/* $OpenBSD: relayd.c,v 1.187 2021/07/12 15:09:21 beck Exp $ */ /* * Copyright (c) 2007 - 2016 Reyk Floeter * Copyright (c) 2006 Pierre-Yves Ritschard * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "relayd.h" #define MAXIMUM(a, b) (((a) > (b)) ? (a) : (b)) __dead void usage(void); int parent_configure(struct relayd *); void parent_configure_done(struct relayd *); void parent_reload(struct relayd *, u_int, const char *); void parent_sig_handler(int, short, void *); void parent_shutdown(struct relayd *); int parent_dispatch_pfe(int, struct privsep_proc *, struct imsg *); int parent_dispatch_hce(int, struct privsep_proc *, struct imsg *); int parent_dispatch_relay(int, struct privsep_proc *, struct imsg *); int parent_dispatch_ca(int, struct privsep_proc *, struct imsg *); int bindany(struct ctl_bindany *); void parent_tls_ticket_rekey(int, short, void *); struct relayd *relayd_env; static struct privsep_proc procs[] = { { "pfe", PROC_PFE, parent_dispatch_pfe, pfe }, { "hce", PROC_HCE, parent_dispatch_hce, hce }, { "relay", PROC_RELAY, parent_dispatch_relay, relay }, { "ca", PROC_CA, parent_dispatch_ca, ca } }; enum privsep_procid privsep_process; void parent_sig_handler(int sig, short event, void *arg) { struct privsep *ps = arg; switch (sig) { case SIGTERM: case SIGINT: parent_shutdown(ps->ps_env); break; case SIGHUP: log_info("%s: reload requested with SIGHUP", __func__); /* * This is safe because libevent uses async signal handlers * that run in the event loop and not in signal context. */ parent_reload(ps->ps_env, CONFIG_RELOAD, NULL); break; case SIGPIPE: case SIGUSR1: /* ignore */ break; default: fatalx("unexpected signal"); } } __dead void usage(void) { extern char *__progname; fprintf(stderr, "usage: %s [-dnv] [-D macro=value] [-f file]\n", __progname); exit(1); } int main(int argc, char *argv[]) { int c; int debug = 0, verbose = 0; u_int32_t opts = 0; struct relayd *env; struct privsep *ps; const char *conffile = CONF_FILE; enum privsep_procid proc_id = PROC_PARENT; int proc_instance = 0; const char *errp, *title = NULL; int argc0 = argc; while ((c = getopt(argc, argv, "dD:nI:P:f:v")) != -1) { switch (c) { case 'd': debug = 2; break; case 'D': if (cmdline_symset(optarg) < 0) log_warnx("could not parse macro definition %s", optarg); break; case 'n': debug = 2; opts |= RELAYD_OPT_NOACTION; break; case 'f': conffile = optarg; break; case 'v': verbose++; opts |= RELAYD_OPT_VERBOSE; break; case 'P': title = optarg; proc_id = proc_getid(procs, nitems(procs), title); if (proc_id == PROC_MAX) fatalx("invalid process name"); break; case 'I': proc_instance = strtonum(optarg, 0, PROC_MAX_INSTANCES, &errp); if (errp) fatalx("invalid process instance"); break; default: usage(); } } /* log to stderr until daemonized */ log_init(debug ? debug : 1, LOG_DAEMON); argc -= optind; if (argc > 0) usage(); if ((env = calloc(1, sizeof(*env))) == NULL || (ps = calloc(1, sizeof(*ps))) == NULL) exit(1); relayd_env = env; env->sc_ps = ps; ps->ps_env = env; TAILQ_INIT(&ps->ps_rcsocks); env->sc_conffile = conffile; env->sc_conf.opts = opts; TAILQ_INIT(&env->sc_hosts); TAILQ_INIT(&env->sc_sessions); env->sc_rtable = getrtable(); /* initialize the TLS session id to a random key for all relay procs */ arc4random_buf(env->sc_conf.tls_sid, sizeof(env->sc_conf.tls_sid)); if (parse_config(env->sc_conffile, env) == -1) exit(1); if (debug) env->sc_conf.opts |= RELAYD_OPT_LOGUPDATE; if (geteuid()) errx(1, "need root privileges"); if ((ps->ps_pw = getpwnam(RELAYD_USER)) == NULL) errx(1, "unknown user %s", RELAYD_USER); log_init(debug, LOG_DAEMON); log_setverbose(verbose); if (env->sc_conf.opts & RELAYD_OPT_NOACTION) ps->ps_noaction = 1; ps->ps_instances[PROC_RELAY] = env->sc_conf.prefork_relay; ps->ps_instances[PROC_CA] = env->sc_conf.prefork_relay; ps->ps_instance = proc_instance; if (title != NULL) ps->ps_title[proc_id] = title; /* only the parent returns */ proc_init(ps, procs, nitems(procs), debug, argc0, argv, proc_id); log_procinit("parent"); if (!debug && daemon(1, 0) == -1) err(1, "failed to daemonize"); if (ps->ps_noaction == 0) log_info("startup"); if (unveil("/", "rx") == -1) err(1, "unveil /"); if (unveil(NULL, NULL) == -1) err(1, "unveil"); event_init(); signal_set(&ps->ps_evsigint, SIGINT, parent_sig_handler, ps); signal_set(&ps->ps_evsigterm, SIGTERM, parent_sig_handler, ps); signal_set(&ps->ps_evsighup, SIGHUP, parent_sig_handler, ps); signal_set(&ps->ps_evsigpipe, SIGPIPE, parent_sig_handler, ps); signal_set(&ps->ps_evsigusr1, SIGUSR1, parent_sig_handler, ps); signal_add(&ps->ps_evsigint, NULL); signal_add(&ps->ps_evsigterm, NULL); signal_add(&ps->ps_evsighup, NULL); signal_add(&ps->ps_evsigpipe, NULL); signal_add(&ps->ps_evsigusr1, NULL); proc_connect(ps); relay_http(NULL); if (load_config(env->sc_conffile, env) == -1) { proc_kill(env->sc_ps); exit(1); } if (env->sc_conf.opts & RELAYD_OPT_NOACTION) { fprintf(stderr, "configuration OK\n"); proc_kill(env->sc_ps); exit(0); } if (env->sc_conf.flags & (F_TLS|F_TLSCLIENT)) ssl_init(env); /* rekey the TLS tickets before pushing the config */ parent_tls_ticket_rekey(0, 0, env); if (parent_configure(env) == -1) fatalx("configuration failed"); init_routes(env); event_dispatch(); parent_shutdown(env); /* NOTREACHED */ return (0); } int parent_configure(struct relayd *env) { struct table *tb; struct rdr *rdr; struct router *rt; struct protocol *proto; struct relay *rlay; int id; int ret = -1; TAILQ_FOREACH(tb, env->sc_tables, entry) config_settable(env, tb); TAILQ_FOREACH(rdr, env->sc_rdrs, entry) config_setrdr(env, rdr); TAILQ_FOREACH(rt, env->sc_rts, rt_entry) config_setrt(env, rt); TAILQ_FOREACH(proto, env->sc_protos, entry) config_setproto(env, proto); TAILQ_FOREACH(proto, env->sc_protos, entry) config_setrule(env, proto); TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) { /* Check for TLS Inspection */ if ((rlay->rl_conf.flags & (F_TLS|F_TLSCLIENT)) == (F_TLS|F_TLSCLIENT) && rlay->rl_tls_cacert_fd != -1) rlay->rl_conf.flags |= F_TLSINSPECT; config_setrelay(env, rlay); } /* HCE, PFE, CA and the relays need to reload their config. */ env->sc_reload = 2 + (2 * env->sc_conf.prefork_relay); for (id = 0; id < PROC_MAX; id++) { if (id == privsep_process) continue; proc_compose_imsg(env->sc_ps, id, -1, IMSG_CFG_DONE, -1, -1, &env->sc_conf, sizeof(env->sc_conf)); } ret = 0; config_purge(env, CONFIG_ALL & ~CONFIG_RELAYS); return (ret); } void parent_reload(struct relayd *env, u_int reset, const char *filename) { if (env->sc_reload) { log_debug("%s: already in progress: %d pending", __func__, env->sc_reload); return; } /* Switch back to the default config file */ if (filename == NULL || *filename == '\0') filename = env->sc_conffile; log_debug("%s: level %d config file %s", __func__, reset, filename); config_purge(env, CONFIG_ALL); if (reset == CONFIG_RELOAD) { if (load_config(filename, env) == -1) { log_debug("%s: failed to load config file %s", __func__, filename); } config_setreset(env, CONFIG_ALL); if (parent_configure(env) == -1) { log_debug("%s: failed to commit config from %s", __func__, filename); } } else config_setreset(env, reset); } void parent_configure_done(struct relayd *env) { int id; if (env->sc_reload == 0) { log_warnx("%s: configuration already finished", __func__); return; } env->sc_reload--; if (env->sc_reload == 0) { for (id = 0; id < PROC_MAX; id++) { if (id == privsep_process) continue; proc_compose(env->sc_ps, id, IMSG_CTL_START, NULL, 0); } } } void parent_shutdown(struct relayd *env) { config_purge(env, CONFIG_ALL); proc_kill(env->sc_ps); control_cleanup(&env->sc_ps->ps_csock); carp_demote_shutdown(); free(env->sc_ps); free(env); log_info("parent terminating, pid %d", getpid()); exit(0); } int parent_dispatch_pfe(int fd, struct privsep_proc *p, struct imsg *imsg) { struct privsep *ps = p->p_ps; struct relayd *env = ps->ps_env; struct ctl_demote demote; struct ctl_netroute crt; u_int v; char *str = NULL; switch (imsg->hdr.type) { case IMSG_DEMOTE: IMSG_SIZE_CHECK(imsg, &demote); memcpy(&demote, imsg->data, sizeof(demote)); carp_demote_set(demote.group, demote.level); break; case IMSG_RTMSG: IMSG_SIZE_CHECK(imsg, &crt); memcpy(&crt, imsg->data, sizeof(crt)); pfe_route(env, &crt); break; case IMSG_CTL_RESET: IMSG_SIZE_CHECK(imsg, &v); memcpy(&v, imsg->data, sizeof(v)); parent_reload(env, v, NULL); break; case IMSG_CTL_RELOAD: if (IMSG_DATA_SIZE(imsg) > 0) str = get_string(imsg->data, IMSG_DATA_SIZE(imsg)); parent_reload(env, CONFIG_RELOAD, str); free(str); break; case IMSG_CTL_SHUTDOWN: parent_shutdown(env); break; case IMSG_CFG_DONE: parent_configure_done(env); break; case IMSG_AGENTXSOCK: (void)agentx_setsock(env, p->p_id); break; default: return (-1); } return (0); } int parent_dispatch_hce(int fd, struct privsep_proc *p, struct imsg *imsg) { struct privsep *ps = p->p_ps; struct relayd *env = ps->ps_env; struct ctl_script scr; switch (imsg->hdr.type) { case IMSG_SCRIPT: IMSG_SIZE_CHECK(imsg, &scr); bcopy(imsg->data, &scr, sizeof(scr)); scr.retval = script_exec(env, &scr); proc_compose(ps, PROC_HCE, IMSG_SCRIPT, &scr, sizeof(scr)); break; case IMSG_CFG_DONE: parent_configure_done(env); break; default: return (-1); } return (0); } int parent_dispatch_relay(int fd, struct privsep_proc *p, struct imsg *imsg) { struct privsep *ps = p->p_ps; struct relayd *env = ps->ps_env; struct ctl_bindany bnd; int s; switch (imsg->hdr.type) { case IMSG_BINDANY: IMSG_SIZE_CHECK(imsg, &bnd); bcopy(imsg->data, &bnd, sizeof(bnd)); if (bnd.bnd_proc > env->sc_conf.prefork_relay) fatalx("%s: invalid relay proc", __func__); switch (bnd.bnd_proto) { case IPPROTO_TCP: case IPPROTO_UDP: break; default: fatalx("%s: requested socket " "for invalid protocol", __func__); /* NOTREACHED */ } s = bindany(&bnd); proc_compose_imsg(ps, PROC_RELAY, bnd.bnd_proc, IMSG_BINDANY, -1, s, &bnd.bnd_id, sizeof(bnd.bnd_id)); break; case IMSG_CFG_DONE: parent_configure_done(env); break; default: return (-1); } return (0); } int parent_dispatch_ca(int fd, struct privsep_proc *p, struct imsg *imsg) { struct privsep *ps = p->p_ps; struct relayd *env = ps->ps_env; switch (imsg->hdr.type) { case IMSG_CFG_DONE: parent_configure_done(env); break; default: return (-1); } return (0); } void purge_table(struct relayd *env, struct tablelist *head, struct table *table) { struct host *host; while ((host = TAILQ_FIRST(&table->hosts)) != NULL) { TAILQ_REMOVE(&table->hosts, host, entry); TAILQ_REMOVE(&env->sc_hosts, host, globalentry); if (event_initialized(&host->cte.ev)) { event_del(&host->cte.ev); close(host->cte.s); } ibuf_free(host->cte.buf); tls_free(host->cte.tls); free(host); } free(table->sendbuf); ibuf_free(table->sendbinbuf); tls_config_free(table->tls_cfg); if (head != NULL) TAILQ_REMOVE(head, table, entry); free(table); } void purge_key(char **key, off_t len) { freezero(*key, len); *key = NULL; } void purge_relay(struct relayd *env, struct relay *rlay) { struct rsession *con; struct relay_table *rlt; struct relay_cert *cert, *tmpcert; /* shutdown and remove relay */ if (event_initialized(&rlay->rl_ev)) event_del(&rlay->rl_ev); close(rlay->rl_s); TAILQ_REMOVE(env->sc_relays, rlay, rl_entry); /* cleanup sessions */ while ((con = SPLAY_ROOT(&rlay->rl_sessions)) != NULL) relay_close(con, NULL, 0); /* cleanup relay */ if (rlay->rl_bev != NULL) bufferevent_free(rlay->rl_bev); if (rlay->rl_dstbev != NULL) bufferevent_free(rlay->rl_dstbev); purge_key(&rlay->rl_tls_cakey, rlay->rl_conf.tls_cakey_len); if (rlay->rl_tls_pkey != NULL) { EVP_PKEY_free(rlay->rl_tls_pkey); rlay->rl_tls_pkey = NULL; } if (rlay->rl_tls_cacertx509 != NULL) { X509_free(rlay->rl_tls_cacertx509); rlay->rl_tls_cacertx509 = NULL; } if (rlay->rl_tls_capkey != NULL) { EVP_PKEY_free(rlay->rl_tls_capkey); rlay->rl_tls_capkey = NULL; } tls_free(rlay->rl_tls_ctx); tls_config_free(rlay->rl_tls_cfg); tls_config_free(rlay->rl_tls_client_cfg); while ((rlt = TAILQ_FIRST(&rlay->rl_tables))) { TAILQ_REMOVE(&rlay->rl_tables, rlt, rlt_entry); free(rlt); } TAILQ_FOREACH_SAFE(cert, env->sc_certs, cert_entry, tmpcert) { if (rlay->rl_conf.id != cert->cert_relayid) continue; if (cert->cert_fd != -1) close(cert->cert_fd); if (cert->cert_key_fd != -1) close(cert->cert_key_fd); if (cert->cert_ocsp_fd != -1) close(cert->cert_ocsp_fd); if (cert->cert_pkey != NULL) EVP_PKEY_free(cert->cert_pkey); TAILQ_REMOVE(env->sc_certs, cert, cert_entry); free(cert); } free(rlay); } struct kv * kv_add(struct kvtree *keys, char *key, char *value, int unique) { struct kv *kv, *oldkv; if (key == NULL) return (NULL); if ((kv = calloc(1, sizeof(*kv))) == NULL) return (NULL); if ((kv->kv_key = strdup(key)) == NULL) goto fail; if (value != NULL && (kv->kv_value = strdup(value)) == NULL) goto fail; TAILQ_INIT(&kv->kv_children); if ((oldkv = RB_INSERT(kvtree, keys, kv)) != NULL) { /* * return error if the key should occur only once, * or add it to a list attached to the key's node. */ if (unique) goto fail; TAILQ_INSERT_TAIL(&oldkv->kv_children, kv, kv_entry); kv->kv_parent = oldkv; } return (kv); fail: free(kv->kv_key); free(kv->kv_value); free(kv); return (NULL); } int kv_set(struct kv *kv, char *fmt, ...) { va_list ap; char *value = NULL; struct kv *ckv; va_start(ap, fmt); if (vasprintf(&value, fmt, ap) == -1) return (-1); va_end(ap); /* Remove all children */ while ((ckv = TAILQ_FIRST(&kv->kv_children)) != NULL) { TAILQ_REMOVE(&kv->kv_children, ckv, kv_entry); kv_free(ckv); free(ckv); } /* Set the new value */ free(kv->kv_value); kv->kv_value = value; return (0); } int kv_setkey(struct kv *kv, char *fmt, ...) { va_list ap; char *key = NULL; va_start(ap, fmt); if (vasprintf(&key, fmt, ap) == -1) return (-1); va_end(ap); free(kv->kv_key); kv->kv_key = key; return (0); } void kv_delete(struct kvtree *keys, struct kv *kv) { struct kv *ckv; RB_REMOVE(kvtree, keys, kv); /* Remove all children */ while ((ckv = TAILQ_FIRST(&kv->kv_children)) != NULL) { TAILQ_REMOVE(&kv->kv_children, ckv, kv_entry); kv_free(ckv); free(ckv); } kv_free(kv); free(kv); } struct kv * kv_extend(struct kvtree *keys, struct kv *kv, char *value) { char *newvalue; if (kv == NULL) { return (NULL); } else if (kv->kv_value != NULL) { if (asprintf(&newvalue, "%s%s", kv->kv_value, value) == -1) return (NULL); free(kv->kv_value); kv->kv_value = newvalue; } else if ((kv->kv_value = strdup(value)) == NULL) return (NULL); return (kv); } void kv_purge(struct kvtree *keys) { struct kv *kv; while ((kv = RB_MIN(kvtree, keys)) != NULL) kv_delete(keys, kv); } void kv_free(struct kv *kv) { /* * This function does not clear memory referenced by * kv_children or stuff on the tailqs. Use kv_delete() instead. */ free(kv->kv_key); free(kv->kv_value); memset(kv, 0, sizeof(*kv)); } struct kv * kv_inherit(struct kv *dst, struct kv *src) { memset(dst, 0, sizeof(*dst)); memcpy(dst, src, sizeof(*dst)); TAILQ_INIT(&dst->kv_children); if (src->kv_key != NULL) { if ((dst->kv_key = strdup(src->kv_key)) == NULL) { kv_free(dst); return (NULL); } } if (src->kv_value != NULL) { if ((dst->kv_value = strdup(src->kv_value)) == NULL) { kv_free(dst); return (NULL); } } if (src->kv_match != NULL) dst->kv_match = src->kv_match; if (src->kv_matchtree != NULL) dst->kv_matchtree = src->kv_matchtree; return (dst); } int kv_log(struct rsession *con, struct kv *kv, u_int16_t labelid, enum direction dir) { char *msg; if (con->se_log == NULL) return (0); if (asprintf(&msg, " %s%s%s%s%s%s%s", dir == RELAY_DIR_REQUEST ? "[" : "{", labelid == 0 ? "" : label_id2name(labelid), labelid == 0 ? "" : ", ", kv->kv_key == NULL ? "(unknown)" : kv->kv_key, kv->kv_value == NULL ? "" : ": ", kv->kv_value == NULL ? "" : kv->kv_value, dir == RELAY_DIR_REQUEST ? "]" : "}") == -1) return (-1); if (evbuffer_add(con->se_log, msg, strlen(msg)) == -1) { free(msg); return (-1); } free(msg); con->se_haslog = 1; return (0); } struct kv * kv_find(struct kvtree *keys, struct kv *kv) { struct kv *match; const char *key; if (kv->kv_flags & KV_FLAG_GLOBBING) { /* Test header key using shell globbing rules */ key = kv->kv_key == NULL ? "" : kv->kv_key; RB_FOREACH(match, kvtree, keys) { if (fnmatch(key, match->kv_key, FNM_CASEFOLD) == 0) break; } } else { /* Fast tree-based lookup only works without globbing */ match = RB_FIND(kvtree, keys, kv); } return (match); } struct kv * kv_find_value(struct kvtree *keys, char *key, const char *value, const char *delim) { struct kv *match, kv; char *val = NULL, *next, *ptr; size_t len; kv.kv_key = key; if ((match = RB_FIND(kvtree, keys, &kv)) == NULL) return (NULL); if (match->kv_value == NULL) return (NULL); if (delim == NULL) { if (strcasecmp(match->kv_value, value) == 0) goto done; } else { if ((val = strdup(match->kv_value)) == NULL) return (NULL); for (next = ptr = val; ptr != NULL; ptr = strsep(&next, delim)) { /* strip whitespace */ ptr += strspn(ptr, " \t"); len = strcspn(ptr, " \t"); if (strncasecmp(ptr, value, len) == 0) goto done; } } /* not matched */ match = NULL; done: #ifdef DEBUG if (match != NULL) DPRINTF("%s: matched %s: %s", __func__, key, value); #endif free(val); return (match); } int kv_cmp(struct kv *a, struct kv *b) { return (strcasecmp(a->kv_key, b->kv_key)); } RB_GENERATE(kvtree, kv, kv_node, kv_cmp); int rule_add(struct protocol *proto, struct relay_rule *rule, const char *rulefile) { struct relay_rule *r = NULL; struct kv *kv = NULL; FILE *fp = NULL; char buf[BUFSIZ]; int ret = -1; u_int i; for (i = 0; i < KEY_TYPE_MAX; i++) { kv = &rule->rule_kv[i]; if (kv->kv_type != i) continue; switch (kv->kv_option) { case KEY_OPTION_LOG: /* log action needs a key or a file to be specified */ if (kv->kv_key == NULL && rulefile == NULL && (kv->kv_key = strdup("*")) == NULL) goto fail; break; default: break; } switch (kv->kv_type) { case KEY_TYPE_QUERY: case KEY_TYPE_PATH: case KEY_TYPE_URL: if (rule->rule_dir != RELAY_DIR_REQUEST) goto fail; break; default: break; } if (kv->kv_value != NULL && strchr(kv->kv_value, '$') != NULL) kv->kv_flags |= KV_FLAG_MACRO; if (kv->kv_key != NULL && strpbrk(kv->kv_key, "*?[") != NULL) kv->kv_flags |= KV_FLAG_GLOBBING; } if (rulefile == NULL) { TAILQ_INSERT_TAIL(&proto->rules, rule, rule_entry); return (0); } if ((fp = fopen(rulefile, "r")) == NULL) goto fail; while (fgets(buf, sizeof(buf), fp) != NULL) { /* strip whitespace and newline characters */ buf[strcspn(buf, "\r\n\t ")] = '\0'; if (!strlen(buf) || buf[0] == '#') continue; if ((r = rule_inherit(rule)) == NULL) goto fail; for (i = 0; i < KEY_TYPE_MAX; i++) { kv = &r->rule_kv[i]; if (kv->kv_type != i) continue; free(kv->kv_key); if ((kv->kv_key = strdup(buf)) == NULL) { rule_free(r); free(r); goto fail; } } TAILQ_INSERT_TAIL(&proto->rules, r, rule_entry); } ret = 0; rule_free(rule); free(rule); fail: if (fp != NULL) fclose(fp); return (ret); } struct relay_rule * rule_inherit(struct relay_rule *rule) { struct relay_rule *r; u_int i; struct kv *kv; if ((r = calloc(1, sizeof(*r))) == NULL) return (NULL); memcpy(r, rule, sizeof(*r)); for (i = 0; i < KEY_TYPE_MAX; i++) { kv = &rule->rule_kv[i]; if (kv->kv_type != i) continue; if (kv_inherit(&r->rule_kv[i], kv) == NULL) { free(r); return (NULL); } } if (r->rule_label > 0) label_ref(r->rule_label); if (r->rule_tag > 0) tag_ref(r->rule_tag); if (r->rule_tagged > 0) tag_ref(r->rule_tagged); return (r); } void rule_free(struct relay_rule *rule) { u_int i; for (i = 0; i < KEY_TYPE_MAX; i++) kv_free(&rule->rule_kv[i]); if (rule->rule_label > 0) label_unref(rule->rule_label); if (rule->rule_tag > 0) tag_unref(rule->rule_tag); if (rule->rule_tagged > 0) tag_unref(rule->rule_tagged); } void rule_delete(struct relay_rules *rules, struct relay_rule *rule) { TAILQ_REMOVE(rules, rule, rule_entry); rule_free(rule); free(rule); } void rule_settable(struct relay_rules *rules, struct relay_table *rlt) { struct relay_rule *r; char pname[TABLE_NAME_SIZE]; if (rlt->rlt_table == NULL || strlcpy(pname, rlt->rlt_table->conf.name, sizeof(pname)) >= sizeof(pname)) return; pname[strcspn(pname, ":")] = '\0'; TAILQ_FOREACH(r, rules, rule_entry) { if (r->rule_tablename[0] && strcmp(pname, r->rule_tablename) == 0) r->rule_table = rlt; } } /* * Utility functions */ struct host * host_find(struct relayd *env, objid_t id) { struct table *table; struct host *host; TAILQ_FOREACH(table, env->sc_tables, entry) TAILQ_FOREACH(host, &table->hosts, entry) if (host->conf.id == id) return (host); return (NULL); } struct table * table_find(struct relayd *env, objid_t id) { struct table *table; TAILQ_FOREACH(table, env->sc_tables, entry) if (table->conf.id == id) return (table); return (NULL); } struct rdr * rdr_find(struct relayd *env, objid_t id) { struct rdr *rdr; TAILQ_FOREACH(rdr, env->sc_rdrs, entry) if (rdr->conf.id == id) return (rdr); return (NULL); } struct relay * relay_find(struct relayd *env, objid_t id) { struct relay *rlay; TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) if (rlay->rl_conf.id == id) return (rlay); return (NULL); } struct protocol * proto_find(struct relayd *env, objid_t id) { struct protocol *p; TAILQ_FOREACH(p, env->sc_protos, entry) if (p->id == id) return (p); return (NULL); } struct rsession * session_find(struct relayd *env, objid_t id) { struct relay *rlay; struct rsession *con; TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) SPLAY_FOREACH(con, session_tree, &rlay->rl_sessions) if (con->se_id == id) return (con); return (NULL); } struct netroute * route_find(struct relayd *env, objid_t id) { struct netroute *nr; TAILQ_FOREACH(nr, env->sc_routes, nr_route) if (nr->nr_conf.id == id) return (nr); return (NULL); } struct router * router_find(struct relayd *env, objid_t id) { struct router *rt; TAILQ_FOREACH(rt, env->sc_rts, rt_entry) if (rt->rt_conf.id == id) return (rt); return (NULL); } struct host * host_findbyname(struct relayd *env, const char *name) { struct table *table; struct host *host; TAILQ_FOREACH(table, env->sc_tables, entry) TAILQ_FOREACH(host, &table->hosts, entry) if (strcmp(host->conf.name, name) == 0) return (host); return (NULL); } struct table * table_findbyname(struct relayd *env, const char *name) { struct table *table; TAILQ_FOREACH(table, env->sc_tables, entry) if (strcmp(table->conf.name, name) == 0) return (table); return (NULL); } struct table * table_findbyconf(struct relayd *env, struct table *tb) { struct table *table; struct table_config a, b; bcopy(&tb->conf, &a, sizeof(a)); a.id = a.rdrid = 0; a.flags &= ~(F_USED|F_BACKUP); TAILQ_FOREACH(table, env->sc_tables, entry) { bcopy(&table->conf, &b, sizeof(b)); b.id = b.rdrid = 0; b.flags &= ~(F_USED|F_BACKUP); /* * Compare two tables and return the existing table if * the configuration seems to be the same. */ if (bcmp(&a, &b, sizeof(b)) == 0 && ((tb->sendbuf == NULL && table->sendbuf == NULL) || (tb->sendbuf != NULL && table->sendbuf != NULL && strcmp(tb->sendbuf, table->sendbuf) == 0))) return (table); } return (NULL); } struct rdr * rdr_findbyname(struct relayd *env, const char *name) { struct rdr *rdr; TAILQ_FOREACH(rdr, env->sc_rdrs, entry) if (strcmp(rdr->conf.name, name) == 0) return (rdr); return (NULL); } struct relay * relay_findbyname(struct relayd *env, const char *name) { struct relay *rlay; TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) if (strcmp(rlay->rl_conf.name, name) == 0) return (rlay); return (NULL); } struct relay * relay_findbyaddr(struct relayd *env, struct relay_config *rc) { struct relay *rlay; TAILQ_FOREACH(rlay, env->sc_relays, rl_entry) if (bcmp(&rlay->rl_conf.ss, &rc->ss, sizeof(rc->ss)) == 0 && rlay->rl_conf.port == rc->port) return (rlay); return (NULL); } EVP_PKEY * pkey_find(struct relayd *env, char * hash) { struct ca_pkey *pkey; TAILQ_FOREACH(pkey, env->sc_pkeys, pkey_entry) if (strcmp(hash, pkey->pkey_hash) == 0) return (pkey->pkey); return (NULL); } struct ca_pkey * pkey_add(struct relayd *env, EVP_PKEY *pkey, char *hash) { struct ca_pkey *ca_pkey; if (env->sc_pkeys == NULL) fatalx("pkeys"); if ((ca_pkey = calloc(1, sizeof(*ca_pkey))) == NULL) return (NULL); ca_pkey->pkey = pkey; if (strlcpy(ca_pkey->pkey_hash, hash, sizeof(ca_pkey->pkey_hash)) >= sizeof(ca_pkey->pkey_hash)) { free(ca_pkey); return (NULL); } TAILQ_INSERT_TAIL(env->sc_pkeys, ca_pkey, pkey_entry); return (ca_pkey); } struct relay_cert * cert_add(struct relayd *env, objid_t id) { static objid_t last_cert_id = 0; struct relay_cert *cert; if ((cert = calloc(1, sizeof(*cert))) == NULL) return (NULL); if (id == 0) id = ++last_cert_id; if (id == INT_MAX) { log_warnx("too many tls keypairs defined"); free(cert); return (NULL); } cert->cert_id = id; cert->cert_fd = -1; cert->cert_key_fd = -1; cert->cert_ocsp_fd = -1; TAILQ_INSERT_TAIL(env->sc_certs, cert, cert_entry); return (cert); } struct relay_cert * cert_find(struct relayd *env, objid_t id) { struct relay_cert *cert; TAILQ_FOREACH(cert, env->sc_certs, cert_entry) if (cert->cert_id == id) return (cert); return (NULL); } char * relay_load_fd(int fd, off_t *len) { char *buf = NULL; struct stat st; off_t size; ssize_t rv; int err; if (fstat(fd, &st) != 0) goto fail; size = st.st_size; if ((buf = calloc(1, size + 1)) == NULL) goto fail; if ((rv = pread(fd, buf, size, 0)) != size) goto fail; close(fd); *len = size; return (buf); fail: err = errno; free(buf); close(fd); errno = err; return (NULL); } int relay_load_certfiles(struct relayd *env, struct relay *rlay, const char *name) { char certfile[PATH_MAX]; char hbuf[PATH_MAX]; struct protocol *proto = rlay->rl_proto; struct relay_cert *cert; int useport = htons(rlay->rl_conf.port); int cert_fd = -1, key_fd = -1, ocsp_fd = -1; if (rlay->rl_conf.flags & F_TLSCLIENT) { if (strlen(proto->tlsca) && rlay->rl_tls_ca_fd == -1) { if ((rlay->rl_tls_ca_fd = open(proto->tlsca, O_RDONLY)) == -1) return (-1); log_debug("%s: using ca %s", __func__, proto->tlsca); } if (strlen(proto->tlscacert) && rlay->rl_tls_cacert_fd == -1) { if ((rlay->rl_tls_cacert_fd = open(proto->tlscacert, O_RDONLY)) == -1) return (-1); log_debug("%s: using ca certificate %s", __func__, proto->tlscacert); } if (strlen(proto->tlscakey) && !rlay->rl_conf.tls_cakey_len && proto->tlscapass != NULL) { if ((rlay->rl_tls_cakey = ssl_load_key(env, proto->tlscakey, &rlay->rl_conf.tls_cakey_len, proto->tlscapass)) == NULL) return (-1); log_debug("%s: using ca key %s", __func__, proto->tlscakey); } } if ((rlay->rl_conf.flags & F_TLS) == 0) return (0); if (name == NULL && print_host(&rlay->rl_conf.ss, hbuf, sizeof(hbuf)) == NULL) goto fail; else if (name != NULL && strlcpy(hbuf, name, sizeof(hbuf)) >= sizeof(hbuf)) goto fail; if (snprintf(certfile, sizeof(certfile), "/etc/ssl/%s:%u.crt", hbuf, useport) == -1) goto fail; if ((cert_fd = open(certfile, O_RDONLY)) == -1) { if (snprintf(certfile, sizeof(certfile), "/etc/ssl/%s.crt", hbuf) == -1) goto fail; if ((cert_fd = open(certfile, O_RDONLY)) == -1) goto fail; useport = 0; } log_debug("%s: using certificate %s", __func__, certfile); if (useport) { if (snprintf(certfile, sizeof(certfile), "/etc/ssl/private/%s:%u.key", hbuf, useport) == -1) goto fail; } else { if (snprintf(certfile, sizeof(certfile), "/etc/ssl/private/%s.key", hbuf) == -1) goto fail; } if ((key_fd = open(certfile, O_RDONLY)) == -1) goto fail; log_debug("%s: using private key %s", __func__, certfile); if (useport) { if (snprintf(certfile, sizeof(certfile), "/etc/ssl/%s:%u.ocsp", hbuf, useport) == -1) goto fail; } else { if (snprintf(certfile, sizeof(certfile), "/etc/ssl/%s.ocsp", hbuf) == -1) goto fail; } if ((ocsp_fd = open(certfile, O_RDONLY)) != -1) log_debug("%s: using OCSP staple file %s", __func__, certfile); if ((cert = cert_add(env, 0)) == NULL) goto fail; cert->cert_relayid = rlay->rl_conf.id; cert->cert_fd = cert_fd; cert->cert_key_fd = key_fd; cert->cert_ocsp_fd = ocsp_fd; return (0); fail: if (cert_fd != -1) close(cert_fd); if (key_fd != -1) close(key_fd); if (ocsp_fd != -1) close(ocsp_fd); return (-1); } void event_again(struct event *ev, int fd, short event, void (*fn)(int, short, void *), struct timeval *start, struct timeval *end, void *arg) { struct timeval tv_next, tv_now, tv; getmonotime(&tv_now); bcopy(end, &tv_next, sizeof(tv_next)); timersub(&tv_now, start, &tv_now); timersub(&tv_next, &tv_now, &tv_next); bzero(&tv, sizeof(tv)); if (timercmp(&tv_next, &tv, >)) bcopy(&tv_next, &tv, sizeof(tv)); event_del(ev); event_set(ev, fd, event, fn, arg); event_add(ev, &tv); } int expand_string(char *label, size_t len, const char *srch, const char *repl) { char *tmp; char *p, *q; if ((tmp = calloc(1, len)) == NULL) { log_debug("%s: calloc", __func__); return (-1); } p = q = label; while ((q = strstr(p, srch)) != NULL) { *q = '\0'; if ((strlcat(tmp, p, len) >= len) || (strlcat(tmp, repl, len) >= len)) { log_debug("%s: string too long", __func__); free(tmp); return (-1); } q += strlen(srch); p = q; } if (strlcat(tmp, p, len) >= len) { log_debug("%s: string too long", __func__); free(tmp); return (-1); } (void)strlcpy(label, tmp, len); /* always fits */ free(tmp); return (0); } void translate_string(char *str) { char *reader; char *writer; reader = writer = str; while (*reader) { if (*reader == '\\') { reader++; switch (*reader) { case 'n': *writer++ = '\n'; break; case 'r': *writer++ = '\r'; break; default: *writer++ = *reader; } } else *writer++ = *reader; reader++; } *writer = '\0'; } char * digeststr(enum digest_type type, const u_int8_t *data, size_t len, char *buf) { switch (type) { case DIGEST_SHA1: return (SHA1Data(data, len, buf)); break; case DIGEST_MD5: return (MD5Data(data, len, buf)); break; default: break; } return (NULL); } const char * canonicalize_host(const char *host, char *name, size_t len) { struct sockaddr_in sin4; struct sockaddr_in6 sin6; size_t i, j; size_t plen; char c; if (len < 2) goto fail; /* * Canonicalize an IPv4/6 address */ if (inet_pton(AF_INET, host, &sin4) == 1) return (inet_ntop(AF_INET, &sin4, name, len)); if (inet_pton(AF_INET6, host, &sin6) == 1) return (inet_ntop(AF_INET6, &sin6, name, len)); /* * Canonicalize a hostname */ /* 1. remove repeated dots and convert upper case to lower case */ plen = strlen(host); bzero(name, len); for (i = j = 0; i < plen; i++) { if (j >= (len - 1)) goto fail; c = tolower((unsigned char)host[i]); if ((c == '.') && (j == 0 || name[j - 1] == '.')) continue; name[j++] = c; } /* 2. remove trailing dots */ for (i = j; i > 0; i--) { if (name[i - 1] != '.') break; name[i - 1] = '\0'; j--; } if (j <= 0) goto fail; return (name); fail: errno = EINVAL; return (NULL); } int parse_url(const char *url, char **protoptr, char **hostptr, char **pathptr) { char *p, *proto = NULL, *host = NULL, *path = NULL; /* return error if it is not a URL */ if ((p = strstr(url, ":/")) == NULL || (strcspn(url, ":/") != (size_t)(p - url))) return (-1); /* get protocol */ if ((proto = strdup(url)) == NULL) goto fail; p = proto + (p - url); /* get host */ p += strspn(p, ":/"); if (*p == '\0' || (host = strdup(p)) == NULL) goto fail; *p = '\0'; /* find and copy path or default to "/" */ if ((p = strchr(host, '/')) == NULL) p = "/"; if ((path = strdup(p)) == NULL) goto fail; /* strip path after host */ host[strcspn(host, "/")] = '\0'; DPRINTF("%s: %s proto %s, host %s, path %s", __func__, url, proto, host, path); *protoptr = proto; *hostptr = host; *pathptr = path; return (0); fail: free(proto); free(host); free(path); return (-1); } int bindany(struct ctl_bindany *bnd) { int s, v; s = -1; v = 1; if (relay_socket_af(&bnd->bnd_ss, bnd->bnd_port) == -1) goto fail; if ((s = socket(bnd->bnd_ss.ss_family, bnd->bnd_proto == IPPROTO_TCP ? SOCK_STREAM : SOCK_DGRAM, bnd->bnd_proto)) == -1) goto fail; if (setsockopt(s, SOL_SOCKET, SO_BINDANY, &v, sizeof(v)) == -1) goto fail; if (bind(s, (struct sockaddr *)&bnd->bnd_ss, bnd->bnd_ss.ss_len) == -1) goto fail; return (s); fail: if (s != -1) close(s); return (-1); } int map6to4(struct sockaddr_storage *in6) { struct sockaddr_storage out4; struct sockaddr_in *sin4 = (struct sockaddr_in *)&out4; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)in6; bzero(sin4, sizeof(*sin4)); sin4->sin_len = sizeof(*sin4); sin4->sin_family = AF_INET; sin4->sin_port = sin6->sin6_port; bcopy(&sin6->sin6_addr.s6_addr[12], &sin4->sin_addr.s_addr, sizeof(sin4->sin_addr)); if (sin4->sin_addr.s_addr == INADDR_ANY || sin4->sin_addr.s_addr == INADDR_BROADCAST || IN_MULTICAST(ntohl(sin4->sin_addr.s_addr))) return (-1); bcopy(&out4, in6, sizeof(*in6)); return (0); } int map4to6(struct sockaddr_storage *in4, struct sockaddr_storage *map) { struct sockaddr_storage out6; struct sockaddr_in *sin4 = (struct sockaddr_in *)in4; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&out6; struct sockaddr_in6 *map6 = (struct sockaddr_in6 *)map; if (sin4->sin_addr.s_addr == INADDR_ANY || sin4->sin_addr.s_addr == INADDR_BROADCAST || IN_MULTICAST(ntohl(sin4->sin_addr.s_addr))) return (-1); bcopy(map6, sin6, sizeof(*sin6)); sin6->sin6_len = sizeof(*sin6); sin6->sin6_family = AF_INET6; sin6->sin6_port = sin4->sin_port; bcopy(&sin4->sin_addr.s_addr, &sin6->sin6_addr.s6_addr[12], sizeof(sin4->sin_addr)); bcopy(&out6, in4, sizeof(*in4)); return (0); } void socket_rlimit(int maxfd) { struct rlimit rl; if (getrlimit(RLIMIT_NOFILE, &rl) == -1) fatal("%s: failed to get resource limit", __func__); log_debug("%s: max open files %llu", __func__, rl.rlim_max); /* * Allow the maximum number of open file descriptors for this * login class (which should be the class "daemon" by default). */ if (maxfd == -1) rl.rlim_cur = rl.rlim_max; else rl.rlim_cur = MAXIMUM(rl.rlim_max, (rlim_t)maxfd); if (setrlimit(RLIMIT_NOFILE, &rl) == -1) fatal("%s: failed to set resource limit", __func__); } char * get_string(u_int8_t *ptr, size_t len) { size_t i; for (i = 0; i < len; i++) if (!(isprint((unsigned char)ptr[i]) || isspace((unsigned char)ptr[i]))) break; return strndup(ptr, i); } void * get_data(u_int8_t *ptr, size_t len) { u_int8_t *data; if ((data = malloc(len)) == NULL) return (NULL); memcpy(data, ptr, len); return (data); } int sockaddr_cmp(struct sockaddr *a, struct sockaddr *b, int prefixlen) { struct sockaddr_in *a4, *b4; struct sockaddr_in6 *a6, *b6; u_int32_t av[4], bv[4], mv[4]; if (a->sa_family == AF_UNSPEC || b->sa_family == AF_UNSPEC) return (0); else if (a->sa_family > b->sa_family) return (1); else if (a->sa_family < b->sa_family) return (-1); if (prefixlen == -1) memset(&mv, 0xff, sizeof(mv)); switch (a->sa_family) { case AF_INET: a4 = (struct sockaddr_in *)a; b4 = (struct sockaddr_in *)b; av[0] = a4->sin_addr.s_addr; bv[0] = b4->sin_addr.s_addr; if (prefixlen != -1) mv[0] = prefixlen2mask(prefixlen); if ((av[0] & mv[0]) > (bv[0] & mv[0])) return (1); if ((av[0] & mv[0]) < (bv[0] & mv[0])) return (-1); break; case AF_INET6: a6 = (struct sockaddr_in6 *)a; b6 = (struct sockaddr_in6 *)b; memcpy(&av, &a6->sin6_addr.s6_addr, 16); memcpy(&bv, &b6->sin6_addr.s6_addr, 16); if (prefixlen != -1) prefixlen2mask6(prefixlen, mv); if ((av[3] & mv[3]) > (bv[3] & mv[3])) return (1); if ((av[3] & mv[3]) < (bv[3] & mv[3])) return (-1); if ((av[2] & mv[2]) > (bv[2] & mv[2])) return (1); if ((av[2] & mv[2]) < (bv[2] & mv[2])) return (-1); if ((av[1] & mv[1]) > (bv[1] & mv[1])) return (1); if ((av[1] & mv[1]) < (bv[1] & mv[1])) return (-1); if ((av[0] & mv[0]) > (bv[0] & mv[0])) return (1); if ((av[0] & mv[0]) < (bv[0] & mv[0])) return (-1); break; } return (0); } u_int32_t prefixlen2mask(u_int8_t prefixlen) { if (prefixlen == 0) return (0); if (prefixlen > 32) prefixlen = 32; return (htonl(0xffffffff << (32 - prefixlen))); } struct in6_addr * prefixlen2mask6(u_int8_t prefixlen, u_int32_t *mask) { static struct in6_addr s6; int i; if (prefixlen > 128) prefixlen = 128; bzero(&s6, sizeof(s6)); for (i = 0; i < prefixlen / 8; i++) s6.s6_addr[i] = 0xff; i = prefixlen % 8; if (i) s6.s6_addr[prefixlen / 8] = 0xff00 >> i; memcpy(mask, &s6, sizeof(s6)); return (&s6); } int accept_reserve(int sockfd, struct sockaddr *addr, socklen_t *addrlen, int reserve, volatile int *counter) { int ret; if (getdtablecount() + reserve + *counter >= getdtablesize()) { errno = EMFILE; return (-1); } if ((ret = accept4(sockfd, addr, addrlen, SOCK_NONBLOCK)) > -1) { (*counter)++; DPRINTF("%s: inflight incremented, now %d",__func__, *counter); } return (ret); } void parent_tls_ticket_rekey(int fd, short events, void *arg) { static struct event rekeyev; struct relayd *env = arg; struct timeval tv; struct relay_ticket_key key; log_debug("%s: rekeying tickets", __func__); key.tt_keyrev = arc4random(); arc4random_buf(key.tt_key, sizeof(key.tt_key)); proc_compose_imsg(env->sc_ps, PROC_RELAY, -1, IMSG_TLSTICKET_REKEY, -1, -1, &key, sizeof(key)); evtimer_set(&rekeyev, parent_tls_ticket_rekey, env); timerclear(&tv); tv.tv_sec = TLS_SESSION_LIFETIME / 4; evtimer_add(&rekeyev, &tv); }