1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
|
/* Definitions of target machine for GNU compiler, for IBM RS/6000.
Copyright (C) 1992, 93-8, 1999 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Note that some other tm.h files include this one and then override
many of the definitions that relate to assembler syntax. */
/* Names to predefine in the preprocessor for this target machine. */
#define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 -D_LONG_LONG \
-Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
/* Print subsidiary information on the compiler version in use. */
#define TARGET_VERSION ;
/* Default string to use for cpu if not specified. */
#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT ((char *)0)
#endif
/* Tell the assembler to assume that all undefined names are external.
Don't do this until the fixed IBM assembler is more generally available.
When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
will no longer be needed. */
/* #define ASM_SPEC "-u %(asm_cpu)" */
/* Define appropriate architecture macros for preprocessor depending on
target switches. */
#define CPP_SPEC "%{posix: -D_POSIX_SOURCE} %(cpp_cpu)"
/* Common CPP definitions used by CPP_SPEC among the various targets
for handling -mcpu=xxx switches. */
#define CPP_CPU_SPEC \
"%{!mcpu*: \
%{mpower: %{!mpower2: -D_ARCH_PWR}} \
%{mpower2: -D_ARCH_PWR2} \
%{mpowerpc*: -D_ARCH_PPC} \
%{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
%{!mno-power: %{!mpower2: %(cpp_default)}}} \
%{mcpu=common: -D_ARCH_COM} \
%{mcpu=power: -D_ARCH_PWR} \
%{mcpu=power2: -D_ARCH_PWR2} \
%{mcpu=powerpc: -D_ARCH_PPC} \
%{mcpu=rios: -D_ARCH_PWR} \
%{mcpu=rios1: -D_ARCH_PWR} \
%{mcpu=rios2: -D_ARCH_PWR2} \
%{mcpu=rsc: -D_ARCH_PWR} \
%{mcpu=rsc1: -D_ARCH_PWR} \
%{mcpu=401: -D_ARCH_PPC} \
%{mcpu=403: -D_ARCH_PPC} \
%{mcpu=505: -D_ARCH_PPC} \
%{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
%{mcpu=602: -D_ARCH_PPC} \
%{mcpu=603: -D_ARCH_PPC} \
%{mcpu=603e: -D_ARCH_PPC} \
%{mcpu=ec603e: -D_ARCH_PPC} \
%{mcpu=604: -D_ARCH_PPC} \
%{mcpu=604e: -D_ARCH_PPC} \
%{mcpu=620: -D_ARCH_PPC} \
%{mcpu=740: -D_ARCH_PPC} \
%{mcpu=750: -D_ARCH_PPC} \
%{mcpu=801: -D_ARCH_PPC} \
%{mcpu=821: -D_ARCH_PPC} \
%{mcpu=823: -D_ARCH_PPC} \
%{mcpu=860: -D_ARCH_PPC}"
#ifndef CPP_DEFAULT_SPEC
#define CPP_DEFAULT_SPEC "-D_ARCH_PWR"
#endif
#ifndef CPP_SYSV_SPEC
#define CPP_SYSV_SPEC ""
#endif
#ifndef CPP_ENDIAN_SPEC
#define CPP_ENDIAN_SPEC ""
#endif
#ifndef CPP_ENDIAN_DEFAULT_SPEC
#define CPP_ENDIAN_DEFAULT_SPEC ""
#endif
#ifndef CPP_SYSV_DEFAULT_SPEC
#define CPP_SYSV_DEFAULT_SPEC ""
#endif
/* Common ASM definitions used by ASM_SPEC among the various targets
for handling -mcpu=xxx switches. */
#define ASM_CPU_SPEC \
"%{!mcpu*: \
%{mpower: %{!mpower2: -mpwr}} \
%{mpower2: -mpwrx} \
%{mpowerpc*: -mppc} \
%{mno-power: %{!mpowerpc*: -mcom}} \
%{!mno-power: %{!mpower2: %(asm_default)}}} \
%{mcpu=common: -mcom} \
%{mcpu=power: -mpwr} \
%{mcpu=power2: -mpwrx} \
%{mcpu=powerpc: -mppc} \
%{mcpu=rios: -mpwr} \
%{mcpu=rios1: -mpwr} \
%{mcpu=rios2: -mpwrx} \
%{mcpu=rsc: -mpwr} \
%{mcpu=rsc1: -mpwr} \
%{mcpu=401: -mppc} \
%{mcpu=403: -mppc} \
%{mcpu=505: -mppc} \
%{mcpu=601: -m601} \
%{mcpu=602: -mppc} \
%{mcpu=603: -mppc} \
%{mcpu=603e: -mppc} \
%{mcpu=ec603e: -mppc} \
%{mcpu=604: -mppc} \
%{mcpu=604e: -mppc} \
%{mcpu=620: -mppc} \
%{mcpu=740: -mppc} \
%{mcpu=750: -mppc} \
%{mcpu=801: -mppc} \
%{mcpu=821: -mppc} \
%{mcpu=823: -mppc} \
%{mcpu=860: -mppc}"
#ifndef ASM_DEFAULT_SPEC
#define ASM_DEFAULT_SPEC ""
#endif
/* This macro defines names of additional specifications to put in the specs
that can be used in various specifications like CC1_SPEC. Its definition
is an initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
specification name, and a string constant that used by the GNU CC driver
program.
Do not define this macro if it does not need to do anything. */
#ifndef SUBTARGET_EXTRA_SPECS
#define SUBTARGET_EXTRA_SPECS
#endif
#define EXTRA_SPECS \
{ "cpp_cpu", CPP_CPU_SPEC }, \
{ "cpp_default", CPP_DEFAULT_SPEC }, \
{ "cpp_sysv", CPP_SYSV_SPEC }, \
{ "cpp_sysv_default", CPP_SYSV_DEFAULT_SPEC }, \
{ "cpp_endian_default", CPP_ENDIAN_DEFAULT_SPEC }, \
{ "cpp_endian", CPP_ENDIAN_SPEC }, \
{ "asm_cpu", ASM_CPU_SPEC }, \
{ "asm_default", ASM_DEFAULT_SPEC }, \
{ "link_syscalls", LINK_SYSCALLS_SPEC }, \
{ "link_libg", LINK_LIBG_SPEC }, \
SUBTARGET_EXTRA_SPECS
/* Default location of syscalls.exp under AIX */
#ifndef CROSS_COMPILE
#define LINK_SYSCALLS_SPEC "-bI:/lib/syscalls.exp"
#else
#define LINK_SYSCALLS_SPEC ""
#endif
/* Default location of libg.exp under AIX */
#ifndef CROSS_COMPILE
#define LINK_LIBG_SPEC "-bexport:/usr/lib/libg.exp"
#else
#define LINK_LIBG_SPEC ""
#endif
/* Define the options for the binder: Start text at 512, align all segments
to 512 bytes, and warn if there is text relocation.
The -bhalt:4 option supposedly changes the level at which ld will abort,
but it also suppresses warnings about multiply defined symbols and is
used by the AIX cc command. So we use it here.
-bnodelcsect undoes a poor choice of default relating to multiply-defined
csects. See AIX documentation for more information about this.
-bM:SRE tells the linker that the output file is Shared REusable. Note
that to actually build a shared library you will also need to specify an
export list with the -Wl,-bE option. */
#define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
%{static:-bnso %(link_syscalls) } \
%{!shared:%{g*: %(link_libg) }} %{shared:-bM:SRE}"
/* Profiled library versions are used by linking with special directories. */
#define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
%{p:-L/lib/profiled -L/usr/lib/profiled} %{!shared:%{g*:-lg}} -lc"
/* gcc must do the search itself to find libgcc.a, not use -l. */
#define LIBGCC_SPEC "libgcc.a%s"
/* Don't turn -B into -L if the argument specifies a relative file name. */
#define RELATIVE_PREFIX_NOT_LINKDIR
/* Architecture type. */
extern int target_flags;
/* Use POWER architecture instructions and MQ register. */
#define MASK_POWER 0x00000001
/* Use POWER2 extensions to POWER architecture. */
#define MASK_POWER2 0x00000002
/* Use PowerPC architecture instructions. */
#define MASK_POWERPC 0x00000004
/* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
#define MASK_PPC_GPOPT 0x00000008
/* Use PowerPC Graphics group optional instructions, e.g. fsel. */
#define MASK_PPC_GFXOPT 0x00000010
/* Use PowerPC-64 architecture instructions. */
#define MASK_POWERPC64 0x00000020
/* Use revised mnemonic names defined for PowerPC architecture. */
#define MASK_NEW_MNEMONICS 0x00000040
/* Disable placing fp constants in the TOC; can be turned on when the
TOC overflows. */
#define MASK_NO_FP_IN_TOC 0x00000080
/* Disable placing symbol+offset constants in the TOC; can be turned on when
the TOC overflows. */
#define MASK_NO_SUM_IN_TOC 0x00000100
/* Output only one TOC entry per module. Normally linking fails if
there are more than 16K unique variables/constants in an executable. With
this option, linking fails only if there are more than 16K modules, or
if there are more than 16K unique variables/constant in a single module.
This is at the cost of having 2 extra loads and one extra store per
function, and one less allocable register. */
#define MASK_MINIMAL_TOC 0x00000200
/* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
#define MASK_64BIT 0x00000400
/* Disable use of FPRs. */
#define MASK_SOFT_FLOAT 0x00000800
/* Enable load/store multiple, even on powerpc */
#define MASK_MULTIPLE 0x00001000
#define MASK_MULTIPLE_SET 0x00002000
/* Use string instructions for block moves */
#define MASK_STRING 0x00004000
#define MASK_STRING_SET 0x00008000
/* Disable update form of load/store */
#define MASK_NO_UPDATE 0x00010000
/* Disable fused multiply/add operations */
#define MASK_NO_FUSED_MADD 0x00020000
#define TARGET_POWER (target_flags & MASK_POWER)
#define TARGET_POWER2 (target_flags & MASK_POWER2)
#define TARGET_POWERPC (target_flags & MASK_POWERPC)
#define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
#define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
#define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
#define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
#define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
#define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
#define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
#define TARGET_64BIT (target_flags & MASK_64BIT)
#define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
#define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
#define TARGET_MULTIPLE_SET (target_flags & MASK_MULTIPLE_SET)
#define TARGET_STRING (target_flags & MASK_STRING)
#define TARGET_STRING_SET (target_flags & MASK_STRING_SET)
#define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
#define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
#define TARGET_32BIT (! TARGET_64BIT)
#define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
#define TARGET_UPDATE (! TARGET_NO_UPDATE)
#define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
/* Pseudo target to indicate whether the object format is ELF
(to get around not having conditional compilation in the md file) */
#ifndef TARGET_ELF
#define TARGET_ELF 0
#endif
/* If this isn't V.4, don't support -mno-toc. */
#ifndef TARGET_NO_TOC
#define TARGET_NO_TOC 0
#define TARGET_TOC 1
#endif
/* Pseudo target to say whether this is Windows NT */
#ifndef TARGET_WINDOWS_NT
#define TARGET_WINDOWS_NT 0
#endif
/* Pseudo target to say whether this is MAC */
#ifndef TARGET_MACOS
#define TARGET_MACOS 0
#endif
/* Pseudo target to say whether this is AIX */
#ifndef TARGET_AIX
#if (TARGET_ELF || TARGET_WINDOWS_NT || TARGET_MACOS)
#define TARGET_AIX 0
#else
#define TARGET_AIX 1
#endif
#endif
#ifndef TARGET_XL_CALL
#define TARGET_XL_CALL 0
#endif
/* Run-time compilation parameters selecting different hardware subsets.
Macro to define tables used to set the flags.
This is a list in braces of pairs in braces,
each pair being { "NAME", VALUE }
where VALUE is the bits to set or minus the bits to clear.
An empty string NAME is used to identify the default VALUE. */
/* This is meant to be redefined in the host dependent files */
#ifndef SUBTARGET_SWITCHES
#define SUBTARGET_SWITCHES
#endif
#define TARGET_SWITCHES \
{{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING}, \
{"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
| MASK_POWER2)}, \
{"no-power2", - MASK_POWER2}, \
{"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
| MASK_STRING)}, \
{"powerpc", MASK_POWERPC}, \
{"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
| MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
{"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
{"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
{"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
{"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
{"powerpc64", MASK_POWERPC64}, \
{"no-powerpc64", - MASK_POWERPC64}, \
{"new-mnemonics", MASK_NEW_MNEMONICS}, \
{"old-mnemonics", -MASK_NEW_MNEMONICS}, \
{"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
| MASK_MINIMAL_TOC)}, \
{"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
{"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
{"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
{"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
{"minimal-toc", MASK_MINIMAL_TOC}, \
{"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
{"no-minimal-toc", - MASK_MINIMAL_TOC}, \
{"hard-float", - MASK_SOFT_FLOAT}, \
{"soft-float", MASK_SOFT_FLOAT}, \
{"multiple", MASK_MULTIPLE | MASK_MULTIPLE_SET}, \
{"no-multiple", - MASK_MULTIPLE}, \
{"no-multiple", MASK_MULTIPLE_SET}, \
{"string", MASK_STRING | MASK_STRING_SET}, \
{"no-string", - MASK_STRING}, \
{"no-string", MASK_STRING_SET}, \
{"update", - MASK_NO_UPDATE}, \
{"no-update", MASK_NO_UPDATE}, \
{"fused-madd", - MASK_NO_FUSED_MADD}, \
{"no-fused-madd", MASK_NO_FUSED_MADD}, \
SUBTARGET_SWITCHES \
{"", TARGET_DEFAULT}}
#define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
/* Processor type. Order must match cpu attribute in MD file. */
enum processor_type
{
PROCESSOR_RIOS1,
PROCESSOR_RIOS2,
PROCESSOR_MPCCORE,
PROCESSOR_PPC403,
PROCESSOR_PPC601,
PROCESSOR_PPC603,
PROCESSOR_PPC604,
PROCESSOR_PPC604e,
PROCESSOR_PPC620,
PROCESSOR_PPC750
};
extern enum processor_type rs6000_cpu;
/* Recast the processor type to the cpu attribute. */
#define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
/* Define generic processor types based upon current deployment. */
#define PROCESSOR_COMMON PROCESSOR_PPC601
#define PROCESSOR_POWER PROCESSOR_RIOS1
#define PROCESSOR_POWERPC PROCESSOR_PPC604
/* Define the default processor. This is overridden by other tm.h files. */
#define PROCESSOR_DEFAULT PROCESSOR_RIOS1
/* Specify the dialect of assembler to use. New mnemonics is dialect one
and the old mnemonics are dialect zero. */
#define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
/* This macro is similar to `TARGET_SWITCHES' but defines names of
command options that have values. Its definition is an
initializer with a subgrouping for each command option.
Each subgrouping contains a string constant, that defines the
fixed part of the option name, and the address of a variable.
The variable, type `char *', is set to the variable part of the
given option if the fixed part matches. The actual option name
is made by appending `-m' to the specified name.
Here is an example which defines `-mshort-data-NUMBER'. If the
given option is `-mshort-data-512', the variable `m88k_short_data'
will be set to the string `"512"'.
extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
/* This is meant to be overridden in target specific files. */
#ifndef SUBTARGET_OPTIONS
#define SUBTARGET_OPTIONS
#endif
#define TARGET_OPTIONS \
{ \
{"cpu=", &rs6000_select[1].string}, \
{"tune=", &rs6000_select[2].string}, \
{"debug-", &rs6000_debug_name}, \
{"debug=", &rs6000_debug_name}, \
SUBTARGET_OPTIONS \
}
/* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
struct rs6000_cpu_select
{
const char *string;
const char *name;
int set_tune_p;
int set_arch_p;
};
extern struct rs6000_cpu_select rs6000_select[];
/* Debug support */
extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
extern int rs6000_debug_stack; /* debug stack applications */
extern int rs6000_debug_arg; /* debug argument handling */
#define TARGET_DEBUG_STACK rs6000_debug_stack
#define TARGET_DEBUG_ARG rs6000_debug_arg
/* Sometimes certain combinations of command options do not make sense
on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for.
On the RS/6000 this is used to define the target cpu type. */
#define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
/* Define this to change the optimizations performed by default. */
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
/* Show we can debug even without a frame pointer. */
#define CAN_DEBUG_WITHOUT_FP
/* target machine storage layout */
/* Define to support cross compilation to an RS6000 target. */
#define REAL_ARITHMETIC
/* Define this macro if it is advisable to hold scalars in registers
in a wider mode than that declared by the program. In such cases,
the value is constrained to be within the bounds of the declared
type, but kept valid in the wider mode. The signedness of the
extension may differ from that of the type. */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
(MODE) = (! TARGET_POWERPC64 ? SImode : DImode);
/* Define this if function arguments should also be promoted using the above
procedure. */
#define PROMOTE_FUNCTION_ARGS
/* Likewise, if the function return value is promoted. */
#define PROMOTE_FUNCTION_RETURN
/* Define this if most significant bit is lowest numbered
in instructions that operate on numbered bit-fields. */
/* That is true on RS/6000. */
#define BITS_BIG_ENDIAN 1
/* Define this if most significant byte of a word is the lowest numbered. */
/* That is true on RS/6000. */
#define BYTES_BIG_ENDIAN 1
/* Define this if most significant word of a multiword number is lowest
numbered.
For RS/6000 we can decide arbitrarily since there are no machine
instructions for them. Might as well be consistent with bits and bytes. */
#define WORDS_BIG_ENDIAN 1
/* number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8
/* Width in bits of a "word", which is the contents of a machine register.
Note that this is not necessarily the width of data type `int';
if using 16-bit ints on a 68000, this would still be 32.
But on a machine with 16-bit registers, this would be 16. */
#define BITS_PER_WORD (! TARGET_POWERPC64 ? 32 : 64)
#define MAX_BITS_PER_WORD 64
/* Width of a word, in units (bytes). */
#define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
#define MIN_UNITS_PER_WORD 4
#define UNITS_PER_FP_WORD 8
/* Type used for ptrdiff_t, as a string used in a declaration. */
#define PTRDIFF_TYPE "int"
/* Type used for wchar_t, as a string used in a declaration. */
#define WCHAR_TYPE "short unsigned int"
/* Width of wchar_t in bits. */
#define WCHAR_TYPE_SIZE 16
/* A C expression for the size in bits of the type `short' on the
target machine. If you don't define this, the default is half a
word. (If this would be less than one storage unit, it is
rounded up to one unit.) */
#define SHORT_TYPE_SIZE 16
/* A C expression for the size in bits of the type `int' on the
target machine. If you don't define this, the default is one
word. */
#define INT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `long' on the
target machine. If you don't define this, the default is one
word. */
#define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
#define MAX_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long long' on the
target machine. If you don't define this, the default is two
words. */
#define LONG_LONG_TYPE_SIZE 64
/* A C expression for the size in bits of the type `char' on the
target machine. If you don't define this, the default is one
quarter of a word. (If this would be less than one storage unit,
it is rounded up to one unit.) */
#define CHAR_TYPE_SIZE BITS_PER_UNIT
/* A C expression for the size in bits of the type `float' on the
target machine. If you don't define this, the default is one
word. */
#define FLOAT_TYPE_SIZE 32
/* A C expression for the size in bits of the type `double' on the
target machine. If you don't define this, the default is two
words. */
#define DOUBLE_TYPE_SIZE 64
/* A C expression for the size in bits of the type `long double' on
the target machine. If you don't define this, the default is two
words. */
#define LONG_DOUBLE_TYPE_SIZE 64
/* Width in bits of a pointer.
See also the macro `Pmode' defined below. */
#define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
#define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
/* Boundary (in *bits*) on which stack pointer should be aligned. */
#define STACK_BOUNDARY (TARGET_32BIT ? 64 : 128)
/* Allocation boundary (in *bits*) for the code of a function. */
#define FUNCTION_BOUNDARY 32
/* No data type wants to be aligned rounder than this. */
#define BIGGEST_ALIGNMENT 64
/* AIX word-aligns FP doubles but doubleword-aligns 64-bit ints. */
#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
(TYPE_MODE (TREE_CODE (TREE_TYPE (FIELD)) == ARRAY_TYPE \
? get_inner_array_type (FIELD) \
: TREE_TYPE (FIELD)) == DFmode \
? MIN ((COMPUTED), 32) : (COMPUTED))
/* Alignment of field after `int : 0' in a structure. */
#define EMPTY_FIELD_BOUNDARY 32
/* Every structure's size must be a multiple of this. */
#define STRUCTURE_SIZE_BOUNDARY 8
/* A bitfield declared as `int' forces `int' alignment for the struct. */
#define PCC_BITFIELD_TYPE_MATTERS 1
/* AIX increases natural record alignment to doubleword if the first
field is an FP double while the FP fields remain word aligned. */
#define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
((TREE_CODE (STRUCT) == RECORD_TYPE \
|| TREE_CODE (STRUCT) == UNION_TYPE \
|| TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
&& TYPE_FIELDS (STRUCT) != 0 \
&& DECL_MODE (TYPE_FIELDS (STRUCT)) == DFmode \
? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
: MAX ((COMPUTED), (SPECIFIED)))
/* Make strings word-aligned so strcpy from constants will be faster. */
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
(TREE_CODE (EXP) == STRING_CST \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Make arrays of chars word-aligned for the same reasons. */
#define DATA_ALIGNMENT(TYPE, ALIGN) \
(TREE_CODE (TYPE) == ARRAY_TYPE \
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
/* Non-zero if move instructions will actually fail to work
when given unaligned data. */
#define STRICT_ALIGNMENT 0
/* Standard register usage. */
/* Number of actual hardware registers.
The hardware registers are assigned numbers for the compiler
from 0 to just below FIRST_PSEUDO_REGISTER.
All registers that the compiler knows about must be given numbers,
even those that are not normally considered general registers.
RS/6000 has 32 fixed-point registers, 32 floating-point registers,
an MQ register, a count register, a link register, and 8 condition
register fields, which we view here as separate registers.
In addition, the difference between the frame and argument pointers is
a function of the number of registers saved, so we need to have a
register for AP that will later be eliminated in favor of SP or FP.
This is a normal register, but it is fixed.
We also create a pseudo register for float/int conversions, that will
really represent the memory location used. It is represented here as
a register, in order to work around problems in allocating stack storage
in inline functions. */
#define FIRST_PSEUDO_REGISTER 77
/* 1 for registers that have pervasive standard uses
and are not available for the register allocator.
On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
cr5 is not supposed to be used.
On System V implementations, r13 is fixed and not available for use. */
#ifndef FIXED_R13
#define FIXED_R13 0
#endif
#define FIXED_REGISTERS \
{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1}
/* 1 for registers not available across function calls.
These must include the FIXED_REGISTERS and also any
registers that can be used without being saved.
The latter must include the registers where values are returned
and the register where structure-value addresses are passed.
Aside from that, you can include as many other registers as you like. */
#define CALL_USED_REGISTERS \
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1}
/* List the order in which to allocate registers. Each register must be
listed once, even those in FIXED_REGISTERS.
We allocate in the following order:
fp0 (not saved or used for anything)
fp13 - fp2 (not saved; incoming fp arg registers)
fp1 (not saved; return value)
fp31 - fp14 (saved; order given to save least number)
cr7, cr6 (not saved or special)
cr1 (not saved, but used for FP operations)
cr0 (not saved, but used for arithmetic operations)
cr4, cr3, cr2 (saved)
r0 (not saved; cannot be base reg)
r9 (not saved; best for TImode)
r11, r10, r8-r4 (not saved; highest used first to make less conflict)
r3 (not saved; return value register)
r31 - r13 (saved; order given to save least number)
r12 (not saved; if used for DImode or DFmode would use r13)
mq (not saved; best to use it if we can)
ctr (not saved; when we have the choice ctr is better)
lr (saved)
cr5, r1, r2, ap, fpmem (fixed) */
#define REG_ALLOC_ORDER \
{32, \
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
33, \
63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
50, 49, 48, 47, 46, \
75, 74, 69, 68, 72, 71, 70, \
0, \
9, 11, 10, 8, 7, 6, 5, 4, \
3, \
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
18, 17, 16, 15, 14, 13, 12, \
64, 66, 65, \
73, 1, 2, 67, 76}
/* True if register is floating-point. */
#define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
/* True if register is a condition register. */
#define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
/* True if register is condition register 0. */
#define CR0_REGNO_P(N) ((N) == 68)
/* True if register is a condition register, but not cr0. */
#define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
/* True if register is an integer register. */
#define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
/* True if register is the temporary memory location used for int/float
conversion. */
#define FPMEM_REGNO_P(N) ((N) == FPMEM_REGNUM)
/* Return number of consecutive hard regs needed starting at reg REGNO
to hold something of mode MODE.
This is ordinarily the length in words of a value of mode MODE
but can be less for certain modes in special long registers.
POWER and PowerPC GPRs hold 32 bits worth;
PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
#define HARD_REGNO_NREGS(REGNO, MODE) \
(FP_REGNO_P (REGNO) || FPMEM_REGNO_P (REGNO) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
For POWER and PowerPC, the GPRs can hold any mode, but the float
registers only can hold floating modes and DImode, and CR register only
can hold CC modes. We cannot put TImode anywhere except general
register and it must be able to fit within the register set. */
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
(FP_REGNO_P (REGNO) ? \
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
|| (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
: CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
: FPMEM_REGNO_P (REGNO) ? ((MODE) == DImode || (MODE) == DFmode) \
: ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
&& GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
: 1)
/* Value is 1 if it is a good idea to tie two pseudo registers
when one has mode MODE1 and one has mode MODE2.
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
for any hard reg, then this must be 0 for correct output. */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == MODE_FLOAT \
? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
: GET_MODE_CLASS (MODE2) == MODE_FLOAT \
? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
: GET_MODE_CLASS (MODE1) == MODE_CC \
? GET_MODE_CLASS (MODE2) == MODE_CC \
: GET_MODE_CLASS (MODE2) == MODE_CC \
? GET_MODE_CLASS (MODE1) == MODE_CC \
: 1)
/* A C expression returning the cost of moving data from a register of class
CLASS1 to one of CLASS2.
On the RS/6000, copying between floating-point and fixed-point
registers is expensive. */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
: (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
: (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
: (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
|| (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
|| (CLASS1) == LINK_OR_CTR_REGS) \
&& ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
|| (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
|| (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
: 2)
/* A C expressions returning the cost of moving data of MODE from a register to
or from memory.
On the RS/6000, bump this up a bit. */
#define MEMORY_MOVE_COST(MODE,CLASS,IN) \
((GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
? 3 : 2) \
+ 4)
/* Specify the cost of a branch insn; roughly the number of extra insns that
should be added to avoid a branch.
Set this to 3 on the RS/6000 since that is roughly the average cost of an
unscheduled conditional branch. */
#define BRANCH_COST 3
/* A C statement (sans semicolon) to update the integer variable COST
based on the relationship between INSN that is dependent on
DEP_INSN through the dependence LINK. The default is to make no
adjustment to COST. On the RS/6000, ignore the cost of anti- and
output-dependencies. In fact, output dependencies on the CR do have
a cost, but it is probably not worthwhile to track it. */
#define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
(COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
/* A C statement (sans semicolon) to update the integer scheduling priority
INSN_PRIORITY (INSN). Reduce the priority to execute the INSN earlier,
increase the priority to execute INSN later. Do not define this macro if
you do not need to adjust the scheduling priorities of insns. */
#define ADJUST_PRIORITY(INSN) \
INSN_PRIORITY (INSN) = rs6000_adjust_priority (INSN, INSN_PRIORITY (INSN))
/* Define this macro to change register usage conditional on target flags.
Set MQ register fixed (already call_used) if not POWER architecture
(RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
64-bit AIX reserves GPR13 for thread-private data.
Conditionally disable FPRs. */
#define CONDITIONAL_REGISTER_USAGE \
{ \
if (! TARGET_POWER) \
fixed_regs[64] = 1; \
if (TARGET_64BIT) \
fixed_regs[13] = call_used_regs[13] = 1; \
if (TARGET_SOFT_FLOAT) \
for (i = 32; i < 64; i++) \
fixed_regs[i] = call_used_regs[i] = 1; \
if ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
&& flag_pic == 1) \
fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
= call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
}
/* Specify the registers used for certain standard purposes.
The values of these macros are register numbers. */
/* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
/* #define PC_REGNUM */
/* Register to use for pushing function arguments. */
#define STACK_POINTER_REGNUM 1
/* Base register for access to local variables of the function. */
#define FRAME_POINTER_REGNUM 31
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms
may be accessed via the stack pointer) in functions that seem suitable.
This is computed in `reload', in reload1.c. */
#define FRAME_POINTER_REQUIRED 0
/* Base register for access to arguments of the function. */
#define ARG_POINTER_REGNUM 67
/* Place to put static chain when calling a function that requires it. */
#define STATIC_CHAIN_REGNUM 11
/* count register number for special purposes */
#define COUNT_REGISTER_REGNUM 66
/* Special register that represents memory, used for float/int conversions. */
#define FPMEM_REGNUM 76
/* Place that structure value return address is placed.
On the RS/6000, it is passed as an extra parameter. */
#define STRUCT_VALUE 0
/* Define the classes of registers for register constraints in the
machine description. Also define ranges of constants.
One of the classes must always be named ALL_REGS and include all hard regs.
If there is more than one class, another class must be named NO_REGS
and contain no registers.
The name GENERAL_REGS must be the name of a class (or an alias for
another name such as ALL_REGS). This is the class of registers
that is allowed by "g" or "r" in a register constraint.
Also, registers outside this class are allocated only when
instructions express preferences for them.
The classes must be numbered in nondecreasing order; that is,
a larger-numbered class must never be contained completely
in a smaller-numbered class.
For any two classes, it is very desirable that there be another
class that represents their union. */
/* The RS/6000 has three types of registers, fixed-point, floating-point,
and condition registers, plus three special registers, MQ, CTR, and the
link register.
However, r0 is special in that it cannot be used as a base register.
So make a class for registers valid as base registers.
Also, cr0 is the only condition code register that can be used in
arithmetic insns, so make a separate class for it.
There is a special 'register' (76), which is not a register, but a
placeholder for memory allocated to convert between floating point and
integral types. This works around a problem where if we allocate memory
with allocate_stack_{local,temp} and the function is an inline function, the
memory allocated will clobber memory in the caller. So we use a special
register, and if that is used, we allocate stack space for it. */
enum reg_class
{
NO_REGS,
BASE_REGS,
GENERAL_REGS,
FLOAT_REGS,
NON_SPECIAL_REGS,
MQ_REGS,
LINK_REGS,
CTR_REGS,
LINK_OR_CTR_REGS,
SPECIAL_REGS,
SPEC_OR_GEN_REGS,
CR0_REGS,
CR_REGS,
NON_FLOAT_REGS,
FPMEM_REGS,
FLOAT_OR_FPMEM_REGS,
ALL_REGS,
LIM_REG_CLASSES
};
#define N_REG_CLASSES (int) LIM_REG_CLASSES
/* Give names of register classes as strings for dump file. */
#define REG_CLASS_NAMES \
{ \
"NO_REGS", \
"BASE_REGS", \
"GENERAL_REGS", \
"FLOAT_REGS", \
"NON_SPECIAL_REGS", \
"MQ_REGS", \
"LINK_REGS", \
"CTR_REGS", \
"LINK_OR_CTR_REGS", \
"SPECIAL_REGS", \
"SPEC_OR_GEN_REGS", \
"CR0_REGS", \
"CR_REGS", \
"NON_FLOAT_REGS", \
"FPMEM_REGS", \
"FLOAT_OR_FPMEM_REGS", \
"ALL_REGS" \
}
/* Define which registers fit in which classes.
This is an initializer for a vector of HARD_REG_SET
of length N_REG_CLASSES. */
#define REG_CLASS_CONTENTS \
{ \
{ 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
{ 0xfffffffe, 0x00000000, 0x00000008 }, /* BASE_REGS */ \
{ 0xffffffff, 0x00000000, 0x00000008 }, /* GENERAL_REGS */ \
{ 0x00000000, 0xffffffff, 0x00000000 }, /* FLOAT_REGS */ \
{ 0xffffffff, 0xffffffff, 0x00000008 }, /* NON_SPECIAL_REGS */ \
{ 0x00000000, 0x00000000, 0x00000001 }, /* MQ_REGS */ \
{ 0x00000000, 0x00000000, 0x00000002 }, /* LINK_REGS */ \
{ 0x00000000, 0x00000000, 0x00000004 }, /* CTR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000006 }, /* LINK_OR_CTR_REGS */ \
{ 0x00000000, 0x00000000, 0x00000007 }, /* SPECIAL_REGS */ \
{ 0xffffffff, 0x00000000, 0x0000000f }, /* SPEC_OR_GEN_REGS */ \
{ 0x00000000, 0x00000000, 0x00000010 }, /* CR0_REGS */ \
{ 0x00000000, 0x00000000, 0x00000ff0 }, /* CR_REGS */ \
{ 0xffffffff, 0x00000000, 0x0000ffff }, /* NON_FLOAT_REGS */ \
{ 0x00000000, 0x00000000, 0x00010000 }, /* FPMEM_REGS */ \
{ 0x00000000, 0xffffffff, 0x00010000 }, /* FLOAT_OR_FPMEM_REGS */ \
{ 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
}
/* The same information, inverted:
Return the class number of the smallest class containing
reg number REGNO. This could be a conditional expression
or could index an array. */
#define REGNO_REG_CLASS(REGNO) \
((REGNO) == 0 ? GENERAL_REGS \
: (REGNO) < 32 ? BASE_REGS \
: FP_REGNO_P (REGNO) ? FLOAT_REGS \
: (REGNO) == 68 ? CR0_REGS \
: CR_REGNO_P (REGNO) ? CR_REGS \
: (REGNO) == 64 ? MQ_REGS \
: (REGNO) == 65 ? LINK_REGS \
: (REGNO) == 66 ? CTR_REGS \
: (REGNO) == 67 ? BASE_REGS \
: (REGNO) == 76 ? FPMEM_REGS \
: NO_REGS)
/* The class value for index registers, and the one for base regs. */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS BASE_REGS
/* Get reg_class from a letter such as appears in the machine description. */
#define REG_CLASS_FROM_LETTER(C) \
((C) == 'f' ? FLOAT_REGS \
: (C) == 'b' ? BASE_REGS \
: (C) == 'h' ? SPECIAL_REGS \
: (C) == 'q' ? MQ_REGS \
: (C) == 'c' ? CTR_REGS \
: (C) == 'l' ? LINK_REGS \
: (C) == 'x' ? CR0_REGS \
: (C) == 'y' ? CR_REGS \
: (C) == 'z' ? FPMEM_REGS \
: NO_REGS)
/* The letters I, J, K, L, M, N, and P in a register constraint string
can be used to stand for particular ranges of immediate operands.
This macro defines what the ranges are.
C is the letter, and VALUE is a constant value.
Return 1 if VALUE is in the range specified by C.
`I' is a signed 16-bit constant
`J' is a constant with only the high-order 16 bits non-zero
`K' is a constant with only the low-order 16 bits non-zero
`L' is a signed 16-bit constant shifted left 16 bits
`M' is a constant that is greater than 31
`N' is a constant that is an exact power of two
`O' is the constant zero
`P' is a constant whose negation is a signed 16-bit constant */
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
: (C) == 'J' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff0000)) == 0 \
: (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
: (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
&& ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
: (C) == 'M' ? (VALUE) > 31 \
: (C) == 'N' ? exact_log2 (VALUE) >= 0 \
: (C) == 'O' ? (VALUE) == 0 \
: (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
: 0)
/* Similar, but for floating constants, and defining letters G and H.
Here VALUE is the CONST_DOUBLE rtx itself.
We flag for special constants when we can copy the constant into
a general register in two insns for DF/DI and one insn for SF.
'H' is used for DI/DF constants that take 3 insns. */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
== ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
: (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
: 0)
/* Optional extra constraints for this machine.
'Q' means that is a memory operand that is just an offset from a reg.
'R' is for AIX TOC entries.
'S' is a constant that can be placed into a 64-bit mask operand
'T' is a consatnt that can be placed into a 32-bit mask operand
'U' is for V.4 small data references. */
#define EXTRA_CONSTRAINT(OP, C) \
((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
: (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
: (C) == 'S' ? mask64_operand (OP, VOIDmode) \
: (C) == 'T' ? mask_operand (OP, VOIDmode) \
: (C) == 'U' ? ((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
&& small_data_operand (OP, GET_MODE (OP))) \
: 0)
/* Given an rtx X being reloaded into a reg required to be
in class CLASS, return the class of reg to actually use.
In general this is just CLASS; but on some machines
in some cases it is preferable to use a more restrictive class.
On the RS/6000, we have to return NO_REGS when we want to reload a
floating-point CONST_DOUBLE to force it to be copied to memory. */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
((GET_CODE (X) == CONST_DOUBLE \
&& GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
? NO_REGS : (CLASS))
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
secondary_reload_class (CLASS, MODE, IN)
/* If we are copying between FP registers and anything else, we need a memory
location. */
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
/* Return the maximum number of consecutive registers
needed to represent mode MODE in a register of class CLASS.
On RS/6000, this is the size of MODE in words,
except in the FP regs, where a single reg is enough for two words. */
#define CLASS_MAX_NREGS(CLASS, MODE) \
(((CLASS) == FLOAT_REGS || (CLASS) == FPMEM_REGS \
|| (CLASS) == FLOAT_OR_FPMEM_REGS) \
? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
/* If defined, gives a class of registers that cannot be used as the
operand of a SUBREG that changes the size of the object. */
#define CLASS_CANNOT_CHANGE_SIZE FLOAT_OR_FPMEM_REGS
/* Stack layout; function entry, exit and calling. */
/* Enumeration to give which calling sequence to use. */
enum rs6000_abi {
ABI_NONE,
ABI_AIX, /* IBM's AIX */
ABI_AIX_NODESC, /* AIX calling sequence minus function descriptors */
ABI_V4, /* System V.4/eabi */
ABI_NT, /* Windows/NT */
ABI_SOLARIS /* Solaris */
};
extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
/* Default ABI to compile code for */
#ifndef DEFAULT_ABI
#define DEFAULT_ABI ABI_AIX
/* The prefix to add to user-visible assembler symbols. */
#define USER_LABEL_PREFIX "."
#endif
/* Structure used to define the rs6000 stack */
typedef struct rs6000_stack {
int first_gp_reg_save; /* first callee saved GP register used */
int first_fp_reg_save; /* first callee saved FP register used */
int lr_save_p; /* true if the link reg needs to be saved */
int cr_save_p; /* true if the CR reg needs to be saved */
int toc_save_p; /* true if the TOC needs to be saved */
int push_p; /* true if we need to allocate stack space */
int calls_p; /* true if the function makes any calls */
int main_p; /* true if this is main */
int main_save_p; /* true if this is main and we need to save args */
int fpmem_p; /* true if float/int conversion temp needed */
enum rs6000_abi abi; /* which ABI to use */
int gp_save_offset; /* offset to save GP regs from initial SP */
int fp_save_offset; /* offset to save FP regs from initial SP */
int lr_save_offset; /* offset to save LR from initial SP */
int cr_save_offset; /* offset to save CR from initial SP */
int toc_save_offset; /* offset to save the TOC pointer */
int varargs_save_offset; /* offset to save the varargs registers */
int main_save_offset; /* offset to save main's args */
int fpmem_offset; /* offset for float/int conversion temp */
int reg_size; /* register size (4 or 8) */
int varargs_size; /* size to hold V.4 args passed in regs */
int vars_size; /* variable save area size */
int parm_size; /* outgoing parameter size */
int main_size; /* size to hold saving main's args */
int save_size; /* save area size */
int fixed_size; /* fixed size of stack frame */
int gp_size; /* size of saved GP registers */
int fp_size; /* size of saved FP registers */
int cr_size; /* size to hold CR if not in save_size */
int lr_size; /* size to hold LR if not in save_size */
int fpmem_size; /* size to hold float/int conversion */
int toc_size; /* size to hold TOC if not in save_size */
int total_size; /* total bytes allocated for stack */
} rs6000_stack_t;
/* Define this if pushing a word on the stack
makes the stack pointer a smaller address. */
#define STACK_GROWS_DOWNWARD
/* Define this if the nominal address of the stack frame
is at the high-address end of the local variables;
that is, each additional local variable allocated
goes at a more negative offset in the frame.
On the RS/6000, we grow upwards, from the area after the outgoing
arguments. */
/* #define FRAME_GROWS_DOWNWARD */
/* Size of the outgoing register save area */
#define RS6000_REG_SAVE (TARGET_32BIT ? 32 : 64)
/* Size of the fixed area on the stack */
#define RS6000_SAVE_AREA (TARGET_32BIT ? 24 : 48)
/* MEM representing address to save the TOC register */
#define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
plus_constant (stack_pointer_rtx, \
(TARGET_32BIT ? 20 : 40)))
/* Offset & size for fpmem stack locations used for converting between
float and integral types. */
extern int rs6000_fpmem_offset;
extern int rs6000_fpmem_size;
/* Size of the V.4 varargs area if needed */
#define RS6000_VARARGS_AREA 0
/* Whether a V.4 varargs area is needed */
extern int rs6000_sysv_varargs_p;
/* Align an address */
#define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
/* Initialize data used by insn expanders. This is called from
init_emit, once for each function, before code is generated. */
#define INIT_EXPANDERS rs6000_init_expanders ()
/* Size of V.4 varargs area in bytes */
#define RS6000_VARARGS_SIZE \
((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
/* Offset within stack frame to start allocating local variables at.
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
first local allocated. Otherwise, it is the offset to the BEGINNING
of the first local allocated.
On the RS/6000, the frame pointer is the same as the stack pointer,
except for dynamic allocations. So we start after the fixed area and
outgoing parameter area. */
#define STARTING_FRAME_OFFSET \
(RS6000_ALIGN (current_function_outgoing_args_size, 8) \
+ RS6000_VARARGS_AREA \
+ RS6000_SAVE_AREA)
/* Offset from the stack pointer register to an item dynamically
allocated on the stack, e.g., by `alloca'.
The default value for this macro is `STACK_POINTER_OFFSET' plus the
length of the outgoing arguments. The default is correct for most
machines. See `function.c' for details. */
#define STACK_DYNAMIC_OFFSET(FUNDECL) \
(RS6000_ALIGN (current_function_outgoing_args_size, 8) \
+ (STACK_POINTER_OFFSET))
/* If we generate an insn to push BYTES bytes,
this says how many the stack pointer really advances by.
On RS/6000, don't define this because there are no push insns. */
/* #define PUSH_ROUNDING(BYTES) */
/* Offset of first parameter from the argument pointer register value.
On the RS/6000, we define the argument pointer to the start of the fixed
area. */
#define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
/* Define this if stack space is still allocated for a parameter passed
in a register. The value is the number of bytes allocated to this
area. */
#define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
/* Define this if the above stack space is to be considered part of the
space allocated by the caller. */
#define OUTGOING_REG_PARM_STACK_SPACE
/* This is the difference between the logical top of stack and the actual sp.
For the RS/6000, sp points past the fixed area. */
#define STACK_POINTER_OFFSET RS6000_SAVE_AREA
/* Define this if the maximum size of all the outgoing args is to be
accumulated and pushed during the prologue. The amount can be
found in the variable current_function_outgoing_args_size. */
#define ACCUMULATE_OUTGOING_ARGS
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack. */
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0.
On RS/6000 an integer value is in r3 and a floating-point value is in
fp1, unless -msoft-float. */
#define FUNCTION_VALUE(VALTYPE, FUNC) \
gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
&& TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
|| POINTER_TYPE_P (VALTYPE) \
? word_mode : TYPE_MODE (VALTYPE), \
TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_HARD_FLOAT ? 33 : 3)
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
#define LIBCALL_VALUE(MODE) \
gen_rtx_REG (MODE, \
GET_MODE_CLASS (MODE) == MODE_FLOAT && TARGET_HARD_FLOAT ? 33 : 3)
/* The definition of this macro implies that there are cases where
a scalar value cannot be returned in registers.
For the RS/6000, any structure or union type is returned in memory, except for
Solaris, which returns structures <= 8 bytes in registers. */
#define RETURN_IN_MEMORY(TYPE) \
(TYPE_MODE (TYPE) == BLKmode \
&& (DEFAULT_ABI != ABI_SOLARIS || int_size_in_bytes (TYPE) > 8))
/* Mode of stack savearea.
FUNCTION is VOIDmode because calling convention maintains SP.
BLOCK needs Pmode for SP.
NONLOCAL needs twice Pmode to maintain both backchain and SP. */
#define STACK_SAVEAREA_MODE(LEVEL) \
(LEVEL == SAVE_FUNCTION ? VOIDmode \
: LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
/* Minimum and maximum general purpose registers used to hold arguments. */
#define GP_ARG_MIN_REG 3
#define GP_ARG_MAX_REG 10
#define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
/* Minimum and maximum floating point registers used to hold arguments. */
#define FP_ARG_MIN_REG 33
#define FP_ARG_AIX_MAX_REG 45
#define FP_ARG_V4_MAX_REG 40
#define FP_ARG_MAX_REG FP_ARG_AIX_MAX_REG
#define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
/* Return registers */
#define GP_ARG_RETURN GP_ARG_MIN_REG
#define FP_ARG_RETURN FP_ARG_MIN_REG
/* Flags for the call/call_value rtl operations set up by function_arg */
#define CALL_NORMAL 0x00000000 /* no special processing */
#define CALL_NT_DLLIMPORT 0x00000001 /* NT, this is a DLL import call */
#define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
#define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
#define CALL_LONG 0x00000008 /* always call indirect */
/* Define cutoff for using external functions to save floating point */
#define FP_SAVE_INLINE(FIRST_REG) ((FIRST_REG) == 62 || (FIRST_REG) == 63)
/* 1 if N is a possible register number for a function value
as seen by the caller.
On RS/6000, this is r3 and fp1. */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_ARG_RETURN || ((N) == FP_ARG_RETURN))
/* 1 if N is a possible register number for function argument passing.
On RS/6000, these are r3-r10 and fp1-fp13. */
#define FUNCTION_ARG_REGNO_P(N) \
(((unsigned)((N) - GP_ARG_MIN_REG) < (unsigned)(GP_ARG_NUM_REG)) \
|| ((unsigned)((N) - FP_ARG_MIN_REG) < (unsigned)(FP_ARG_NUM_REG)))
/* Define a data type for recording info about an argument list
during the scan of that argument list. This data type should
hold all necessary information about the function itself
and about the args processed so far, enough to enable macros
such as FUNCTION_ARG to determine where the next arg should go.
On the RS/6000, this is a structure. The first element is the number of
total argument words, the second is used to store the next
floating-point register number, and the third says how many more args we
have prototype types for.
For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
the next availible GP register, `fregno' is the next available FP
register, and `words' is the number of words used on the stack.
The varargs/stdarg support requires that this structure's size
be a multiple of sizeof(int). */
typedef struct rs6000_args
{
int words; /* # words used for passing GP registers */
int fregno; /* next available FP register */
int nargs_prototype; /* # args left in the current prototype */
int orig_nargs; /* Original value of nargs_prototype */
int prototype; /* Whether a prototype was defined */
int call_cookie; /* Do special things for this call */
int sysv_gregno; /* next available GP register */
} CUMULATIVE_ARGS;
/* Define intermediate macro to compute the size (in registers) of an argument
for the RS/6000. */
#define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
(! (NAMED) ? 0 \
: (MODE) != BLKmode \
? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
: (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
/* Similar, but when scanning the definition of a procedure. We always
set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
#define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
function_arg_advance (&CUM, MODE, TYPE, NAMED)
/* Non-zero if we can use a floating-point register to pass this arg. */
#define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
(GET_MODE_CLASS (MODE) == MODE_FLOAT \
&& (CUM).fregno <= FP_ARG_MAX_REG \
&& TARGET_HARD_FLOAT)
/* Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
On RS/6000 the first eight words of non-FP are normally in registers
and the rest are pushed. The first 13 FP args are in registers.
If this is floating-point and no prototype is specified, we use
both an FP and integer register (or possibly FP reg and stack). Library
functions (when TYPE is zero) always have the proper types for args,
so we can pass the FP value just in one register. emit_library_function
doesn't support EXPR_LIST anyway. */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
function_arg (&CUM, MODE, TYPE, NAMED)
/* For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero. */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
/* A C expression that indicates when an argument must be passed by
reference. If nonzero for an argument, a copy of that argument is
made in memory and a pointer to the argument is passed instead of
the argument itself. The pointer is passed in whatever way is
appropriate for passing a pointer to that type. */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
/* If defined, a C expression which determines whether, and in which
direction, to pad out an argument with extra space. The value
should be of type `enum direction': either `upward' to pad above
the argument, `downward' to pad below, or `none' to inhibit
padding. */
#define FUNCTION_ARG_PADDING(MODE, TYPE) \
(enum direction) function_arg_padding (MODE, TYPE)
/* If defined, a C expression that gives the alignment boundary, in bits,
of an argument with the specified mode and type. If it is not defined,
PARM_BOUNDARY is used for all arguments. */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
function_arg_boundary (MODE, TYPE)
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
CUM is as above.
MODE and TYPE are the mode and type of the current parameter.
PRETEND_SIZE is a variable that should be set to the amount of stack
that must be pushed by the prolog to pretend that our caller pushed
it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed. */
#define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
/* If defined, is a C expression that produces the machine-specific
code for a call to `__builtin_saveregs'. This code will be moved
to the very beginning of the function, before any parameter access
are made. The return value of this function should be an RTX that
contains the value to use as the return of `__builtin_saveregs'.
The argument ARGS is a `tree_list' containing the arguments that
were passed to `__builtin_saveregs'.
If this macro is not defined, the compiler will output an ordinary
call to the library function `__builtin_saveregs'. */
#define EXPAND_BUILTIN_SAVEREGS(ARGS) \
expand_builtin_saveregs (ARGS)
/* This macro generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
#define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
/* Output assembler code to FILE to increment profiler label # LABELNO
for profiling a function entry. */
#define FUNCTION_PROFILER(FILE, LABELNO) \
output_function_profiler ((FILE), (LABELNO));
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
the stack pointer does not matter. No definition is equivalent to
always zero.
On the RS/6000, this is non-zero because we can restore the stack from
its backpointer, which we maintain. */
#define EXIT_IGNORE_STACK 1
/* This macro generates the assembly code for function exit,
on machines that need it. If FUNCTION_EPILOGUE is not defined
then individual return instructions are generated for each
return statement. Args are same as for FUNCTION_PROLOGUE.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
#define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
/* A C compound statement that outputs the assembler code for a thunk function,
used to implement C++ virtual function calls with multiple inheritance. The
thunk acts as a wrapper around a virtual function, adjusting the implicit
object parameter before handing control off to the real function.
First, emit code to add the integer DELTA to the location that contains the
incoming first argument. Assume that this argument contains a pointer, and
is the one used to pass the `this' pointer in C++. This is the incoming
argument *before* the function prologue, e.g. `%o0' on a sparc. The
addition must preserve the values of all other incoming arguments.
After the addition, emit code to jump to FUNCTION, which is a
`FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch
the return address. Hence returning from FUNCTION will return to whoever
called the current `thunk'.
The effect must be as if FUNCTION had been called directly with the adjusted
first argument. This macro is responsible for emitting all of the code for
a thunk function; `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE' are not
invoked.
The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been
extracted from it.) It might possibly be useful on some targets, but
probably not.
If you do not define this macro, the target-independent code in the C++
frontend will generate a less efficient heavyweight thunk that calls
FUNCTION instead of jumping to it. The generic approach does not support
varargs. */
#if TARGET_ELF
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
#endif
/* TRAMPOLINE_TEMPLATE deleted */
/* Length in units of the trampoline for entering a nested function. */
#ifdef __OpenBSD__
/* TRAMPOLINE_SIZE needs to be a constant, because
* the function is not available in libgcc where this is used
* this is the ABI_V4 32bit value.
*/
#define TRAMPOLINE_SIZE 40
#else
#define TRAMPOLINE_SIZE rs6000_trampoline_size ()
#endif
/* Targets redefine this to invoke code to either flush the cache,
or enable stack execution (or both). */
#ifndef FINALIZE_TRAMPOLINE
#define FINALIZE_TRAMPOLINE(TRAMP)
#endif
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
/* If defined, a C expression whose value is nonzero if IDENTIFIER
with arguments ARGS is a valid machine specific attribute for DECL.
The attributes in ATTRIBUTES have previously been assigned to DECL. */
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, NAME, ARGS) \
(rs6000_valid_decl_attribute_p (DECL, ATTRIBUTES, NAME, ARGS))
/* If defined, a C expression whose value is nonzero if IDENTIFIER
with arguments ARGS is a valid machine specific attribute for TYPE.
The attributes in ATTRIBUTES have previously been assigned to TYPE. */
#define VALID_MACHINE_TYPE_ATTRIBUTE(TYPE, ATTRIBUTES, NAME, ARGS) \
(rs6000_valid_type_attribute_p (TYPE, ATTRIBUTES, NAME, ARGS))
/* If defined, a C expression whose value is zero if the attributes on
TYPE1 and TYPE2 are incompatible, one if they are compatible, and
two if they are nearly compatible (which causes a warning to be
generated). */
#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
(rs6000_comp_type_attributes (TYPE1, TYPE2))
/* If defined, a C statement that assigns default attributes to newly
defined TYPE. */
#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
(rs6000_set_default_type_attributes (TYPE))
/* Definitions for __builtin_return_address and __builtin_frame_address.
__builtin_return_address (0) should give link register (65), enable
this. */
/* This should be uncommented, so that the link register is used, but
currently this would result in unmatched insns and spilling fixed
registers so we'll leave it for another day. When these problems are
taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
(mrs) */
/* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
/* Number of bytes into the frame return addresses can be found. See
rs6000_stack_info in rs6000.c for more information on how the different
abi's store the return address. */
#define RETURN_ADDRESS_OFFSET \
((DEFAULT_ABI == ABI_AIX \
|| DEFAULT_ABI == ABI_AIX_NODESC) ? 8 : \
(DEFAULT_ABI == ABI_V4 \
|| DEFAULT_ABI == ABI_SOLARIS) ? (TARGET_32BIT ? 4 : 8) : \
(DEFAULT_ABI == ABI_NT) ? -4 : \
(fatal ("RETURN_ADDRESS_OFFSET not supported"), 0))
/* The current return address is in link register (65). The return address
of anything farther back is accessed normally at an offset of 8 from the
frame pointer. */
#define RETURN_ADDR_RTX(count, frame) \
((count == -1) \
? gen_rtx_REG (Pmode, 65) \
: gen_rtx_MEM (Pmode, \
memory_address (Pmode, \
plus_constant (copy_to_reg (gen_rtx_MEM (Pmode, \
memory_address (Pmode, frame))), \
RETURN_ADDRESS_OFFSET))))
/* Definitions for register eliminations.
We have two registers that can be eliminated on the RS/6000. First, the
frame pointer register can often be eliminated in favor of the stack
pointer register. Secondly, the argument pointer register can always be
eliminated; it is replaced with either the stack or frame pointer.
In addition, we use the elimination mechanism to see if r30 is needed
Initially we assume that it isn't. If it is, we spill it. This is done
by making it an eliminable register. We replace it with itself so that
if it isn't needed, then existing uses won't be modified. */
/* This is an array of structures. Each structure initializes one pair
of eliminable registers. The "from" register number is given first,
followed by "to". Eliminations of the same "from" register are listed
in order of preference. */
#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{ 30, 30} }
/* Given FROM and TO register numbers, say whether this elimination is allowed.
Frame pointer elimination is automatically handled.
For the RS/6000, if frame pointer elimination is being done, we would like
to convert ap into fp, not sp.
We need r30 if -mminimal-toc was specified, and there are constant pool
references. */
#define CAN_ELIMINATE(FROM, TO) \
((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
? ! frame_pointer_needed \
: (FROM) == 30 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
: 1)
/* Define the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{ \
rs6000_stack_t *info = rs6000_stack_info (); \
\
if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
(OFFSET) = (info->push_p) ? 0 : - info->total_size; \
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
(OFFSET) = info->total_size; \
else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
(OFFSET) = (info->push_p) ? info->total_size : 0; \
else if ((FROM) == 30) \
(OFFSET) = 0; \
else \
abort (); \
}
/* Addressing modes, and classification of registers for them. */
/* #define HAVE_POST_INCREMENT 0 */
/* #define HAVE_POST_DECREMENT 0 */
#define HAVE_PRE_DECREMENT 1
#define HAVE_PRE_INCREMENT 1
/* Macros to check register numbers against specific register classes. */
/* These assume that REGNO is a hard or pseudo reg number.
They give nonzero only if REGNO is a hard reg of the suitable class
or a pseudo reg currently allocated to a suitable hard reg.
Since they use reg_renumber, they are safe only once reg_renumber
has been allocated, which happens in local-alloc.c. */
#define REGNO_OK_FOR_INDEX_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER \
? (REGNO) <= 31 || (REGNO) == 67 \
: (reg_renumber[REGNO] >= 0 \
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER \
? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
: (reg_renumber[REGNO] > 0 \
&& (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
/* Maximum number of registers that can appear in a valid memory address. */
#define MAX_REGS_PER_ADDRESS 2
/* Recognize any constant value that is a valid address. */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|| GET_CODE (X) == HIGH)
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
On the RS/6000, all integer constants are acceptable, most won't be valid
for particular insns, though. Only easy FP constants are
acceptable. */
#define LEGITIMATE_CONSTANT_P(X) \
(GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
|| (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
|| easy_fp_constant (X, GET_MODE (X)))
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
and check its validity for a certain class.
We have two alternate definitions for each of them.
The usual definition accepts all pseudo regs; the other rejects
them unless they have been allocated suitable hard regs.
The symbol REG_OK_STRICT causes the latter definition to be used.
Most source files want to accept pseudo regs in the hope that
they will get allocated to the class that the insn wants them to be in.
Source files for reload pass need to be strict.
After reload, it makes no difference, since pseudo regs have
been eliminated by then. */
#ifndef REG_OK_STRICT
/* Nonzero if X is a hard reg that can be used as an index
or if it is a pseudo reg. */
#define REG_OK_FOR_INDEX_P(X) \
(REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as a base reg
or if it is a pseudo reg. */
#define REG_OK_FOR_BASE_P(X) \
(REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
#else
/* Nonzero if X is a hard reg that can be used as an index. */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg. */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#endif
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address.
On the RS/6000, there are four valid address: a SYMBOL_REF that
refers to a constant pool entry of an address (or the sum of it
plus a constant), a short (16-bit signed) constant plus a register,
the sum of two registers, or a register indirect, possibly with an
auto-increment. For DFmode and DImode with an constant plus register,
we must ensure that both words are addressable or PowerPC64 with offset
word aligned.
For modes spanning multiple registers (DFmode in 32-bit GPRs,
32-bit DImode, TImode), indexed addressing cannot be used because
adjacent memory cells are accessed by adding word-sized offsets
during assembly output. */
#define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
(TARGET_TOC && GET_CODE (X) == SYMBOL_REF \
&& CONSTANT_POOL_ADDRESS_P (X) \
&& ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
/* AIX64 guaranteed to have 64 bit TOC alignment. */
#define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
(LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
|| (TARGET_TOC \
&& GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
#define LEGITIMATE_SMALL_DATA_P(MODE, X) \
((DEFAULT_ABI == ABI_V4 || DEFAULT_ABI == ABI_SOLARIS) \
&& !flag_pic && !TARGET_TOC \
&& (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
&& small_data_operand (X, MODE))
#define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
(GET_CODE (X) == CONST_INT \
&& (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
(GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
&& (((MODE) != DFmode && (MODE) != DImode) \
|| (TARGET_32BIT \
? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
: ! (INTVAL (XEXP (X, 1)) & 3))) \
&& ((MODE) != TImode \
|| (TARGET_32BIT \
? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
: (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
&& ! (INTVAL (XEXP (X, 1)) & 3)))))
#define LEGITIMATE_INDEXED_ADDRESS_P(X) \
(GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == REG \
&& ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
|| (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
&& REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
#define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
(GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X) \
(TARGET_ELF \
&& !flag_pic && !TARGET_TOC \
&& (MODE) != DImode \
&& (MODE) != TImode \
&& (TARGET_HARD_FLOAT || (MODE) != DFmode) \
&& GET_CODE (X) == LO_SUM \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
&& CONSTANT_P (XEXP (X, 1)))
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
{ if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
goto ADDR; \
if ((GET_CODE (X) == PRE_INC || GET_CODE (X) == PRE_DEC) \
&& TARGET_UPDATE \
&& LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
goto ADDR; \
if (LEGITIMATE_SMALL_DATA_P (MODE, X)) \
goto ADDR; \
if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
goto ADDR; \
if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
goto ADDR; \
if ((MODE) != TImode \
&& (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
&& (TARGET_POWERPC64 || (MODE) != DImode) \
&& LEGITIMATE_INDEXED_ADDRESS_P (X)) \
goto ADDR; \
if (LEGITIMATE_LO_SUM_ADDRESS_P (MODE, X)) \
goto ADDR; \
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
On RS/6000, first check for the sum of a register with a constant
integer that is out of range. If so, generate code to add the
constant with the low-order 16 bits masked to the register and force
this result into another register (this can be done with `cau').
Then generate an address of REG+(CONST&0xffff), allowing for the
possibility of bit 16 being a one.
Then check for the sum of a register and something not constant, try to
load the other things into a register and return the sum. */
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
{ if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
{ HOST_WIDE_INT high_int, low_int; \
rtx sum; \
high_int = INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff); \
low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
if (low_int & 0x8000) \
high_int += 0x10000, low_int |= ((HOST_WIDE_INT) -1) << 16; \
sum = force_operand (gen_rtx_PLUS (Pmode, XEXP (X, 0), \
GEN_INT (high_int)), 0); \
(X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (low_int)); \
goto WIN; \
} \
else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
&& GET_CODE (XEXP (X, 1)) != CONST_INT \
&& (TARGET_HARD_FLOAT || TARGET_POWERPC64 || (MODE) != DFmode) \
&& (TARGET_POWERPC64 || (MODE) != DImode) \
&& (MODE) != TImode) \
{ \
(X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
force_reg (Pmode, force_operand (XEXP (X, 1), 0))); \
goto WIN; \
} \
else if (TARGET_ELF && TARGET_32BIT && TARGET_NO_TOC \
&& !flag_pic \
&& GET_CODE (X) != CONST_INT \
&& GET_CODE (X) != CONST_DOUBLE && CONSTANT_P (X) \
&& (TARGET_HARD_FLOAT || (MODE) != DFmode) \
&& (MODE) != DImode && (MODE) != TImode) \
{ \
rtx reg = gen_reg_rtx (Pmode); \
emit_insn (gen_elf_high (reg, (X))); \
(X) = gen_rtx_LO_SUM (Pmode, reg, (X)); \
goto WIN; \
} \
}
/* Try a machine-dependent way of reloading an illegitimate address
operand. If we find one, push the reload and jump to WIN. This
macro is used in only one place: `find_reloads_address' in reload.c.
For RS/6000, we wish to handle large displacements off a base
register by splitting the addend across an addiu/addis and the mem insn.
This cuts number of extra insns needed from 3 to 1. */
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
do { \
/* We must recognize output that we have already generated ourselves. */ \
if (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
goto WIN; \
} \
if (GET_CODE (X) == PLUS \
&& GET_CODE (XEXP (X, 0)) == REG \
&& REGNO (XEXP (X, 0)) < FIRST_PSEUDO_REGISTER \
&& REG_MODE_OK_FOR_BASE_P (XEXP (X, 0), MODE) \
&& GET_CODE (XEXP (X, 1)) == CONST_INT) \
{ \
HOST_WIDE_INT val = INTVAL (XEXP (X, 1)); \
HOST_WIDE_INT low = ((val & 0xffff) ^ 0x8000) - 0x8000; \
HOST_WIDE_INT high \
= (((val - low) & 0xffffffff) ^ 0x80000000) - 0x80000000; \
\
/* Check for 32-bit overflow. */ \
if (high + low != val) \
break; \
\
/* Reload the high part into a base reg; leave the low part \
in the mem directly. */ \
\
X = gen_rtx_PLUS (GET_MODE (X), \
gen_rtx_PLUS (GET_MODE (X), XEXP (X, 0), \
GEN_INT (high)), \
GEN_INT (low)); \
\
push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL_PTR, \
BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
OPNUM, TYPE); \
goto WIN; \
} \
} while (0)
/* Go to LABEL if ADDR (a legitimate address expression)
has an effect that depends on the machine mode it is used for.
On the RS/6000 this is true if the address is valid with a zero offset
but not with an offset of four (this means it cannot be used as an
address for DImode or DFmode) or is a pre-increment or decrement. Since
we know it is valid, we just check for an address that is not valid with
an offset of four. */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
{ if (GET_CODE (ADDR) == PLUS \
&& LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
&& ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
(TARGET_32BIT ? 4 : 8))) \
goto LABEL; \
if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
goto LABEL; \
if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
goto LABEL; \
if (GET_CODE (ADDR) == LO_SUM) \
goto LABEL; \
}
/* The register number of the register used to address a table of
static data addresses in memory. In some cases this register is
defined by a processor's "application binary interface" (ABI).
When this macro is defined, RTL is generated for this register
once, as with the stack pointer and frame pointer registers. If
this macro is not defined, it is up to the machine-dependent files
to allocate such a register (if necessary). */
#define PIC_OFFSET_TABLE_REGNUM 30
/* Define this macro if the register defined by
`PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
this macro if `PPIC_OFFSET_TABLE_REGNUM' is not defined. */
/* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
/* By generating position-independent code, when two different
programs (A and B) share a common library (libC.a), the text of
the library can be shared whether or not the library is linked at
the same address for both programs. In some of these
environments, position-independent code requires not only the use
of different addressing modes, but also special code to enable the
use of these addressing modes.
The `FINALIZE_PIC' macro serves as a hook to emit these special
codes once the function is being compiled into assembly code, but
not before. (It is not done before, because in the case of
compiling an inline function, it would lead to multiple PIC
prologues being included in functions which used inline functions
and were compiled to assembly language.) */
/* #define FINALIZE_PIC */
/* A C expression that is nonzero if X is a legitimate immediate
operand on the target machine when generating position independent
code. You can assume that X satisfies `CONSTANT_P', so you need
not check this. You can also assume FLAG_PIC is true, so you need
not check it either. You need not define this macro if all
constants (including `SYMBOL_REF') can be immediate operands when
generating position independent code. */
/* #define LEGITIMATE_PIC_OPERAND_P (X) */
/* In rare cases, correct code generation requires extra machine
dependent processing between the second jump optimization pass and
delayed branch scheduling. On those machines, define this macro
as a C statement to act on the code starting at INSN.
On the RS/6000, we use it to make sure the GOT_TOC register marker
that FINALIZE_PIC is supposed to remove actually got removed. */
#define MACHINE_DEPENDENT_REORG(INSN) rs6000_reorg (INSN)
/* Define this if some processing needs to be done immediately before
emitting code for an insn. */
/* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
/* Specify the machine mode that this machine uses
for the index in the tablejump instruction. */
#define CASE_VECTOR_MODE (TARGET_32BIT ? SImode : DImode)
/* Define as C expression which evaluates to nonzero if the tablejump
instruction expects the table to contain offsets from the address of the
table.
Do not define this if the table should contain absolute addresses. */
#define CASE_VECTOR_PC_RELATIVE 1
/* Specify the tree operation to be used to convert reals to integers. */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
/* This is the kind of divide that is easiest to do in the general case. */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
/* Define this as 1 if `char' should by default be signed; else as 0. */
#define DEFAULT_SIGNED_CHAR 0
/* This flag, if defined, says the same insns that convert to a signed fixnum
also convert validly to an unsigned one. */
/* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
/* Max number of bytes we can move from memory to memory
in one reasonably fast instruction. */
#define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
#define MAX_MOVE_MAX 8
/* Nonzero if access to memory by bytes is no faster than for words.
Also non-zero if doing byte operations (specifically shifts) in registers
is undesirable. */
#define SLOW_BYTE_ACCESS 1
/* Define if operations between registers always perform the operation
on the full register even if a narrower mode is specified. */
#define WORD_REGISTER_OPERATIONS
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
will either zero-extend or sign-extend. The value of this macro should
be the code that says which one of the two operations is implicitly
done, NIL if none. */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
/* Define if loading short immediate values into registers sign extends. */
#define SHORT_IMMEDIATES_SIGN_EXTEND
/* The RS/6000 uses the XCOFF format. */
#define XCOFF_DEBUGGING_INFO
/* Define if the object format being used is COFF or a superset. */
#define OBJECT_FORMAT_COFF
/* Define the magic numbers that we recognize as COFF.
AIX 4.3 adds U803XTOCMAGIC (0757) for 64-bit objects, but collect2.c
does not include files in the correct order to conditionally define
the symbolic name in this macro.
The AIX linker accepts import/export files as object files,
so accept "#!" (0x2321) magic number. */
#define MY_ISCOFF(magic) \
((magic) == U802WRMAGIC || (magic) == U802ROMAGIC \
|| (magic) == U802TOCMAGIC || (magic) == 0757 || (magic) == 0x2321)
/* This is the only version of nm that collect2 can work with. */
#define REAL_NM_FILE_NAME "/usr/ucb/nm"
/* We don't have GAS for the RS/6000 yet, so don't write out special
.stabs in cc1plus. */
#define FASCIST_ASSEMBLER
/* AIX does not have any init/fini or ctor/dtor sections, so create
static constructors and destructors as normal functions. */
/* #define ASM_OUTPUT_CONSTRUCTOR(file, name) */
/* #define ASM_OUTPUT_DESTRUCTOR(file, name) */
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
is done just by pretending it is already truncated. */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
/* Specify the machine mode that pointers have.
After generation of rtl, the compiler makes no further distinction
between pointers and any other objects of this machine mode. */
#define Pmode (TARGET_32BIT ? SImode : DImode)
/* Mode of a function address in a call instruction (for indexing purposes).
Doesn't matter on RS/6000. */
#define FUNCTION_MODE (TARGET_32BIT ? SImode : DImode)
/* Define this if addresses of constant functions
shouldn't be put through pseudo regs where they can be cse'd.
Desirable on machines where ordinary constants are expensive
but a CALL with constant address is cheap. */
#define NO_FUNCTION_CSE
/* Define this to be nonzero if shift instructions ignore all but the low-order
few bits.
The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
have been dropped from the PowerPC architecture. */
#define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
/* Use atexit for static constructors/destructors, instead of defining
our own exit function. */
#define HAVE_ATEXIT
/* Compute the cost of computing a constant rtl expression RTX
whose rtx-code is CODE. The body of this macro is a portion
of a switch statement. If the code is computed here,
return it with a return statement. Otherwise, break from the switch.
On the RS/6000, if it is valid in the insn, it is free. So this
always returns 0. */
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
case CONST_INT: \
case CONST: \
case LABEL_REF: \
case SYMBOL_REF: \
case CONST_DOUBLE: \
case HIGH: \
return 0;
/* Provide the costs of a rtl expression. This is in the body of a
switch on CODE. */
#define RTX_COSTS(X,CODE,OUTER_CODE) \
case PLUS: \
return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
&& ((unsigned HOST_WIDE_INT) (INTVAL (XEXP (X, 1)) \
+ 0x8000) >= 0x10000) \
&& ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
? COSTS_N_INSNS (2) \
: COSTS_N_INSNS (1)); \
case AND: \
case IOR: \
case XOR: \
return ((GET_CODE (XEXP (X, 1)) == CONST_INT \
&& (INTVAL (XEXP (X, 1)) & (~ (HOST_WIDE_INT) 0xffff)) != 0 \
&& ((INTVAL (XEXP (X, 1)) & 0xffff) != 0)) \
? COSTS_N_INSNS (2) \
: COSTS_N_INSNS (1)); \
case MULT: \
switch (rs6000_cpu) \
{ \
case PROCESSOR_RIOS1: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? COSTS_N_INSNS (5) \
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
case PROCESSOR_RIOS2: \
case PROCESSOR_MPCCORE: \
case PROCESSOR_PPC604e: \
return COSTS_N_INSNS (2); \
case PROCESSOR_PPC601: \
return COSTS_N_INSNS (5); \
case PROCESSOR_PPC603: \
case PROCESSOR_PPC750: \
return (GET_CODE (XEXP (X, 1)) != CONST_INT \
? COSTS_N_INSNS (5) \
: INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
? COSTS_N_INSNS (2) : COSTS_N_INSNS (3)); \
case PROCESSOR_PPC403: \
case PROCESSOR_PPC604: \
case PROCESSOR_PPC620: \
return COSTS_N_INSNS (4); \
} \
case DIV: \
case MOD: \
if (GET_CODE (XEXP (X, 1)) == CONST_INT \
&& exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
return COSTS_N_INSNS (2); \
/* otherwise fall through to normal divide. */ \
case UDIV: \
case UMOD: \
switch (rs6000_cpu) \
{ \
case PROCESSOR_RIOS1: \
return COSTS_N_INSNS (19); \
case PROCESSOR_RIOS2: \
return COSTS_N_INSNS (13); \
case PROCESSOR_MPCCORE: \
return COSTS_N_INSNS (6); \
case PROCESSOR_PPC403: \
return COSTS_N_INSNS (33); \
case PROCESSOR_PPC601: \
return COSTS_N_INSNS (36); \
case PROCESSOR_PPC603: \
return COSTS_N_INSNS (37); \
case PROCESSOR_PPC604: \
case PROCESSOR_PPC604e: \
case PROCESSOR_PPC620: \
return COSTS_N_INSNS (20); \
case PROCESSOR_PPC750: \
return COSTS_N_INSNS (19); \
} \
case FFS: \
return COSTS_N_INSNS (4); \
case MEM: \
/* MEM should be slightly more expensive than (plus (reg) (const)) */ \
return 5;
/* Compute the cost of an address. This is meant to approximate the size
and/or execution delay of an insn using that address. If the cost is
approximated by the RTL complexity, including CONST_COSTS above, as
is usually the case for CISC machines, this macro should not be defined.
For aggressively RISCy machines, only one insn format is allowed, so
this macro should be a constant. The value of this macro only matters
for valid addresses.
For the RS/6000, everything is cost 0. */
#define ADDRESS_COST(RTX) 0
/* Adjust the length of an INSN. LENGTH is the currently-computed length and
should be adjusted to reflect any required changes. This macro is used when
there is some systematic length adjustment required that would be difficult
to express in the length attribute. */
/* #define ADJUST_INSN_LENGTH(X,LENGTH) */
/* Add any extra modes needed to represent the condition code.
For the RS/6000, we need separate modes when unsigned (logical) comparisons
are being done and we need a separate mode for floating-point. We also
use a mode for the case when we are comparing the results of two
comparisons. */
#define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
/* Define the names for the modes specified above. */
#define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point, CCFPmode
should be used. CCUNSmode should be used for unsigned comparisons.
CCEQmode should be used when we are doing an inequality comparison on
the result of a comparison. CCmode should be used in all other cases. */
#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
: (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
: (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
? CCEQmode : CCmode))
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. Note that we can't use "rtx" here
since it hasn't been defined! */
extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
extern int rs6000_compare_fp_p;
/* Set to non-zero by "fix" operation to indicate that itrunc and
uitrunc must be defined. */
extern int rs6000_trunc_used;
/* Function names to call to do floating point truncation. */
#define RS6000_ITRUNC "__itrunc"
#define RS6000_UITRUNC "__uitrunc"
/* Prefix and suffix to use to saving floating point */
#ifndef SAVE_FP_PREFIX
#define SAVE_FP_PREFIX "._savef"
#define SAVE_FP_SUFFIX ""
#endif
/* Prefix and suffix to use to restoring floating point */
#ifndef RESTORE_FP_PREFIX
#define RESTORE_FP_PREFIX "._restf"
#define RESTORE_FP_SUFFIX ""
#endif
/* Function name to call to do profiling. */
#define RS6000_MCOUNT ".__mcount"
/* Control the assembler format that we output. */
/* A C string constant describing how to begin a comment in the target
assembler language. The compiler assumes that the comment will end at
the end of the line. */
#define ASM_COMMENT_START " #"
/* Output at beginning of assembler file.
Initialize the section names for the RS/6000 at this point.
Specify filename to assembler.
We want to go into the TOC section so at least one .toc will be emitted.
Also, in order to output proper .bs/.es pairs, we need at least one static
[RW] section emitted.
We then switch back to text to force the gcc2_compiled. label and the space
allocated after it (when profiling) into the text section.
Finally, declare mcount when profiling to make the assembler happy. */
#define ASM_FILE_START(FILE) \
{ \
rs6000_gen_section_name (&xcoff_bss_section_name, \
main_input_filename, ".bss_"); \
rs6000_gen_section_name (&xcoff_private_data_section_name, \
main_input_filename, ".rw_"); \
rs6000_gen_section_name (&xcoff_read_only_section_name, \
main_input_filename, ".ro_"); \
\
fprintf (FILE, "\t.file\t\"%s\"\n", main_input_filename); \
if (TARGET_64BIT) \
fputs ("\t.machine\t\"ppc64\"\n", FILE); \
toc_section (); \
if (write_symbols != NO_DEBUG) \
private_data_section (); \
text_section (); \
if (profile_flag) \
fprintf (FILE, "\t.extern %s\n", RS6000_MCOUNT); \
rs6000_file_start (FILE, TARGET_CPU_DEFAULT); \
}
/* Output at end of assembler file.
On the RS/6000, referencing data should automatically pull in text. */
#define ASM_FILE_END(FILE) \
{ \
text_section (); \
fputs ("_section_.text:\n", FILE); \
data_section (); \
fputs ("\t.long _section_.text\n", FILE); \
}
/* We define this to prevent the name mangler from putting dollar signs into
function names. */
#define NO_DOLLAR_IN_LABEL
/* We define this to 0 so that gcc will never accept a dollar sign in a
variable name. This is needed because the AIX assembler will not accept
dollar signs. */
#define DOLLARS_IN_IDENTIFIERS 0
/* Implicit library calls should use memcpy, not bcopy, etc. */
#define TARGET_MEM_FUNCTIONS
/* Define the extra sections we need. We define three: one is the read-only
data section which is used for constants. This is a csect whose name is
derived from the name of the input file. The second is for initialized
global variables. This is a csect whose name is that of the variable.
The third is the TOC. */
#define EXTRA_SECTIONS \
read_only_data, private_data, read_only_private_data, toc, bss
/* Define the name of our readonly data section. */
#define READONLY_DATA_SECTION read_only_data_section
/* Define the name of the section to use for the exception tables.
TODO: test and see if we can use read_only_data_section, if so,
remove this. */
#define EXCEPTION_SECTION data_section
/* If we are referencing a function that is static or is known to be
in this file, make the SYMBOL_REF special. We can use this to indicate
that we can branch to this function without emitting a no-op after the
call. Do not set this flag if the function is weakly defined. */
#define ENCODE_SECTION_INFO(DECL) \
if (TREE_CODE (DECL) == FUNCTION_DECL \
&& (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL)) \
&& !DECL_WEAK (DECL)) \
SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
/* Indicate that jump tables go in the text section. */
#define JUMP_TABLES_IN_TEXT_SECTION 1
/* Define the routines to implement these extra sections.
BIGGEST_ALIGNMENT is 64, so align the sections that much. */
#define EXTRA_SECTION_FUNCTIONS \
\
void \
read_only_data_section () \
{ \
if (in_section != read_only_data) \
{ \
fprintf (asm_out_file, ".csect %s[RO],3\n", \
xcoff_read_only_section_name); \
in_section = read_only_data; \
} \
} \
\
void \
private_data_section () \
{ \
if (in_section != private_data) \
{ \
fprintf (asm_out_file, ".csect %s[RW],3\n", \
xcoff_private_data_section_name); \
in_section = private_data; \
} \
} \
\
void \
read_only_private_data_section () \
{ \
if (in_section != read_only_private_data) \
{ \
fprintf (asm_out_file, ".csect %s[RO],3\n", \
xcoff_private_data_section_name); \
in_section = read_only_private_data; \
} \
} \
\
void \
toc_section () \
{ \
if (TARGET_MINIMAL_TOC) \
{ \
/* toc_section is always called at least once from ASM_FILE_START, \
so this is guaranteed to always be defined once and only once \
in each file. */ \
if (! toc_initialized) \
{ \
fputs (".toc\nLCTOC..0:\n", asm_out_file); \
fputs ("\t.tc toc_table[TC],toc_table[RW]\n", asm_out_file); \
toc_initialized = 1; \
} \
\
if (in_section != toc) \
fprintf (asm_out_file, ".csect toc_table[RW]%s\n", \
(TARGET_32BIT ? "" : ",3")); \
} \
else \
{ \
if (in_section != toc) \
fputs (".toc\n", asm_out_file); \
} \
in_section = toc; \
}
/* Flag to say the TOC is initialized */
extern int toc_initialized;
/* This macro produces the initial definition of a function name.
On the RS/6000, we need to place an extra '.' in the function name and
output the function descriptor.
The csect for the function will have already been created by the
`text_section' call previously done. We do have to go back to that
csect, however. */
/* ??? What do the 16 and 044 in the .function line really mean? */
#define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
{ if (TREE_PUBLIC (DECL)) \
{ \
fputs ("\t.globl .", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); \
putc ('\n', FILE); \
} \
else \
{ \
fputs ("\t.lglobl .", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); \
putc ('\n', FILE); \
} \
fputs (".csect ", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); \
fputs (TARGET_32BIT ? "[DS]\n" : "[DS],3\n", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); \
fputs (":\n", FILE); \
fputs (TARGET_32BIT ? "\t.long ." : "\t.llong .", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); \
fputs (", TOC[tc0], 0\n", FILE); \
fputs (".csect .text[PR]\n.", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); \
fputs (":\n", FILE); \
if (write_symbols == XCOFF_DEBUG) \
xcoffout_declare_function (FILE, DECL, NAME); \
}
/* Return non-zero if this entry is to be written into the constant pool
in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
containing one of them. If -mfp-in-toc (the default), we also do
this for floating-point constants. We actually can only do this
if the FP formats of the target and host machines are the same, but
we can't check that since not every file that uses
GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
(TARGET_TOC \
&& (GET_CODE (X) == SYMBOL_REF \
|| (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
|| GET_CODE (X) == LABEL_REF \
|| (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
&& GET_CODE (X) == CONST_DOUBLE \
&& (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
|| (TARGET_POWERPC64 && GET_MODE (X) == DImode)))))
#if 0
&& BITS_PER_WORD == HOST_BITS_PER_INT)))
#endif
/* Select section for constant in constant pool.
On RS/6000, all constants are in the private read-only data area.
However, if this is being placed in the TOC it must be output as a
toc entry. */
#define SELECT_RTX_SECTION(MODE, X) \
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
toc_section (); \
else \
read_only_private_data_section (); \
}
/* Macro to output a special constant pool entry. Go to WIN if we output
it. Otherwise, it is written the usual way.
On the RS/6000, toc entries are handled this way. */
#define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
{ if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
{ \
output_toc (FILE, X, LABELNO); \
goto WIN; \
} \
}
/* Select the section for an initialized data object.
On the RS/6000, we have a special section for all variables except those
that are static. */
#define SELECT_SECTION(EXP,RELOC) \
{ \
if ((TREE_CODE (EXP) == STRING_CST \
&& !flag_writable_strings) \
|| (TREE_CODE_CLASS (TREE_CODE (EXP)) == 'd' \
&& TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
&& DECL_INITIAL (EXP) \
&& (DECL_INITIAL (EXP) == error_mark_node \
|| TREE_CONSTANT (DECL_INITIAL (EXP))) \
&& ! (RELOC))) \
{ \
if (TREE_PUBLIC (EXP)) \
read_only_data_section (); \
else \
read_only_private_data_section (); \
} \
else \
{ \
if (TREE_PUBLIC (EXP)) \
data_section (); \
else \
private_data_section (); \
} \
}
/* This outputs NAME to FILE up to the first null or '['. */
#define RS6000_OUTPUT_BASENAME(FILE, NAME) \
{ \
char *_p; \
\
STRIP_NAME_ENCODING (_p, (NAME)); \
assemble_name ((FILE), _p); \
}
/* Remove any trailing [DS] or the like from the symbol name. */
#define STRIP_NAME_ENCODING(VAR,NAME) \
do \
{ \
char *_name = (NAME); \
int _len; \
if (_name[0] == '*') \
_name++; \
_len = strlen (_name); \
if (_name[_len - 1] != ']') \
(VAR) = _name; \
else \
{ \
(VAR) = (char *) alloca (_len + 1); \
strcpy ((VAR), _name); \
(VAR)[_len - 4] = '\0'; \
} \
} \
while (0)
/* Output something to declare an external symbol to the assembler. Most
assemblers don't need this.
If we haven't already, add "[RW]" (or "[DS]" for a function) to the
name. Normally we write this out along with the name. In the few cases
where we can't, it gets stripped off. */
#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
{ rtx _symref = XEXP (DECL_RTL (DECL), 0); \
if ((TREE_CODE (DECL) == VAR_DECL \
|| TREE_CODE (DECL) == FUNCTION_DECL) \
&& (NAME)[strlen (NAME) - 1] != ']') \
{ \
char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
strcpy (_name, XSTR (_symref, 0)); \
strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
XSTR (_symref, 0) = _name; \
} \
fputs ("\t.extern ", FILE); \
assemble_name (FILE, XSTR (_symref, 0)); \
if (TREE_CODE (DECL) == FUNCTION_DECL) \
{ \
fputs ("\n\t.extern .", FILE); \
RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
} \
putc ('\n', FILE); \
}
/* Similar, but for libcall. We only have to worry about the function name,
not that of the descriptor. */
#define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
{ fputs ("\t.extern .", FILE); \
assemble_name (FILE, XSTR (FUN, 0)); \
putc ('\n', FILE); \
}
/* Output to assembler file text saying following lines
may contain character constants, extra white space, comments, etc. */
#define ASM_APP_ON ""
/* Output to assembler file text saying following lines
no longer contain unusual constructs. */
#define ASM_APP_OFF ""
/* Output before instructions.
Text section for 64-bit target may contain 64-bit address jump table. */
#define TEXT_SECTION_ASM_OP (TARGET_32BIT \
? ".csect .text[PR]" : ".csect .text[PR],3")
/* Output before writable data.
Align entire section to BIGGEST_ALIGNMENT. */
#define DATA_SECTION_ASM_OP ".csect .data[RW],3"
/* How to refer to registers in assembler output.
This sequence is indexed by compiler's hard-register-number (see above). */
extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
#define REGISTER_NAMES \
{ \
&rs6000_reg_names[ 0][0], /* r0 */ \
&rs6000_reg_names[ 1][0], /* r1 */ \
&rs6000_reg_names[ 2][0], /* r2 */ \
&rs6000_reg_names[ 3][0], /* r3 */ \
&rs6000_reg_names[ 4][0], /* r4 */ \
&rs6000_reg_names[ 5][0], /* r5 */ \
&rs6000_reg_names[ 6][0], /* r6 */ \
&rs6000_reg_names[ 7][0], /* r7 */ \
&rs6000_reg_names[ 8][0], /* r8 */ \
&rs6000_reg_names[ 9][0], /* r9 */ \
&rs6000_reg_names[10][0], /* r10 */ \
&rs6000_reg_names[11][0], /* r11 */ \
&rs6000_reg_names[12][0], /* r12 */ \
&rs6000_reg_names[13][0], /* r13 */ \
&rs6000_reg_names[14][0], /* r14 */ \
&rs6000_reg_names[15][0], /* r15 */ \
&rs6000_reg_names[16][0], /* r16 */ \
&rs6000_reg_names[17][0], /* r17 */ \
&rs6000_reg_names[18][0], /* r18 */ \
&rs6000_reg_names[19][0], /* r19 */ \
&rs6000_reg_names[20][0], /* r20 */ \
&rs6000_reg_names[21][0], /* r21 */ \
&rs6000_reg_names[22][0], /* r22 */ \
&rs6000_reg_names[23][0], /* r23 */ \
&rs6000_reg_names[24][0], /* r24 */ \
&rs6000_reg_names[25][0], /* r25 */ \
&rs6000_reg_names[26][0], /* r26 */ \
&rs6000_reg_names[27][0], /* r27 */ \
&rs6000_reg_names[28][0], /* r28 */ \
&rs6000_reg_names[29][0], /* r29 */ \
&rs6000_reg_names[30][0], /* r30 */ \
&rs6000_reg_names[31][0], /* r31 */ \
\
&rs6000_reg_names[32][0], /* fr0 */ \
&rs6000_reg_names[33][0], /* fr1 */ \
&rs6000_reg_names[34][0], /* fr2 */ \
&rs6000_reg_names[35][0], /* fr3 */ \
&rs6000_reg_names[36][0], /* fr4 */ \
&rs6000_reg_names[37][0], /* fr5 */ \
&rs6000_reg_names[38][0], /* fr6 */ \
&rs6000_reg_names[39][0], /* fr7 */ \
&rs6000_reg_names[40][0], /* fr8 */ \
&rs6000_reg_names[41][0], /* fr9 */ \
&rs6000_reg_names[42][0], /* fr10 */ \
&rs6000_reg_names[43][0], /* fr11 */ \
&rs6000_reg_names[44][0], /* fr12 */ \
&rs6000_reg_names[45][0], /* fr13 */ \
&rs6000_reg_names[46][0], /* fr14 */ \
&rs6000_reg_names[47][0], /* fr15 */ \
&rs6000_reg_names[48][0], /* fr16 */ \
&rs6000_reg_names[49][0], /* fr17 */ \
&rs6000_reg_names[50][0], /* fr18 */ \
&rs6000_reg_names[51][0], /* fr19 */ \
&rs6000_reg_names[52][0], /* fr20 */ \
&rs6000_reg_names[53][0], /* fr21 */ \
&rs6000_reg_names[54][0], /* fr22 */ \
&rs6000_reg_names[55][0], /* fr23 */ \
&rs6000_reg_names[56][0], /* fr24 */ \
&rs6000_reg_names[57][0], /* fr25 */ \
&rs6000_reg_names[58][0], /* fr26 */ \
&rs6000_reg_names[59][0], /* fr27 */ \
&rs6000_reg_names[60][0], /* fr28 */ \
&rs6000_reg_names[61][0], /* fr29 */ \
&rs6000_reg_names[62][0], /* fr30 */ \
&rs6000_reg_names[63][0], /* fr31 */ \
\
&rs6000_reg_names[64][0], /* mq */ \
&rs6000_reg_names[65][0], /* lr */ \
&rs6000_reg_names[66][0], /* ctr */ \
&rs6000_reg_names[67][0], /* ap */ \
\
&rs6000_reg_names[68][0], /* cr0 */ \
&rs6000_reg_names[69][0], /* cr1 */ \
&rs6000_reg_names[70][0], /* cr2 */ \
&rs6000_reg_names[71][0], /* cr3 */ \
&rs6000_reg_names[72][0], /* cr4 */ \
&rs6000_reg_names[73][0], /* cr5 */ \
&rs6000_reg_names[74][0], /* cr6 */ \
&rs6000_reg_names[75][0], /* cr7 */ \
\
&rs6000_reg_names[76][0], /* fpmem */ \
}
/* print-rtl can't handle the above REGISTER_NAMES, so define the
following for it. Switch to use the alternate names since
they are more mnemonic. */
#define DEBUG_REGISTER_NAMES \
{ \
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
"mq", "lr", "ctr", "ap", \
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
"fpmem" \
}
/* Table of additional register names to use in user input. */
#define ADDITIONAL_REGISTER_NAMES \
{{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
{"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
{"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
{"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
{"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
{"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
{"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
{"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
{"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
{"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
{"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
{"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
{"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
{"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
/* no additional names for: mq, lr, ctr, ap */ \
{"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
{"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
{"cc", 68}, {"sp", 1}, {"toc", 2} }
/* How to renumber registers for dbx and gdb. */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
/* Text to write out after a CALL that may be replaced by glue code by
the loader. This depends on the AIX version. */
#define RS6000_CALL_GLUE "cror 31,31,31"
/* This is how to output the definition of a user-level label named NAME,
such as the label on a static function or variable NAME. */
#define ASM_OUTPUT_LABEL(FILE,NAME) \
do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
/* This is how to output a command to make the user-level label named NAME
defined for reference from other files. */
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
do { fputs ("\t.globl ", FILE); \
RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
/* This is how to output a reference to a user-level label named NAME.
`assemble_name' uses this. */
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
fputs (NAME, FILE)
/* This is how to output an internal numbered label where
PREFIX is the class of label and NUM is the number within the class. */
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
/* This is how to output an internal label prefix. rs6000.c uses this
when generating traceback tables. */
#define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
fprintf (FILE, "%s..", PREFIX)
/* This is how to output a label for a jump table. Arguments are the same as
for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
passed. */
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
{ ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
/* This is how to store into the string LABEL
the symbol_ref name of an internal numbered label where
PREFIX is the class of label and NUM is the number within the class.
This is suitable for output with `assemble_name'. */
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
sprintf (LABEL, "*%s..%d", PREFIX, NUM)
/* This is how to output an assembler line defining a `double' constant. */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
{ \
long t[2]; \
REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
t[0] & 0xffffffff, t[1] & 0xffffffff); \
}
/* This is how to output an assembler line defining a `float' constant. */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
{ \
long t; \
REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
}
/* This is how to output an assembler line defining an `int' constant. */
#define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
do { \
if (TARGET_32BIT) \
{ \
assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
UNITS_PER_WORD, 1); \
assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
UNITS_PER_WORD, 1); \
} \
else \
{ \
fputs ("\t.llong ", FILE); \
output_addr_const (FILE, (VALUE)); \
putc ('\n', FILE); \
} \
} while (0)
#define ASM_OUTPUT_INT(FILE,VALUE) \
( fputs ("\t.long ", FILE), \
output_addr_const (FILE, (VALUE)), \
putc ('\n', FILE))
/* Likewise for `char' and `short' constants. */
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
( fputs ("\t.short ", FILE), \
output_addr_const (FILE, (VALUE)), \
putc ('\n', FILE))
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
( fputs ("\t.byte ", FILE), \
output_addr_const (FILE, (VALUE)), \
putc ('\n', FILE))
/* This is how to output an assembler line for a numeric constant byte. */
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
/* This is how to output an assembler line to define N characters starting
at P to FILE. */
#define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
/* This is how to output an element of a case-vector that is absolute.
(RS/6000 does not use such vectors, but we must define this macro
anyway.) */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
do { char buf[100]; \
fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
assemble_name (FILE, buf); \
putc ('\n', FILE); \
} while (0)
/* This is how to output an element of a case-vector that is relative. */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL)\
do { char buf[100]; \
fputs (TARGET_32BIT ? "\t.long " : "\t.llong ", FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
assemble_name (FILE, buf); \
putc ('-', FILE); \
ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
assemble_name (FILE, buf); \
putc ('\n', FILE); \
} while (0)
/* This is how to output an assembler line
that says to advance the location counter
to a multiple of 2**LOG bytes. */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
if ((LOG) != 0) \
fprintf (FILE, "\t.align %d\n", (LOG))
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
fprintf (FILE, "\t.space %d\n", (SIZE))
/* This says how to output an assembler line
to define a global common symbol. */
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNMENT) \
do { fputs (".comm ", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
if ( (SIZE) > 4) \
fprintf ((FILE), ",%d,3\n", (SIZE)); \
else \
fprintf( (FILE), ",%d\n", (SIZE)); \
} while (0)
/* This says how to output an assembler line
to define a local common symbol.
Alignment cannot be specified, but we can try to maintain
alignment after preceding TOC section if it was aligned
for 64-bit mode. */
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
do { fputs (".lcomm ", (FILE)); \
RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
fprintf ((FILE), ",%d,%s\n", (TARGET_32BIT ? (SIZE) : (ROUNDED)), \
xcoff_bss_section_name); \
} while (0)
/* Store in OUTPUT a string (made with alloca) containing
an assembler-name for a local static variable named NAME.
LABELNO is an integer which is different for each call. */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
/* Define the parentheses used to group arithmetic operations
in assembler code. */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"
/* Define results of standard character escape sequences. */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
/* Define which CODE values are valid. */
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
((CODE) == '.' || (CODE) == '*' || (CODE) == '$')
/* Print a memory address as an operand to reference that memory location. */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
/* Define the codes that are matched by predicates in rs6000.c. */
#define PREDICATE_CODES \
{"short_cint_operand", {CONST_INT}}, \
{"u_short_cint_operand", {CONST_INT}}, \
{"non_short_cint_operand", {CONST_INT}}, \
{"gpc_reg_operand", {SUBREG, REG}}, \
{"cc_reg_operand", {SUBREG, REG}}, \
{"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
{"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
{"reg_or_u_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
{"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
{"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
{"easy_fp_constant", {CONST_DOUBLE}}, \
{"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
{"lwa_operand", {SUBREG, MEM, REG}}, \
{"volatile_mem_operand", {MEM}}, \
{"offsettable_mem_operand", {MEM}}, \
{"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
{"add_operand", {SUBREG, REG, CONST_INT}}, \
{"non_add_cint_operand", {CONST_INT}}, \
{"and_operand", {SUBREG, REG, CONST_INT}}, \
{"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
{"logical_operand", {SUBREG, REG, CONST_INT}}, \
{"logical_u_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
{"non_logical_cint_operand", {CONST_INT}}, \
{"non_logical_u_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
{"mask_operand", {CONST_INT}}, \
{"mask64_operand", {CONST_INT, CONST_DOUBLE}}, \
{"count_register_operand", {REG}}, \
{"fpmem_operand", {REG}}, \
{"call_operand", {SYMBOL_REF, REG}}, \
{"current_file_function_operand", {SYMBOL_REF}}, \
{"input_operand", {SUBREG, MEM, REG, CONST_INT, \
CONST_DOUBLE, SYMBOL_REF}}, \
{"load_multiple_operation", {PARALLEL}}, \
{"store_multiple_operation", {PARALLEL}}, \
{"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
GT, LEU, LTU, GEU, GTU}}, \
{"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
GT, LEU, LTU, GEU, GTU}}, \
{"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
GT, LEU, LTU, GEU, GTU}},
/* uncomment for disabling the corresponding default options */
/* #define MACHINE_no_sched_interblock */
/* #define MACHINE_no_sched_speculative */
/* #define MACHINE_no_sched_speculative_load */
/* indicate that issue rate is defined for this machine
(no need to use the default) */
#define ISSUE_RATE get_issue_rate ()
/* General flags. */
extern int flag_pic;
extern int optimize;
extern int flag_expensive_optimizations;
extern int frame_pointer_needed;
/* Declare functions in rs6000.c */
extern void optimization_options ();
extern void output_options ();
extern void rs6000_override_options ();
extern void rs6000_file_start ();
extern struct rtx_def *rs6000_float_const ();
extern struct rtx_def *rs6000_got_register ();
extern struct rtx_def *find_addr_reg();
extern int direct_return ();
extern int get_issue_rate ();
extern int any_operand ();
extern int short_cint_operand ();
extern int u_short_cint_operand ();
extern int non_short_cint_operand ();
extern int gpc_reg_operand ();
extern int cc_reg_operand ();
extern int cc_reg_not_cr0_operand ();
extern int reg_or_short_operand ();
extern int reg_or_neg_short_operand ();
extern int reg_or_u_short_operand ();
extern int reg_or_cint_operand ();
extern int got_operand ();
extern int got_no_const_operand ();
extern int num_insns_constant ();
extern int easy_fp_constant ();
extern int volatile_mem_operand ();
extern int offsettable_mem_operand ();
extern int mem_or_easy_const_operand ();
extern int add_operand ();
extern int non_add_cint_operand ();
extern int non_logical_cint_operand ();
extern int logical_operand ();
extern int mask_operand ();
extern int mask64_operand ();
extern int and64_operand ();
extern int and_operand ();
extern int count_register_operand ();
extern int fpmem_operand ();
extern int reg_or_mem_operand ();
extern int lwa_operand ();
extern int call_operand ();
extern int current_file_function_operand ();
extern int input_operand ();
extern int small_data_operand ();
extern void init_cumulative_args ();
extern void function_arg_advance ();
extern int function_arg_boundary ();
extern struct rtx_def *function_arg ();
extern int function_arg_partial_nregs ();
extern int function_arg_pass_by_reference ();
extern void setup_incoming_varargs ();
extern struct rtx_def *expand_builtin_saveregs ();
extern struct rtx_def *rs6000_stack_temp ();
extern int expand_block_move ();
extern int load_multiple_operation ();
extern int store_multiple_operation ();
extern int branch_comparison_operator ();
extern int scc_comparison_operator ();
extern int trap_comparison_operator ();
extern int includes_lshift_p ();
extern int includes_rshift_p ();
extern int registers_ok_for_quad_peep ();
extern int addrs_ok_for_quad_peep ();
extern enum reg_class secondary_reload_class ();
extern int ccr_bit ();
extern void rs6000_finalize_pic ();
extern void rs6000_reorg ();
extern void rs6000_save_machine_status ();
extern void rs6000_restore_machine_status ();
extern void rs6000_init_expanders ();
extern void print_operand ();
extern void print_operand_address ();
extern int first_reg_to_save ();
extern int first_fp_reg_to_save ();
extern int rs6000_makes_calls ();
extern rs6000_stack_t *rs6000_stack_info ();
extern void output_prolog ();
extern void output_epilog ();
extern void output_mi_thunk ();
extern void output_toc ();
extern void output_ascii ();
extern void rs6000_gen_section_name ();
extern void output_function_profiler ();
extern int rs6000_adjust_cost ();
extern int rs6000_adjust_priority ();
extern void rs6000_trampoline_template ();
extern int rs6000_trampoline_size ();
extern void rs6000_initialize_trampoline ();
extern void rs6000_output_load_toc_table ();
extern int rs6000_comp_type_attributes ();
extern int rs6000_valid_decl_attribute_p ();
extern int rs6000_valid_type_attribute_p ();
extern void rs6000_set_default_type_attributes ();
extern struct rtx_def *rs6000_dll_import_ref ();
extern struct rtx_def *rs6000_longcall_ref ();
extern int function_arg_padding ();
extern void toc_section ();
extern void private_data_section ();
extern void rs6000_fatal_bad_address ();
/* See nonlocal_goto_receiver for when this must be set. */
#define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_TOC && TARGET_MINIMAL_TOC)
|