1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
/* Subroutines for insn-output.c for the Gmicro.
Ported by Masanobu Yuhara, Fujitsu Laboratories LTD.
(yuhara@flab.fujitsu.co.jp)
Copyright (C) 1990, 1991, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Among other things, the copyright
notice and this notice must be preserved on all copies.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include <stdio.h>
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
extern char *rtx_name[];
mypr (s, a1, a2, a3, a4, a5)
char *s;
int a1, a2, a3, a4, a5;
{
fprintf (stderr, s, a1, a2, a3, a4, a5);
}
myprcode (i)
int i;
{
if (i < 0 || i > 90)
fprintf (stderr, "code = %d\n", i);
else
fprintf (stderr, "code = %s\n", rtx_name[i]);
}
myabort (i)
int i;
{
fprintf (stderr, "myabort");
myprcode (i);
}
/* This is how to output an ascii string. */
/* See ASM_OUTPUT_ASCII in gmicro.h. */
output_ascii (file, p, size)
FILE *file;
char *p;
int size;
{
int i;
int in_quote = 0;
register int c;
fprintf (file, "\t.sdata ");
for (i = 0; i < size; i++)
{
c = p[i];
if (c >= ' ' && c < 0x7f)
{
if (!in_quote)
{
putc ('"', file);
in_quote = 1;
}
putc (c, file);
}
else
{
if (in_quote)
{
putc ('"', file);
in_quote = 0;
}
fprintf (file, "<%d>", c);
}
}
if (in_quote)
putc ('"', file);
putc ('\n', file);
}
/* call this when GET_CODE (index) is MULT. */
print_scaled_index (file, index)
FILE *file;
register rtx index;
{
register rtx ireg;
int scale;
if (GET_CODE (XEXP (index, 0)) == REG)
{
ireg = XEXP (index, 0);
scale = INTVAL (XEXP (index, 1));
}
else
{
ireg = XEXP (index, 1);
scale = INTVAL (XEXP (index, 0));
}
if (scale == 1)
fprintf (file, "%s", reg_names[REGNO (ireg)]);
else
fprintf (file, "%s*%d", reg_names[REGNO (ireg)], scale);
}
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
register rtx xtmp0, xtmp1, breg, ixreg;
int scale;
int needcomma = 0;
rtx offset;
fprintf (file, "@");
retry:
switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "@");
addr = XEXP (addr, 0);
goto retry;
case REG:
fprintf (file, "%s", reg_names[REGNO (addr)]);
break;
case MULT:
print_scaled_index (file, addr);
break;
case PRE_DEC:
fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS:
xtmp0 = XEXP (addr, 0);
xtmp1 = XEXP (addr, 1);
ixreg = 0; breg = 0;
offset = 0;
if (CONSTANT_ADDRESS_P (xtmp0))
{
offset = xtmp0;
breg = xtmp1;
}
else if (CONSTANT_ADDRESS_P (xtmp1))
{
offset = xtmp1;
breg = xtmp0;
}
else
{
goto NOT_DISP;
}
if (REG_CODE_BASE_P (breg))
goto PRINT_MEM;
if (GET_CODE (breg) == MULT)
{
if (REG_CODE_INDEX_P (XEXP (breg, 0)))
{
ixreg = XEXP (breg, 0);
scale = INTVAL (XEXP (breg, 1));
breg = 0;
}
else
{
ixreg = XEXP (breg, 1);
scale = INTVAL (XEXP (breg, 0));
breg = 0;
}
goto PRINT_MEM;
}
/* GET_CODE (breg) must be PLUS here. */
xtmp0 = XEXP (breg, 0);
xtmp1 = XEXP (breg, 1);
if (REG_CODE_BASE_P (xtmp0))
{
breg = xtmp0;
xtmp0 = xtmp1;
}
else
{
breg = xtmp1;
/* xtmp0 = xtmp0; */
}
if (GET_CODE (xtmp0) == MULT)
{
if (REG_CODE_INDEX_P (XEXP (xtmp0, 0)))
{
ixreg = XEXP (xtmp0, 0);
scale = INTVAL (XEXP (xtmp0, 1));
}
else
{
ixreg = XEXP (xtmp0, 1);
scale = INTVAL (XEXP (xtmp0, 0));
}
}
else
{
ixreg = xtmp0;
scale = 1;
}
goto PRINT_MEM;
NOT_DISP:
if (REG_CODE_BASE_P (xtmp0))
{
breg = xtmp0;
xtmp0 = xtmp1;
}
else if (REG_CODE_BASE_P (xtmp1))
{
breg = xtmp1;
/* xtmp0 = xtmp0; */
}
else
goto NOT_BASE;
if (REG_CODE_INDEX_P (xtmp0))
{
ixreg = xtmp0;
scale = 1;
goto PRINT_MEM;
}
else if (CONSTANT_ADDRESS_P (xtmp0))
{
offset = xtmp0;
goto PRINT_MEM;
}
else if (GET_CODE (xtmp0) == MULT)
{
if (REG_CODE_INDEX_P (XEXP (xtmp0, 0)))
{
ixreg = XEXP (xtmp0, 0);
scale = INTVAL (XEXP (xtmp0, 1));
}
else
{
ixreg = XEXP (xtmp0, 1);
scale = INTVAL (XEXP (xtmp0, 0));
}
goto PRINT_MEM;
}
/* GET_CODE (xtmp0) must be PLUS. */
xtmp1 = XEXP (xtmp0, 1);
xtmp0 = XEXP (xtmp0, 0);
if (CONSTANT_ADDRESS_P (xtmp0))
{
offset = xtmp0;
xtmp0 = xtmp1;
}
else
{
offset = xtmp1;
/* xtmp0 = xtmp0; */
}
if (REG_CODE_INDEX_P (xtmp0))
{
ixreg = xtmp0;
}
else
{ /* GET_CODE (xtmp0) must be MULT. */
if (REG_CODE_INDEX_P (XEXP (xtmp0, 0)))
{
ixreg = XEXP (xtmp0, 0);
scale = INTVAL (XEXP (xtmp0, 1));
}
else
{
ixreg = XEXP (xtmp0, 1);
scale = INTVAL (XEXP (xtmp0, 0));
}
}
goto PRINT_MEM;
NOT_BASE:
if (GET_CODE (xtmp0) == PLUS)
{
ixreg = xtmp1;
/* xtmp0 = xtmp0; */
}
else
{
ixreg = xtmp0;
xtmp0 = xtmp1;
}
if (REG_CODE_INDEX_P (ixreg))
{
scale = 1;
}
else if (REG_CODE_INDEX_P (XEXP (ixreg, 0)))
{
scale = INTVAL (XEXP (ixreg, 1));
ixreg = XEXP (ixreg, 0);
}
else
{ /* was else if with no condition. OK ??? */
scale = INTVAL (XEXP (ixreg, 0));
ixreg = XEXP (ixreg, 1);
}
if (REG_CODE_BASE_P (XEXP (xtmp0, 0)))
{
breg = XEXP (xtmp0, 0);
offset = XEXP (xtmp0, 1);
}
else
{
breg = XEXP (xtmp0, 1);
offset = XEXP (xtmp0, 0);
}
PRINT_MEM:
if (breg == 0 && ixreg == 0)
{
output_address (offset);
break;
}
else if (ixreg == 0 && offset == 0)
{
fprintf (file, "%s", reg_names[REGNO (breg)]);
break;
}
else
{
fprintf (file, "(");
if (offset != 0)
{
output_addr_const (file, offset);
needcomma = 1;
}
if (breg != 0)
{
if (needcomma)
fprintf (file, ",");
fprintf (file, "%s", reg_names[REGNO (breg)]);
needcomma = 1;
}
if (ixreg != 0)
{
if (needcomma)
fprintf (file, ",");
fprintf (file, "%s", reg_names[REGNO (ixreg)]);
if (scale != 1)
fprintf (file,"*%d", scale);
}
fprintf (file, ")");
break;
}
default:
output_addr_const (file, addr);
}
}
/* Return a REG that occurs in ADDR with coefficient 1.
ADDR can be effectively incremented by incrementing REG. */
static rtx
find_addr_reg (addr)
rtx addr;
{
while (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == REG)
addr = XEXP (addr, 1);
else if (GET_CODE (XEXP (addr, 0)) == PLUS)
addr = XEXP (addr, 0);
else if (GET_CODE (XEXP (addr, 1)) == PLUS)
addr = XEXP (addr, 1);
}
if (GET_CODE (addr) == REG)
return addr;
return 0;
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static char *
singlemove_string (operands)
rtx *operands;
{
if (FPU_REG_P (operands[0]) || FPU_REG_P (operands[1]))
{
if (GREG_P (operands[0]) || GREG_P (operands[1]))
{
myabort (101); /* Not Supported yet !! */
}
else
{
return "fmov.s %1,%0";
}
}
return "mov.w %1,%0";
}
/* Output assembler code to perform a doubleword move insn
with operands OPERANDS. */
char *
output_move_double (operands)
rtx *operands;
{
enum
{ REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP }
optype0, optype1;
rtx latehalf[2];
rtx addreg0 = 0, addreg1 = 0;
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
optype0 = POPOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else if (GET_CODE (operands[0]) == MEM)
optype0 = MEMOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1]))
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
optype1 = POPOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else if (GET_CODE (operands[1]) == MEM)
optype1 = MEMOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
myabort (102);
/* If one operand is decrementing and one is incrementing
decrement the former register explicitly
and change that operand into ordinary indexing. */
if (optype0 == PUSHOP && optype1 == POPOP)
{
operands[0] = XEXP (XEXP (operands[0], 0), 0);
output_asm_insn ("sub.w %#8,%0", operands);
operands[0] = gen_rtx (MEM, DImode, operands[0]);
optype0 = OFFSOP;
}
if (optype0 == POPOP && optype1 == PUSHOP)
{
operands[1] = XEXP (XEXP (operands[1], 0), 0);
output_asm_insn ("sub.w %#8,%1", operands);
operands[1] = gen_rtx (MEM, DImode, operands[1]);
optype1 = OFFSOP;
}
/* If an operand is an unoffsettable memory ref, find a register
we can increment temporarily to make it refer to the second word. */
if (optype0 == MEMOP)
addreg0 = find_addr_reg (operands[0]);
if (optype1 == MEMOP)
addreg1 = find_addr_reg (operands[1]);
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
{
if (GET_CODE (operands[1]) == CONST_DOUBLE)
split_double (operands[1], &operands[1], &latehalf[1]);
else if (CONSTANT_P (operands[1]))
latehalf[1] = const0_rtx;
}
else
latehalf[1] = operands[1];
/* If insn is effectively movd N(sp),-(sp) then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp. */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = latehalf[1];
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
/* Likewise, the first move would clobber the source of the second one,
do them in the other order. This happens only for registers;
such overlap can't happen in memory unless the user explicitly
sets it up, and that is an undefined circumstance. */
if (optype0 == PUSHOP || optype1 == PUSHOP
|| (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1])))
{
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add.w %#4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub.w %#4,%0", &addreg1);
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Normal case: do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
/* Make any unoffsettable addresses point at high-numbered word. */
if (addreg0)
output_asm_insn ("add.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("add.w %#4,%0", &addreg1);
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Undo the adds we just did. */
if (addreg0)
output_asm_insn ("sub.w %#4,%0", &addreg0);
if (addreg1)
output_asm_insn ("sub.w %#4,%0", &addreg1);
return "";
}
/* Move const_double to floating point register (DF) */
char *
output_move_const_double (operands)
rtx *operands;
{
int code = standard_fpu_constant_p (operands[1]);
if (FPU_REG_P (operands[0]))
{
if (code != 0)
{
static char buf[40];
sprintf (buf, "fmvr from%d,%%0.d", code);
return buf;
}
else
{
return "fmov %1,%0.d";
}
}
else if (GREG_P (operands[0]))
{
rtx xoperands[2];
xoperands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
xoperands[1] = GEN_INT (CONST_DOUBLE_HIGH (operands[1]));
output_asm_insn ("mov.w %1,%0", xoperands);
operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));
return "mov.w %1,%0";
}
else
{
return output_move_double (operands); /* ?????? */
}
}
char *
output_move_const_single (operands)
rtx *operands;
{
int code = standard_fpu_constant_p (operands[1]);
static char buf[40];
if (FPU_REG_P (operands[0]))
{
if (code != 0)
{
sprintf (buf, "fmvr from%d,%%0.s", code);
return buf;
}
return "fmov.s %f1,%0";
}
else
return "mov.w %f1,%0";
}
/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
from the "fmvr" instruction of the Gmicro FPU.
The value, anded with 0xff, gives the code to use in fmovecr
to get the desired constant. */
u.i[0] = CONST_DOUBLE_LOW (x);
u.i[1] = CONST_DOUBLE_HIGH (x);
d = u.d;
if (d == 0.0) /* +0.0 */
return 0x0;
/* Note: there are various other constants available
but it is a nuisance to put in their values here. */
if (d == 1.0) /* +1.0 */
return 0x1;
/*
* Stuff that looks different if it's single or double
*/
if (GET_MODE (x) == SFmode)
{
if (d == S_PI)
return 0x2;
if (d == (S_PI / 2.0))
return 0x3;
if (d == S_E)
return 0x4;
if (d == S_LOGEof2)
return 0x5;
if (d == S_LOGEof10)
return 0x6;
if (d == S_LOG10of2)
return 0x7;
if (d == S_LOG10ofE)
return 0x8;
if (d == S_LOG2ofE)
return 0x9;
}
else
{
if (d == D_PI)
return 0x2;
if (d == (D_PI / 2.0))
return 0x3;
if (d == D_E)
return 0x4;
if (d == D_LOGEof2)
return 0x5;
if (d == D_LOGEof10)
return 0x6;
if (d == D_LOG10of2)
return 0x7;
if (d == D_LOG10ofE)
return 0x8;
if (d == D_LOG2ofE)
return 0x9;
}
return 0;
}
#undef S_PI
#undef D_PI
#undef S_E
#undef D_E
#undef S_LOGEof2
#undef D_LOGEof2
#undef S_LOGEof10
#undef D_LOGEof10
#undef S_LOG10of2
#undef D_LOG10of2
#undef S_LOG10ofE
#undef D_LOG10ofE
#undef S_LOG2ofE
#undef D_LOG2ofE
/* dest should be operand 0 */
/* imm should be operand 1 */
extern char *sub_imm_word ();
char *
add_imm_word (imm, dest, immp)
int imm;
rtx dest, *immp;
{
int is_reg, short_ok;
if (imm < 0)
{
*immp = GEN_INT (-imm);
return sub_imm_word (-imm, dest);
}
if (imm == 0)
return "mov:l.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm <= 8)
return "add:q %1,%0.w";
if (imm < 128)
return "add:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "add:l %1,%0.w";
if (short_ok)
return "add:i %1,%0.w";
return "add %1,%0.w";
}
char *
sub_imm_word (imm, dest, immp)
int imm;
rtx dest, *immp;
{
int is_reg, short_ok;
if (imm < 0 && imm != 0x80000000)
{
*immp = GEN_INT (-imm);
return add_imm_word (-imm, dest);
}
if (imm == 0)
return "mov:z.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm <= 8)
return "sub:q %1,%0.w";
if (imm < 128)
return "sub:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "sub:l %1,%0.w";
if (short_ok)
return "sub:i %1,%0.w";
return "sub %1,%0.w";
}
int
short_format_ok (x)
rtx x;
{
rtx x0, x1;
if (GET_CODE (x) == REG)
return 1;
if (GET_CODE (x) == MEM
&& GET_CODE (XEXP (x, 0)) == PLUS)
{
x0 = XEXP (XEXP (x, 0), 0);
x1 = XEXP (XEXP (x, 0), 1);
return ((GET_CODE (x0) == REG
&& CONSTANT_P (x1)
&& ((unsigned) (INTVAL (x1) + 0x8000) < 0x10000))
||
(GET_CODE (x1) == REG
&& CONSTANT_P (x0)
&& ((unsigned) (INTVAL (x0) + 0x8000) < 0x10000)));
}
return 0;
}
myoutput_sp_adjust (file, op, fsize)
FILE *file;
char *op;
int fsize;
{
if (fsize == 0)
;
else if (fsize < 8)
fprintf (file, "\t%s:q #%d,sp.w\n", op, fsize);
else if (fsize < 128)
fprintf (file, "\t%s:e #%d,sp.w\n", op, fsize);
else
fprintf (file, "\t%s:l #%d,sp.w\n", op, fsize);
}
char *
mov_imm_word (imm, dest)
int imm;
rtx dest;
{
int is_reg, short_ok;
if (imm == 0)
return "mov:z.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm > 0 && imm <= 8)
return "mov:q %1,%0.w";
if (-128 <= imm && imm < 128)
return "mov:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "mov:l %1,%0.w";
if (short_ok)
return "mov:i %1,%0.w";
return "mov %1,%0.w";
}
char *
cmp_imm_word (imm, dest)
int imm;
rtx dest;
{
int is_reg, short_ok;
if (imm == 0)
return "cmp:z.w #0,%0";
short_ok = short_format_ok (dest);
if (short_ok && imm >0 && imm <= 8)
return "cmp:q %1,%0.w";
if (-128 <= imm && imm < 128)
return "cmp:e %1,%0.w";
is_reg = (GET_CODE (dest) == REG);
if (is_reg)
return "cmp:l %1,%0.w";
if (short_ok)
return "cmp:i %1,%0.w";
return "cmp %1,%0.w";
}
char *
push_imm_word (imm)
int imm;
{
if (imm == 0)
return "mov:z.w #0,%-";
if (imm > 0 && imm <= 8)
return "mov:q %1,%-.w";
if (-128 <= imm && imm < 128)
return "mov:e %1,%-.w";
return "mov:g %1,%-.w";
/* In some cases, g-format may be better than I format.??
return "mov %1,%0.w";
*/
}
my_signed_comp (insn)
rtx insn;
{
rtx my_insn;
my_insn = NEXT_INSN (insn);
if (GET_CODE (my_insn) != JUMP_INSN)
{
fprintf (stderr, "my_signed_comp: Not Jump_insn ");
myabort (GET_CODE (my_insn));
}
my_insn = PATTERN (my_insn);
if (GET_CODE (my_insn) != SET)
{
fprintf (stderr, "my_signed_comp: Not Set ");
myabort (GET_CODE (my_insn));
}
my_insn = SET_SRC (my_insn);
if (GET_CODE (my_insn) != IF_THEN_ELSE)
{
fprintf (stderr, "my_signed_comp: Not if_then_else ");
myabort (GET_CODE (my_insn));
}
switch (GET_CODE (XEXP (my_insn, 0)))
{
case NE:
case EQ:
case GE:
case GT:
case LE:
case LT:
return 1;
case GEU:
case GTU:
case LEU:
case LTU:
return 0;
}
fprintf (stderr, "my_signed_comp: Not cccc ");
myabort (GET_CODE (XEXP (my_insn, 0)));
}
|