0].iov_len, (char *)iov[0].iov_base, Version); while (nfd--) close(fd[nfd]); while (niov--) free(iov[niov].iov_base); return; } /* * Everything looks good. Send the other side our process id so that * they can transfer lock ownership, and wait for them to send the * actual link data. */ pid = getpid(); if ((got = write(fd[1], &pid, sizeof pid)) != sizeof pid) { if (got == -1) log_Printf(LogERROR, "Failed write: %s\n", strerror(errno)); else log_Printf(LogERROR, "Failed write: Got %d, not %d\n", got, (int)(sizeof pid)); while (nfd--) close(fd[nfd]); while (niov--) free(iov[niov].iov_base); return; } if ((got = readv(fd[1], iov + 1, niov - 1)) != expect) { if (got == -1) log_Printf(LogERROR, "Failed write: %s\n", strerror(errno)); else log_Printf(LogERROR, "Failed write: Got %d, not %d\n", got, expect); while (nfd--) close(fd[nfd]); while (niov--) free(iov[niov].iov_base); return; } close(fd[1]); onfd = nfd; /* We've got this many in our array */ nfd -= 2; /* Don't include p->fd and our reply descriptor */ niov = 1; /* Skip the version id */ dl = iov2datalink(bundle, iov, &niov, sizeof iov / sizeof *iov, fd[0], fd + 2, &nfd); if (dl) { if (nfd) { log_Printf(LogERROR, "bundle_ReceiveDatalink: Failed to handle %d " "auxiliary file descriptors (%d remain)\n", onfd, nfd); datalink_Destroy(dl); while (nfd--) close(fd[onfd--]); close(fd[0]); } else { bundle_DatalinkLinkin(bundle, dl); datalink_AuthOk(dl); bundle_CalculateBandwidth(dl->bundle); } } else { while (nfd--) close(fd[onfd--]); close(fd[0]); close(fd[1]); } free(iov[0].iov_base); } void bundle_SendDatalink(struct datalink *dl, int s, struct sockaddr_un *sun) { char cmsgbuf[CMSG_SPACE(sizeof(int) * SEND_MAXFD)]; const char *constlock; char *lock; struct cmsghdr *cmsg; struct msghdr msg; struct iovec iov[SCATTER_SEGMENTS]; int niov, f, expect, newsid, fd[SEND_MAXFD], nfd, reply[2], got; pid_t newpid; log_Printf(LogPHASE, "Transmitting datalink %s\n", dl->name); /* Record the base device name for a lock transfer later */ constlock = physical_LockedDevice(dl->physical); if (constlock) { lock = alloca(strlen(constlock) + 1); strlcpy(lock, constlock, strlen(constlock) + 1); } else lock = NULL; bundle_LinkClosed(dl->bundle, dl); bundle_DatalinkLinkout(dl->bundle, dl); /* Build our scatter/gather array */ iov[0].iov_len = strlen(Version) + 1; iov[0].iov_base = strdup(Version); niov = 1; nfd = 0; fd[0] = datalink2iov(dl, iov, &niov, SCATTER_SEGMENTS, fd + 2, &nfd); if (fd[0] != -1 && socketpair(AF_UNIX, SOCK_STREAM, PF_UNSPEC, reply) != -1) { /* * fd[1] is used to get the peer process id back, then to confirm that * we've transferred any device locks to that process id. */ fd[1] = reply[1]; nfd += 2; /* Include fd[0] and fd[1] */ memset(&msg, '\0', sizeof msg); msg.msg_name = NULL; msg.msg_namelen = 0; /* * Only send the version to start... We used to send the whole lot, but * this caused problems with our RECVBUF size as a single link is about * 22k ! This way, we should bump into no limits. */ msg.msg_iovlen = 1; msg.msg_iov = iov; msg.msg_control = cmsgbuf; msg.msg_controllen = CMSG_SPACE(sizeof(int) * nfd); msg.msg_flags = 0; cmsg = (struct cmsghdr *)cmsgbuf; cmsg->cmsg_len = msg.msg_controllen; cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; for (f = 0; f < nfd; f++) *((int *)CMSG_DATA(cmsg) + f) = fd[f]; for (f = 1, expect = 0; f < niov; f++) expect += iov[f].iov_len; if (setsockopt(reply[0], SOL_SOCKET, SO_SNDBUF, &expect, sizeof(int)) == -1) log_Printf(LogERROR, "setsockopt(SO_RCVBUF, %d): %s\n", expect, strerror(errno)); if (setsockopt(reply[1], SOL_SOCKET, SO_RCVBUF, &expect, sizeof(int)) == -1) log_Printf(LogERROR, "setsockopt(SO_RCVBUF, %d): %s\n", expect, strerror(errno)); log_Printf(LogDEBUG, "Sending %d descriptor%s and %u bytes in scatter" "/gather array\n", nfd, nfd == 1 ? "" : "s", (unsigned)iov[0].iov_len); if ((got = sendmsg(s, &msg, 0)) == -1) log_Printf(LogERROR, "Failed sendmsg: %s: %s\n", sun->sun_path, strerror(errno)); else if (got != iov[0].iov_len) log_Printf(LogERROR, "%s: Failed initial sendmsg: Only sent %d of %u\n", sun->sun_path, got, (unsigned)iov[0].iov_len); else { /* We must get the ACK before closing the descriptor ! */ int res; if ((got = read(reply[0], &newpid, sizeof newpid)) == sizeof newpid) { log_Printf(LogDEBUG, "Received confirmation from pid %ld\n", (long)newpid); if (lock && (res = ID0uu_lock_txfr(lock, newpid)) != UU_LOCK_OK) log_Printf(LogERROR, "uu_lock_txfr: %s\n", uu_lockerr(res)); log_Printf(LogDEBUG, "Transmitting link (%d bytes)\n", expect); if ((got = writev(reply[0], iov + 1, niov - 1)) != expect) { if (got == -1) log_Printf(LogERROR, "%s: Failed writev: %s\n", sun->sun_path, strerror(errno)); else log_Printf(LogERROR, "%s: Failed writev: Wrote %d of %d\n", sun->sun_path, got, expect); } } else if (got == -1) log_Printf(LogERROR, "%s: Failed socketpair read: %s\n", sun->sun_path, strerror(errno)); else log_Printf(LogERROR, "%s: Failed socketpair read: Got %d of %d\n", sun->sun_path, got, (int)(sizeof newpid)); } close(reply[0]); close(reply[1]); newsid = Enabled(dl->bundle, OPT_KEEPSESSION) || tcgetpgrp(fd[0]) == getpgrp(); while (nfd) close(fd[--nfd]); if (newsid) bundle_setsid(dl->bundle, got != -1); } close(s); while (niov--) free(iov[niov].iov_base); } int bundle_RenameDatalink(struct bundle *bundle, struct datalink *ndl, const char *name) { struct datalink *dl; if (!strcasecmp(ndl->name, name)) return 1; for (dl = bundle->links; dl; dl = dl->next) if (!strcasecmp(dl->name, name)) return 0; datalink_Rename(ndl, name); return 1; } int bundle_SetMode(struct bundle *bundle, struct datalink *dl, int mode) { int omode; omode = dl->physical->type; if (omode == mode) return 1; if (mode == PHYS_AUTO && !(bundle->phys_type.all & PHYS_AUTO)) /* First auto link */ if (bundle->ncp.ipcp.peer_ip.s_addr == INADDR_ANY) { log_Printf(LogWARN, "You must `set ifaddr' or `open' before" " changing mode to %s\n", mode2Nam(mode)); return 0; } if (!datalink_SetMode(dl, mode)) return 0; if (mode == PHYS_AUTO && !(bundle->phys_type.all & PHYS_AUTO) && bundle->phase != PHASE_NETWORK) /* First auto link, we need an interface */ ipcp_InterfaceUp(&bundle->ncp.ipcp); /* Regenerate phys_type and adjust idle timer */ bundle_LinksRemoved(bundle); return 1; } void bundle_setsid(struct bundle *bundle, int holdsession) { /* * Lose the current session. This means getting rid of our pid * too so that the tty device will really go away, and any getty * etc will be allowed to restart. */ pid_t pid, orig; int fds[2]; char done; struct datalink *dl; if (!holdsession && bundle_IsDead(bundle)) { /* * No need to lose our session after all... we're going away anyway * * We should really stop the timer and pause if holdsession is set and * the bundle's dead, but that leaves other resources lying about :-( */ return; } orig = getpid(); if (pipe(fds) == -1) { log_Printf(LogERROR, "pipe: %s\n", strerror(errno)); return; } switch ((pid = fork())) { case -1: log_Printf(LogERROR, "fork: %s\n", strerror(errno)); close(fds[0]); close(fds[1]); return; case 0: close(fds[1]); read(fds[0], &done, 1); /* uu_locks are mine ! */ close(fds[0]); if (pipe(fds) == -1) { log_Printf(LogERROR, "pipe(2): %s\n", strerror(errno)); return; } switch ((pid = fork())) { case -1: log_Printf(LogERROR, "fork(2): %s\n", strerror(errno)); close(fds[0]); close(fds[1]); return; case 0: close(fds[1]); bundle_LockTun(bundle); /* update pid */ read(fds[0], &done, 1); /* uu_locks are mine ! */ close(fds[0]); setsid(); bundle_ChangedPID(bundle); log_Printf(LogDEBUG, "%ld -> %ld: %s session control\n", (long)orig, (long)getpid(), holdsession ? "Passed" : "Dropped"); timer_InitService(0); /* Start the Timer Service */ break; default: close(fds[0]); /* Give away all our physical locks (to the final process) */ for (dl = bundle->links; dl; dl = dl->next) if (dl->state != DATALINK_CLOSED) physical_ChangedPid(dl->physical, pid); write(fds[1], "!", 1); /* done */ close(fds[1]); _exit(0); break; } break; default: close(fds[0]); /* Give away all our physical locks (to the intermediate process) */ for (dl = bundle->links; dl; dl = dl->next) if (dl->state != DATALINK_CLOSED) physical_ChangedPid(dl->physical, pid); write(fds[1], "!", 1); /* done */ close(fds[1]); if (holdsession) { int status; timer_TermService(); signal(SIGPIPE, SIG_DFL); signal(SIGALRM, SIG_DFL); signal(SIGHUP, SIG_DFL); signal(SIGTERM, SIG_DFL); signal(SIGINT, SIG_DFL); signal(SIGQUIT, SIG_DFL); closefrom(0); /* * Reap the intermediate process. As we're not exiting but the * intermediate is, we don't want it to become defunct. */ waitpid(pid, &status, 0); /* Tweak our process arguments.... */ SetTitle("session owner"); #ifndef NOSUID setuid(ID0realuid()); #endif /* * Hang around for a HUP. This should happen as soon as the * ppp that we passed our ctty descriptor to closes it. * NOTE: If this process dies, the passed descriptor becomes * invalid and will give a select() error by setting one * of the error fds, aborting the other ppp. We don't * want that to happen ! */ pause(); } _exit(0); break; } } int bundle_HighestState(struct bundle *bundle) { struct datalink *dl; int result = DATALINK_CLOSED; for (dl = bundle->links; dl; dl = dl->next) if (result < dl->state) result = dl->state; return result; } int bundle_Exception(struct bundle *bundle, int fd) { struct datalink *dl; for (dl = bundle->links; dl; dl = dl->next) if (dl->physical->fd == fd) { datalink_Down(dl, CLOSE_NORMAL); return 1; } return 0; } void bundle_AdjustFilters(struct bundle *bundle, struct ncpaddr *local, struct ncpaddr *remote) { filter_AdjustAddr(&bundle->filter.in, local, remote, NULL); filter_AdjustAddr(&bundle->filter.out, local, remote, NULL); filter_AdjustAddr(&bundle->filter.dial, local, remote, NULL); filter_AdjustAddr(&bundle->filter.alive, local, remote, NULL); } void bundle_AdjustDNS(struct bundle *bundle) { struct in_addr *dns = bundle->ncp.ipcp.ns.dns; filter_AdjustAddr(&bundle->filter.in, NULL, NULL, dns); filter_AdjustAddr(&bundle->filter.out, NULL, NULL, dns); filter_AdjustAddr(&bundle->filter.dial, NULL, NULL, dns); filter_AdjustAddr(&bundle->filter.alive, NULL, NULL, dns); } void bundle_CalculateBandwidth(struct bundle *bundle) { struct datalink *dl; int sp, overhead, maxoverhead; bundle->bandwidth = 0; bundle->iface->mtu = 0; maxoverhead = 0; for (dl = bundle->links; dl; dl = dl->next) { overhead = ccp_MTUOverhead(&dl->physical->link.ccp); if (maxoverhead < overhead) maxoverhead = overhead; if (dl->state == DATALINK_OPEN) { if ((sp = dl->mp.bandwidth) == 0 && (sp = physical_GetSpeed(dl->physical)) == 0) log_Printf(LogDEBUG, "%s: %s: Cannot determine bandwidth\n", dl->name, dl->physical->name.full); else bundle->bandwidth += sp; if (!bundle->ncp.mp.active) { bundle->iface->mtu = dl->physical->link.lcp.his_mru; break; } } } if (bundle->bandwidth == 0) bundle->bandwidth = 115200; /* Shrug */ if (bundle->ncp.mp.active) { bundle->iface->mtu = bundle->ncp.mp.peer_mrru; overhead = ccp_MTUOverhead(&bundle->ncp.mp.link.ccp); if (maxoverhead < overhead) maxoverhead = overhead; } else if (!bundle->iface->mtu) bundle->iface->mtu = DEF_MRU; #ifndef NORADIUS if (bundle->radius.valid && bundle->radius.mtu && bundle->radius.mtu < bundle->iface->mtu) { log_Printf(LogLCP, "Reducing MTU to radius value %lu\n", bundle->radius.mtu); bundle->iface->mtu = bundle->radius.mtu; } #endif if (maxoverhead) { log_Printf(LogLCP, "Reducing MTU from %d to %d (CCP requirement)\n", bundle->iface->mtu, bundle->iface->mtu - maxoverhead); bundle->iface->mtu -= maxoverhead; } tun_configure(bundle); route_UpdateMTU(bundle); } void bundle_AutoAdjust(struct bundle *bundle, int percent, int what) { struct datalink *dl, *choice, *otherlinkup; choice = otherlinkup = NULL; for (dl = bundle->links; dl; dl = dl->next) if (dl->physical->type == PHYS_AUTO) { if (dl->state == DATALINK_OPEN) { if (what == AUTO_DOWN) { if (choice) otherlinkup = choice; choice = dl; } } else if (dl->state == DATALINK_CLOSED) { if (what == AUTO_UP) { choice = dl; break; } } else { /* An auto link in an intermediate state - forget it for the moment */ choice = NULL; break; } } else if (dl->state == DATALINK_OPEN && what == AUTO_DOWN) otherlinkup = dl; if (choice) { if (what == AUTO_UP) { log_Printf(LogPHASE, "%d%% saturation -> Opening link ``%s''\n", percent, choice->name); datalink_Up(choice, 1, 1); mp_CheckAutoloadTimer(&bundle->ncp.mp); } else if (otherlinkup) { /* Only bring the second-last link down */ log_Printf(LogPHASE, "%d%% saturation -> Closing link ``%s''\n", percent, choice->name); datalink_Close(choice, CLOSE_STAYDOWN); mp_CheckAutoloadTimer(&bundle->ncp.mp); } } } int bundle_WantAutoloadTimer(struct bundle *bundle) { struct datalink *dl; int autolink, opened; if (bundle->phase == PHASE_NETWORK) { for (autolink = opened = 0, dl = bundle->links; dl; dl = dl->next) if (dl->physical->type == PHYS_AUTO) { if (++autolink == 2 || (autolink == 1 && opened)) /* Two auto links or one auto and one open in NETWORK phase */ return 1; } else if (dl->state == DATALINK_OPEN) { opened++; if (autolink) /* One auto and one open link in NETWORK phase */ return 1; } } return 0; } void bundle_ChangedPID(struct bundle *bundle) { #ifdef TUNSIFPID ioctl(bundle->dev.fd, TUNSIFPID, 0); #endif } int bundle_Uptime(struct bundle *bundle) { if (bundle->upat) return time(NULL) - bundle->upat; return 0; }