/* $OpenBSD: procmap.c,v 1.63 2016/09/16 04:45:35 dlg Exp $ */ /* $NetBSD: pmap.c,v 1.1 2002/09/01 20:32:44 atatat Exp $ */ /* * Copyright (c) 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Brown. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #define _KERNEL #include #undef _KERNEL #include /* MAXCOMLEN */ #include #include #include #include #include #include #include #include #include /* XXX until uvm gets cleaned up */ typedef int boolean_t; #include #include #include #include #include #include #undef doff_t #undef IN_ACCESS #undef i_size #undef i_devvp #include #include #include #include #include #include #include #include #include #include #include #include /* * stolen (and munged) from #include */ #define UVM_OBJ_IS_VNODE(uobj) ((uobj)->pgops == uvm_vnodeops) #define UVM_OBJ_IS_AOBJ(uobj) ((uobj)->pgops == aobj_pager) #define UVM_OBJ_IS_DEVICE(uobj) ((uobj)->pgops == uvm_deviceops) #define PRINT_VMSPACE 0x00000001 #define PRINT_VM_MAP 0x00000002 #define PRINT_VM_MAP_HEADER 0x00000004 #define PRINT_VM_MAP_ENTRY 0x00000008 #define DUMP_NAMEI_CACHE 0x00000010 struct cache_entry { LIST_ENTRY(cache_entry) ce_next; struct vnode *ce_vp, *ce_pvp; u_long ce_cid, ce_pcid; unsigned int ce_nlen; char ce_name[256]; }; LIST_HEAD(cache_head, cache_entry) lcache; TAILQ_HEAD(namecache_head, namecache) nclruhead; int namecache_loaded; void *uvm_vnodeops, *uvm_deviceops, *aobj_pager; u_long kernel_map_addr, nclruhead_addr; int debug, verbose; int print_all, print_map, print_maps, print_solaris, print_ddb, print_amap; int rwx = PROT_READ | PROT_WRITE | PROT_EXEC; rlim_t maxssiz; struct sum { unsigned long s_am_nslots; unsigned long s_am_nusedslots; }; struct kbit { /* * size of data chunk */ size_t k_size; /* * something for printf() and something for kvm_read() */ union { void *k_addr_p; u_long k_addr_ul; } k_addr; /* * where we actually put the "stuff" */ union { char data[1]; struct vmspace vmspace; struct vm_map vm_map; struct vm_map_entry vm_map_entry; struct uvm_vnode uvm_vnode; struct vnode vnode; struct uvm_object uvm_object; struct mount mount; struct inode inode; struct iso_node iso_node; struct uvm_device uvm_device; struct vm_amap vm_amap; } k_data; }; /* the size of the object in the kernel */ #define S(x) ((x)->k_size) /* the address of the object in kernel, two forms */ #define A(x) ((x)->k_addr.k_addr_ul) #define P(x) ((x)->k_addr.k_addr_p) /* the data from the kernel */ #define D(x,d) (&((x)->k_data.d)) /* suck the data from the kernel */ #define _KDEREF(kd, addr, dst, sz) do { \ ssize_t len; \ len = kvm_read((kd), (addr), (dst), (sz)); \ if (len != (sz)) \ errx(1, "%s == %ld vs. %lu @ %lx", \ kvm_geterr(kd), (long)len, (unsigned long)(sz), (addr)); \ } while (0/*CONSTCOND*/) /* suck the data using the structure */ #define KDEREF(kd, item) _KDEREF((kd), A(item), D(item, data), S(item)) struct nlist nl[] = { { "_maxsmap" }, #define NL_MAXSSIZ 0 { "_uvm_vnodeops" }, #define NL_UVM_VNODEOPS 1 { "_uvm_deviceops" }, #define NL_UVM_DEVICEOPS 2 { "_aobj_pager" }, #define NL_AOBJ_PAGER 3 { "_kernel_map" }, #define NL_KERNEL_MAP 4 { "_nclruhead" }, #define NL_NCLRUHEAD 5 { NULL } }; void load_symbols(kvm_t *); void process_map(kvm_t *, pid_t, struct kinfo_proc *, struct sum *); struct vm_map_entry *load_vm_map_entries(kvm_t *, struct vm_map_entry *, struct vm_map_entry *); void unload_vm_map_entries(struct vm_map_entry *); size_t dump_vm_map_entry(kvm_t *, struct kbit *, struct vm_map_entry *, struct sum *); char *findname(kvm_t *, struct kbit *, struct vm_map_entry *, struct kbit *, struct kbit *, struct kbit *); int search_cache(kvm_t *, struct kbit *, char **, char *, size_t); void load_name_cache(kvm_t *); void cache_enter(struct namecache *); static void __dead usage(void); static pid_t strtopid(const char *); void print_sum(struct sum *, struct sum *); /* * uvm_map address tree implementation. */ static int no_impl(const void *, const void *); static int no_impl(const void *p, const void *q) { errx(1, "uvm_map address comparison not implemented"); return 0; } RBT_PROTOTYPE(uvm_map_addr, vm_map_entry, daddrs.addr_entry, no_impl); RBT_GENERATE(uvm_map_addr, vm_map_entry, daddrs.addr_entry, no_impl); int main(int argc, char *argv[]) { const char *errstr; char errbuf[_POSIX2_LINE_MAX], *kmem = NULL, *kernel = NULL; struct kinfo_proc *kproc; struct sum total_sum; int many, ch, rc; kvm_t *kd; pid_t pid = -1; gid_t gid; while ((ch = getopt(argc, argv, "AaD:dlmM:N:p:Prsvx")) != -1) { switch (ch) { case 'A': print_amap = 1; break; case 'a': print_all = 1; break; case 'd': print_ddb = 1; break; case 'D': debug = strtonum(optarg, 0, 0x1f, &errstr); if (errstr) errx(1, "invalid debug mask"); break; case 'l': print_maps = 1; break; case 'm': print_map = 1; break; case 'M': kmem = optarg; break; case 'N': kernel = optarg; break; case 'p': pid = strtopid(optarg); break; case 'P': pid = getpid(); break; case 's': print_solaris = 1; break; case 'v': verbose = 1; break; case 'r': case 'x': errx(1, "-%c option not implemented, sorry", ch); /*NOTREACHED*/ default: usage(); } } /* * Discard setgid privileges if not the running kernel so that bad * guys can't print interesting stuff from kernel memory. */ gid = getgid(); if (kernel != NULL || kmem != NULL) if (setresgid(gid, gid, gid) == -1) err(1, "setresgid"); argc -= optind; argv += optind; /* more than one "process" to dump? */ many = (argc > 1 - (pid == -1 ? 0 : 1)) ? 1 : 0; /* apply default */ if (print_all + print_map + print_maps + print_solaris + print_ddb == 0) print_solaris = 1; /* start by opening libkvm */ kd = kvm_openfiles(kernel, kmem, NULL, O_RDONLY, errbuf); if (kernel == NULL && kmem == NULL) if (setresgid(gid, gid, gid) == -1) err(1, "setresgid"); if (kd == NULL) errx(1, "%s", errbuf); /* get "bootstrap" addresses from kernel */ load_symbols(kd); memset(&total_sum, 0, sizeof(total_sum)); do { struct sum sum; memset(&sum, 0, sizeof(sum)); if (pid == -1) { if (argc == 0) pid = getppid(); else { pid = strtopid(argv[0]); argv++; argc--; } } /* find the process id */ if (pid == 0) kproc = NULL; else { kproc = kvm_getprocs(kd, KERN_PROC_PID, pid, sizeof(struct kinfo_proc), &rc); if (kproc == NULL || rc == 0) { warnc(ESRCH, "%d", pid); pid = -1; continue; } } /* dump it */ if (many) { if (kproc) printf("process %d:\n", pid); else printf("kernel:\n"); } process_map(kd, pid, kproc, &sum); if (print_amap) print_sum(&sum, &total_sum); pid = -1; } while (argc > 0); if (print_amap) print_sum(&total_sum, NULL); /* done. go away. */ rc = kvm_close(kd); if (rc == -1) err(1, "kvm_close"); return (0); } void print_sum(struct sum *sum, struct sum *total_sum) { const char *t = total_sum == NULL ? "total " : ""; printf("%samap mapped slots: %lu\n", t, sum->s_am_nslots); printf("%samap used slots: %lu\n", t, sum->s_am_nusedslots); if (total_sum) { total_sum->s_am_nslots += sum->s_am_nslots; total_sum->s_am_nusedslots += sum->s_am_nusedslots; } } void process_map(kvm_t *kd, pid_t pid, struct kinfo_proc *proc, struct sum *sum) { struct kbit kbit[3], *vmspace, *vm_map; struct vm_map_entry *vm_map_entry; size_t total = 0; char *thing; uid_t uid; int vmmap_flags; if ((uid = getuid())) { if (pid == 0) { warnx("kernel map is restricted"); return; } if (uid != proc->p_uid) { warnx("other users' process maps are restricted"); return; } } vmspace = &kbit[0]; vm_map = &kbit[1]; A(vmspace) = 0; A(vm_map) = 0; if (pid > 0) { A(vmspace) = (u_long)proc->p_vmspace; S(vmspace) = sizeof(struct vmspace); KDEREF(kd, vmspace); thing = "proc->p_vmspace.vm_map"; } else { A(vmspace) = 0; S(vmspace) = 0; thing = "kernel_map"; } if (pid > 0 && (debug & PRINT_VMSPACE)) { printf("proc->p_vmspace %p = {", P(vmspace)); printf(" vm_refcnt = %d,", D(vmspace, vmspace)->vm_refcnt); printf(" vm_shm = %p,\n", D(vmspace, vmspace)->vm_shm); printf(" vm_rssize = %d,", D(vmspace, vmspace)->vm_rssize); #if 0 printf(" vm_swrss = %d,", D(vmspace, vmspace)->vm_swrss); #endif printf(" vm_tsize = %d,", D(vmspace, vmspace)->vm_tsize); printf(" vm_dsize = %d,\n", D(vmspace, vmspace)->vm_dsize); printf(" vm_ssize = %d,", D(vmspace, vmspace)->vm_ssize); printf(" vm_taddr = %p,", D(vmspace, vmspace)->vm_taddr); printf(" vm_daddr = %p,\n", D(vmspace, vmspace)->vm_daddr); printf(" vm_maxsaddr = %p,", D(vmspace, vmspace)->vm_maxsaddr); printf(" vm_minsaddr = %p }\n", D(vmspace, vmspace)->vm_minsaddr); } S(vm_map) = sizeof(struct vm_map); if (pid > 0) { A(vm_map) = A(vmspace); memcpy(D(vm_map, vm_map), &D(vmspace, vmspace)->vm_map, S(vm_map)); } else { A(vm_map) = kernel_map_addr; KDEREF(kd, vm_map); } if (debug & PRINT_VM_MAP) { printf("%s %p = {", thing, P(vm_map)); printf(" pmap = %p,\n", D(vm_map, vm_map)->pmap); printf(" lock = \n"); printf(" size = %lx,", D(vm_map, vm_map)->size); printf(" ref_count = %d,", D(vm_map, vm_map)->ref_count); printf(" ref_lock = ,\n"); printf(" min_offset-max_offset = 0x%lx-0x%lx\n", D(vm_map, vm_map)->min_offset, D(vm_map, vm_map)->max_offset); printf(" b_start-b_end = 0x%lx-0x%lx\n", D(vm_map, vm_map)->b_start, D(vm_map, vm_map)->b_end); printf(" s_start-s_end = 0x%lx-0x%lx\n", D(vm_map, vm_map)->s_start, D(vm_map, vm_map)->s_end); vmmap_flags = D(vm_map, vm_map)->flags; printf(" flags = %x <%s%s%s%s%s%s >,\n", vmmap_flags, vmmap_flags & VM_MAP_PAGEABLE ? " PAGEABLE" : "", vmmap_flags & VM_MAP_INTRSAFE ? " INTRSAFE" : "", vmmap_flags & VM_MAP_WIREFUTURE ? " WIREFUTURE" : "", vmmap_flags & VM_MAP_BUSY ? " BUSY" : "", vmmap_flags & VM_MAP_WANTLOCK ? " WANTLOCK" : "", #if VM_MAP_TOPDOWN > 0 vmmap_flags & VM_MAP_TOPDOWN ? " TOPDOWN" : #endif ""); printf(" timestamp = %u }\n", D(vm_map, vm_map)->timestamp); } if (print_ddb) { printf("MAP %p: [0x%lx->0x%lx]\n", P(vm_map), D(vm_map, vm_map)->min_offset, D(vm_map, vm_map)->max_offset); printf("\tsz=%ld, ref=%d, version=%d, flags=0x%x\n", D(vm_map, vm_map)->size, D(vm_map, vm_map)->ref_count, D(vm_map, vm_map)->timestamp, D(vm_map, vm_map)->flags); printf("\tpmap=%p(resident=)\n", D(vm_map, vm_map)->pmap); } /* headers */ #ifdef DISABLED_HEADERS if (print_map) printf("%-*s %-*s rwx RWX CPY NCP I W A\n", (int)sizeof(long) * 2 + 2, "Start", (int)sizeof(long) * 2 + 2, "End"); if (print_maps) printf("%-*s %-*s rwxp %-*s Dev Inode File\n", (int)sizeof(long) * 2 + 0, "Start", (int)sizeof(long) * 2 + 0, "End", (int)sizeof(long) * 2 + 0, "Offset"); if (print_solaris) printf("%-*s %*s Protection File\n", (int)sizeof(long) * 2 + 0, "Start", (int)sizeof(int) * 2 - 1, "Size "); #endif if (print_all) printf("%-*s %-*s %*s %-*s rwxpc RWX I/W/A Dev %*s - File\n", (int)sizeof(long) * 2, "Start", (int)sizeof(long) * 2, "End", (int)sizeof(int) * 2, "Size ", (int)sizeof(long) * 2, "Offset", (int)sizeof(int) * 2, "Inode"); /* these are the "sub entries" */ vm_map_entry = load_vm_map_entries(kd, RBT_ROOT(uvm_map_addr, &D(vm_map, vm_map)->addr), NULL); if (vm_map_entry != NULL) { /* RBTs point at rb_entries inside nodes */ D(vm_map, vm_map)->addr.rbh_root.rbt_root = &vm_map_entry->daddrs.addr_entry; } else RBT_INIT(uvm_map_addr, &D(vm_map, vm_map)->addr); RBT_FOREACH(vm_map_entry, uvm_map_addr, &D(vm_map, vm_map)->addr) total += dump_vm_map_entry(kd, vmspace, vm_map_entry, sum); unload_vm_map_entries(RBT_ROOT(uvm_map_addr, &D(vm_map, vm_map)->addr)); if (print_solaris) printf("%-*s %8luK\n", (int)sizeof(void *) * 2 - 2, " total", (unsigned long)total); if (print_all) printf("%-*s %9luk\n", (int)sizeof(void *) * 4 - 1, " total", (unsigned long)total); } void load_symbols(kvm_t *kd) { int rc, i; rc = kvm_nlist(kd, &nl[0]); if (rc == -1) errx(1, "%s == %d", kvm_geterr(kd), rc); for (i = 0; i < sizeof(nl)/sizeof(nl[0]); i++) if (nl[i].n_value == 0 && nl[i].n_name) printf("%s not found\n", nl[i].n_name); uvm_vnodeops = (void*)nl[NL_UVM_VNODEOPS].n_value; uvm_deviceops = (void*)nl[NL_UVM_DEVICEOPS].n_value; aobj_pager = (void*)nl[NL_AOBJ_PAGER].n_value; nclruhead_addr = nl[NL_NCLRUHEAD].n_value; _KDEREF(kd, nl[NL_MAXSSIZ].n_value, &maxssiz, sizeof(maxssiz)); _KDEREF(kd, nl[NL_KERNEL_MAP].n_value, &kernel_map_addr, sizeof(kernel_map_addr)); } /* * Recreate the addr tree of vm_map in local memory. */ struct vm_map_entry * load_vm_map_entries(kvm_t *kd, struct vm_map_entry *kptr, struct vm_map_entry *parent) { static struct kbit map_ent; struct vm_map_entry *result, *ld; if (kptr == NULL) return NULL; A(&map_ent) = (u_long)kptr; S(&map_ent) = sizeof(struct vm_map_entry); KDEREF(kd, &map_ent); result = malloc(sizeof(*result)); if (result == NULL) err(1, "malloc"); memcpy(result, D(&map_ent, vm_map_entry), sizeof(struct vm_map_entry)); /* * Recurse to download rest of the tree. */ /* RBTs point at rb_entries inside nodes */ ld = load_vm_map_entries(kd, RBT_LEFT(uvm_map_addr, result), result); result->daddrs.addr_entry.rbt_left = &ld->daddrs.addr_entry; ld = load_vm_map_entries(kd, RBT_RIGHT(uvm_map_addr, result), result); result->daddrs.addr_entry.rbt_right = &ld->daddrs.addr_entry; result->daddrs.addr_entry.rbt_parent = &parent->daddrs.addr_entry; return result; } /* * Release the addr tree of vm_map. */ void unload_vm_map_entries(struct vm_map_entry *ent) { if (ent == NULL) return; unload_vm_map_entries(RBT_LEFT(uvm_map_addr, ent)); unload_vm_map_entries(RBT_RIGHT(uvm_map_addr, ent)); free(ent); } size_t dump_vm_map_entry(kvm_t *kd, struct kbit *vmspace, struct vm_map_entry *vme, struct sum *sum) { struct kbit kbit[5], *uvm_obj, *vp, *vfs, *amap, *uvn; ino_t inode = 0; dev_t dev = 0; size_t sz = 0; char *name; uvm_obj = &kbit[0]; vp = &kbit[1]; vfs = &kbit[2]; amap = &kbit[3]; uvn = &kbit[4]; A(uvm_obj) = 0; A(vp) = 0; A(vfs) = 0; A(uvn) = 0; if (debug & PRINT_VM_MAP_ENTRY) { printf("%s = {", "vm_map_entry"); printf(" start = %lx,", vme->start); printf(" end = %lx,", vme->end); printf(" fspace = %lx,\n", vme->fspace); printf(" object.uvm_obj/sub_map = %p,\n", vme->object.uvm_obj); printf(" offset = %lx,", (unsigned long)vme->offset); printf(" etype = %x <%s%s%s%s%s >,", vme->etype, vme->etype & UVM_ET_OBJ ? " OBJ" : "", vme->etype & UVM_ET_SUBMAP ? " SUBMAP" : "", vme->etype & UVM_ET_COPYONWRITE ? " COW" : "", vme->etype & UVM_ET_NEEDSCOPY ? " NEEDSCOPY" : "", vme->etype & UVM_ET_HOLE ? " HOLE" : ""); printf(" protection = %x,\n", vme->protection); printf(" max_protection = %x,", vme->max_protection); printf(" inheritance = %d,", vme->inheritance); printf(" wired_count = %d,\n", vme->wired_count); printf(" aref = ,"); printf(" advice = %d,", vme->advice); printf(" flags = %x <%s%s > }\n", vme->flags, vme->flags & UVM_MAP_STATIC ? " STATIC" : "", vme->flags & UVM_MAP_KMEM ? " KMEM" : ""); } A(vp) = 0; A(uvm_obj) = 0; if (vme->object.uvm_obj != NULL) { P(uvm_obj) = vme->object.uvm_obj; S(uvm_obj) = sizeof(struct uvm_object); KDEREF(kd, uvm_obj); if (UVM_ET_ISOBJ(vme) && UVM_OBJ_IS_VNODE(D(uvm_obj, uvm_object))) { P(uvn) = P(uvm_obj); S(uvn) = sizeof(struct uvm_vnode); KDEREF(kd, uvn); P(vp) = D(uvn, uvm_vnode)->u_vnode; S(vp) = sizeof(struct vnode); KDEREF(kd, vp); } } if (vme->aref.ar_amap != NULL) { P(amap) = vme->aref.ar_amap; S(amap) = sizeof(struct vm_amap); KDEREF(kd, amap); } A(vfs) = 0; if (P(vp) != NULL && D(vp, vnode)->v_mount != NULL) { P(vfs) = D(vp, vnode)->v_mount; S(vfs) = sizeof(struct mount); KDEREF(kd, vfs); D(vp, vnode)->v_mount = D(vfs, mount); } /* * dig out the device number and inode number from certain * file system types. */ #define V_DATA_IS(vp, type, d, i) do { \ struct kbit data; \ P(&data) = D(vp, vnode)->v_data; \ S(&data) = sizeof(*D(&data, type)); \ KDEREF(kd, &data); \ dev = D(&data, type)->d; \ inode = D(&data, type)->i; \ } while (0/*CONSTCOND*/) if (A(vp) && D(vp, vnode)->v_type == VREG && D(vp, vnode)->v_data != NULL) { switch (D(vp, vnode)->v_tag) { case VT_UFS: case VT_EXT2FS: V_DATA_IS(vp, inode, i_dev, i_number); break; case VT_ISOFS: V_DATA_IS(vp, iso_node, i_dev, i_number); break; case VT_NON: case VT_NFS: case VT_MFS: case VT_MSDOSFS: default: break; } } name = findname(kd, vmspace, vme, vp, vfs, uvm_obj); if (print_map) { printf("0x%lx 0x%lx %c%c%c %c%c%c %s %s %d %d %d", vme->start, vme->end, (vme->protection & PROT_READ) ? 'r' : '-', (vme->protection & PROT_WRITE) ? 'w' : '-', (vme->protection & PROT_EXEC) ? 'x' : '-', (vme->max_protection & PROT_READ) ? 'r' : '-', (vme->max_protection & PROT_WRITE) ? 'w' : '-', (vme->max_protection & PROT_EXEC) ? 'x' : '-', (vme->etype & UVM_ET_COPYONWRITE) ? "COW" : "NCOW", (vme->etype & UVM_ET_NEEDSCOPY) ? "NC" : "NNC", vme->inheritance, vme->wired_count, vme->advice); if (verbose) { if (inode) printf(" %d,%d %llu", major(dev), minor(dev), (unsigned long long)inode); if (name[0]) printf(" %s", name); } printf("\n"); } if (print_maps) printf("%0*lx-%0*lx %c%c%c%c %0*lx %02x:%02x %llu %s\n", (int)sizeof(void *) * 2, vme->start, (int)sizeof(void *) * 2, vme->end, (vme->protection & PROT_READ) ? 'r' : '-', (vme->protection & PROT_WRITE) ? 'w' : '-', (vme->protection & PROT_EXEC) ? 'x' : '-', (vme->etype & UVM_ET_COPYONWRITE) ? 'p' : 's', (int)sizeof(void *) * 2, (unsigned long)vme->offset, major(dev), minor(dev), (unsigned long long)inode, inode ? name : ""); if (print_ddb) { printf(" - : 0x%lx->0x%lx: " "obj=%p/0x%lx, amap=%p/%d\n", vme->start, vme->end, vme->object.uvm_obj, (unsigned long)vme->offset, vme->aref.ar_amap, vme->aref.ar_pageoff); printf("\tsubmap=%c, cow=%c, nc=%c, prot(max)=%d/%d, inh=%d, " "wc=%d, adv=%d\n", (vme->etype & UVM_ET_SUBMAP) ? 'T' : 'F', (vme->etype & UVM_ET_COPYONWRITE) ? 'T' : 'F', (vme->etype & UVM_ET_NEEDSCOPY) ? 'T' : 'F', vme->protection, vme->max_protection, vme->inheritance, vme->wired_count, vme->advice); if (inode && verbose) printf("\t(dev=%d,%d ino=%llu [%s] [%p])\n", major(dev), minor(dev), (unsigned long long)inode, inode ? name : "", P(vp)); else if (name[0] == ' ' && verbose) printf("\t(%s)\n", &name[2]); } if (print_solaris) { char prot[30]; prot[0] = '\0'; prot[1] = '\0'; if (vme->protection & PROT_READ) strlcat(prot, "/read", sizeof(prot)); if (vme->protection & PROT_WRITE) strlcat(prot, "/write", sizeof(prot)); if (vme->protection & PROT_EXEC) strlcat(prot, "/exec", sizeof(prot)); sz = (size_t)((vme->end - vme->start) / 1024); printf("%0*lX %6luK %-15s %s\n", (int)sizeof(void *) * 2, (unsigned long)vme->start, (unsigned long)sz, &prot[1], name); } if (print_all) { sz = (size_t)((vme->end - vme->start) / 1024); printf("%0*lx-%0*lx %7luk %0*lx %c%c%c%c%c (%c%c%c) %d/%d/%d %02d:%02d %7llu - %s", (int)sizeof(void *) * 2, vme->start, (int)sizeof(void *) * 2, vme->end - (vme->start != vme->end ? 1 : 0), (unsigned long)sz, (int)sizeof(void *) * 2, (unsigned long)vme->offset, (vme->protection & PROT_READ) ? 'r' : '-', (vme->protection & PROT_WRITE) ? 'w' : '-', (vme->protection & PROT_EXEC) ? 'x' : '-', (vme->etype & UVM_ET_COPYONWRITE) ? 'p' : 's', (vme->etype & UVM_ET_NEEDSCOPY) ? '+' : '-', (vme->max_protection & PROT_READ) ? 'r' : '-', (vme->max_protection & PROT_WRITE) ? 'w' : '-', (vme->max_protection & PROT_EXEC) ? 'x' : '-', vme->inheritance, vme->wired_count, vme->advice, major(dev), minor(dev), (unsigned long long)inode, name); if (A(vp)) printf(" [%p]", P(vp)); printf("\n"); } if (print_amap && vme->aref.ar_amap) { printf(" amap - ref: %d fl: 0x%x nsl: %d nuse: %d\n", D(amap, vm_amap)->am_ref, D(amap, vm_amap)->am_flags, D(amap, vm_amap)->am_nslot, D(amap, vm_amap)->am_nused); if (sum) { sum->s_am_nslots += D(amap, vm_amap)->am_nslot; sum->s_am_nusedslots += D(amap, vm_amap)->am_nused; } } /* no access allowed, don't count space */ if ((vme->protection & rwx) == 0) sz = 0; return (sz); } char * findname(kvm_t *kd, struct kbit *vmspace, struct vm_map_entry *vme, struct kbit *vp, struct kbit *vfs, struct kbit *uvm_obj) { static char buf[1024], *name; size_t l; if (UVM_ET_ISOBJ(vme)) { if (A(vfs)) { l = strlen(D(vfs, mount)->mnt_stat.f_mntonname); switch (search_cache(kd, vp, &name, buf, sizeof(buf))) { case 0: /* found something */ if (name - (1 + 11 + l) < buf) break; name--; *name = '/'; /*FALLTHROUGH*/ case 2: /* found nothing */ name -= 11; memcpy(name, " -unknown- ", (size_t)11); name -= l; memcpy(name, D(vfs, mount)->mnt_stat.f_mntonname, l); break; case 1: /* all is well */ if (name - (1 + l) < buf) break; name--; *name = '/'; if (l != 1) { name -= l; memcpy(name, D(vfs, mount)->mnt_stat.f_mntonname, l); } break; } } else if (UVM_OBJ_IS_DEVICE(D(uvm_obj, uvm_object))) { struct kbit kdev; dev_t dev; P(&kdev) = P(uvm_obj); S(&kdev) = sizeof(struct uvm_device); KDEREF(kd, &kdev); dev = D(&kdev, uvm_device)->u_device; name = devname(dev, S_IFCHR); if (name != NULL) snprintf(buf, sizeof(buf), "/dev/%s", name); else snprintf(buf, sizeof(buf), " [ device %d,%d ]", major(dev), minor(dev)); name = buf; } else if (UVM_OBJ_IS_AOBJ(D(uvm_obj, uvm_object))) name = " [ uvm_aobj ]"; else if (UVM_OBJ_IS_VNODE(D(uvm_obj, uvm_object))) name = " [ ?VNODE? ]"; else { snprintf(buf, sizeof(buf), " [ unknown (%p) ]", D(uvm_obj, uvm_object)->pgops); name = buf; } } else if (D(vmspace, vmspace)->vm_maxsaddr <= (caddr_t)vme->start && (D(vmspace, vmspace)->vm_maxsaddr + (size_t)maxssiz) >= (caddr_t)vme->end) { name = " [ stack ]"; } else if (UVM_ET_ISHOLE(vme)) name = " [ hole ]"; else name = " [ anon ]"; return (name); } int search_cache(kvm_t *kd, struct kbit *vp, char **name, char *buf, size_t blen) { struct cache_entry *ce; struct kbit svp; char *o, *e; u_long cid; if (!namecache_loaded) load_name_cache(kd); P(&svp) = P(vp); S(&svp) = sizeof(struct vnode); cid = D(vp, vnode)->v_id; e = &buf[blen - 1]; o = e; do { LIST_FOREACH(ce, &lcache, ce_next) if (ce->ce_vp == P(&svp) && ce->ce_cid == cid) break; if (ce && ce->ce_vp == P(&svp) && ce->ce_cid == cid) { if (o != e) { if (o <= buf) break; *(--o) = '/'; } if (o - ce->ce_nlen <= buf) break; o -= ce->ce_nlen; memcpy(o, ce->ce_name, ce->ce_nlen); P(&svp) = ce->ce_pvp; cid = ce->ce_pcid; } else break; } while (1/*CONSTCOND*/); *e = '\0'; *name = o; if (e == o) return (2); KDEREF(kd, &svp); return (D(&svp, vnode)->v_flag & VROOT); } void load_name_cache(kvm_t *kd) { struct namecache n, *tmp; struct namecache_head nchead; LIST_INIT(&lcache); _KDEREF(kd, nclruhead_addr, &nchead, sizeof(nchead)); tmp = TAILQ_FIRST(&nchead); while (tmp != NULL) { _KDEREF(kd, (u_long)tmp, &n, sizeof(n)); if (n.nc_nlen > 0) { if (n.nc_nlen > 2 || n.nc_name[0] != '.' || (n.nc_nlen != 1 && n.nc_name[1] != '.')) cache_enter(&n); } tmp = TAILQ_NEXT(&n, nc_lru); } namecache_loaded = 1; } void cache_enter(struct namecache *ncp) { struct cache_entry *ce; if (debug & DUMP_NAMEI_CACHE) printf("ncp->nc_vp %10p, ncp->nc_dvp %10p, ncp->nc_nlen " "%3d [%.*s] (nc_dvpid=%lu, nc_vpid=%lu)\n", ncp->nc_vp, ncp->nc_dvp, ncp->nc_nlen, ncp->nc_nlen, ncp->nc_name, ncp->nc_dvpid, ncp->nc_vpid); ce = malloc(sizeof(struct cache_entry)); if (ce == NULL) err(1, "cache_enter"); ce->ce_vp = ncp->nc_vp; ce->ce_pvp = ncp->nc_dvp; ce->ce_cid = ncp->nc_vpid; ce->ce_pcid = ncp->nc_dvpid; ce->ce_nlen = (unsigned)ncp->nc_nlen; strlcpy(ce->ce_name, ncp->nc_name, sizeof(ce->ce_name)); LIST_INSERT_HEAD(&lcache, ce, ce_next); } static void __dead usage(void) { extern char *__progname; fprintf(stderr, "usage: %s [-AadlmPsv] [-D number] " "[-M core] [-N system] [-p pid] [pid ...]\n", __progname); exit(1); } static pid_t strtopid(const char *str) { pid_t pid; errno = 0; pid = (pid_t)strtonum(str, 0, INT_MAX, NULL); if (errno != 0) usage(); return (pid); }