summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/flow.c
blob: 8b0a7691aa1d0b806e2a9d03642490de6a7d6d2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
/* Data flow analysis for GNU compiler.
   Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


/* This file contains the data flow analysis pass of the compiler.  It
   computes data flow information which tells combine_instructions
   which insns to consider combining and controls register allocation.

   Additional data flow information that is too bulky to record is
   generated during the analysis, and is used at that time to create
   autoincrement and autodecrement addressing.

   The first step is dividing the function into basic blocks.
   find_basic_blocks does this.  Then life_analysis determines
   where each register is live and where it is dead.

   ** find_basic_blocks **

   find_basic_blocks divides the current function's rtl into basic
   blocks and constructs the CFG.  The blocks are recorded in the
   basic_block_info array; the CFG exists in the edge structures
   referenced by the blocks.

   find_basic_blocks also finds any unreachable loops and deletes them.

   ** life_analysis **

   life_analysis is called immediately after find_basic_blocks.
   It uses the basic block information to determine where each
   hard or pseudo register is live.

   ** live-register info **

   The information about where each register is live is in two parts:
   the REG_NOTES of insns, and the vector basic_block->global_live_at_start.

   basic_block->global_live_at_start has an element for each basic
   block, and the element is a bit-vector with a bit for each hard or
   pseudo register.  The bit is 1 if the register is live at the
   beginning of the basic block.

   Two types of elements can be added to an insn's REG_NOTES.  
   A REG_DEAD note is added to an insn's REG_NOTES for any register
   that meets both of two conditions:  The value in the register is not
   needed in subsequent insns and the insn does not replace the value in
   the register (in the case of multi-word hard registers, the value in
   each register must be replaced by the insn to avoid a REG_DEAD note).

   In the vast majority of cases, an object in a REG_DEAD note will be
   used somewhere in the insn.  The (rare) exception to this is if an
   insn uses a multi-word hard register and only some of the registers are
   needed in subsequent insns.  In that case, REG_DEAD notes will be
   provided for those hard registers that are not subsequently needed.
   Partial REG_DEAD notes of this type do not occur when an insn sets
   only some of the hard registers used in such a multi-word operand;
   omitting REG_DEAD notes for objects stored in an insn is optional and
   the desire to do so does not justify the complexity of the partial
   REG_DEAD notes.

   REG_UNUSED notes are added for each register that is set by the insn
   but is unused subsequently (if every register set by the insn is unused
   and the insn does not reference memory or have some other side-effect,
   the insn is deleted instead).  If only part of a multi-word hard
   register is used in a subsequent insn, REG_UNUSED notes are made for
   the parts that will not be used.

   To determine which registers are live after any insn, one can
   start from the beginning of the basic block and scan insns, noting
   which registers are set by each insn and which die there.

   ** Other actions of life_analysis **

   life_analysis sets up the LOG_LINKS fields of insns because the
   information needed to do so is readily available.

   life_analysis deletes insns whose only effect is to store a value
   that is never used.

   life_analysis notices cases where a reference to a register as
   a memory address can be combined with a preceding or following
   incrementation or decrementation of the register.  The separate
   instruction to increment or decrement is deleted and the address
   is changed to a POST_INC or similar rtx.

   Each time an incrementing or decrementing address is created,
   a REG_INC element is added to the insn's REG_NOTES list.

   life_analysis fills in certain vectors containing information about
   register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
   reg_n_calls_crosses and reg_basic_block.

   life_analysis sets current_function_sp_is_unchanging if the function
   doesn't modify the stack pointer.  */

/* TODO: 

   Split out from life_analysis:
	- local property discovery (bb->local_live, bb->local_set)
	- global property computation
	- log links creation
	- pre/post modify transformation
*/

#include "config.h"
#include "system.h"
#include "rtl.h"
#include "basic-block.h"
#include "insn-config.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "output.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "insn-flags.h"

#include "obstack.h"
#define obstack_chunk_alloc xmalloc
#define obstack_chunk_free free


/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */
#ifndef EXIT_IGNORE_STACK
#define EXIT_IGNORE_STACK 0
#endif


/* The contents of the current function definition are allocated
   in this obstack, and all are freed at the end of the function.
   For top-level functions, this is temporary_obstack.
   Separate obstacks are made for nested functions.  */

extern struct obstack *function_obstack;

/* List of labels that must never be deleted.  */
extern rtx forced_labels;

/* Number of basic blocks in the current function.  */

int n_basic_blocks;

/* The basic block array.  */

varray_type basic_block_info;

/* The special entry and exit blocks.  */

struct basic_block_def entry_exit_blocks[2] = 
{
  {
    NULL,			/* head */
    NULL,			/* end */
    NULL,			/* pred */
    NULL,			/* succ */
    NULL,			/* local_set */
    NULL,			/* global_live_at_start */
    NULL,			/* global_live_at_end */
    NULL,			/* aux */
    ENTRY_BLOCK,		/* index */
    0				/* loop_depth */
  },
  {
    NULL,			/* head */
    NULL,			/* end */
    NULL,			/* pred */
    NULL,			/* succ */
    NULL,			/* local_set */
    NULL,			/* global_live_at_start */
    NULL,			/* global_live_at_end */
    NULL,			/* aux */
    EXIT_BLOCK,			/* index */
    0				/* loop_depth */
  }
};

/* Nonzero if the second flow pass has completed.  */
int flow2_completed;

/* Maximum register number used in this function, plus one.  */

int max_regno;

/* Indexed by n, giving various register information */

varray_type reg_n_info;

/* Size of the reg_n_info table.  */

unsigned int reg_n_max;

/* Element N is the next insn that uses (hard or pseudo) register number N
   within the current basic block; or zero, if there is no such insn.
   This is valid only during the final backward scan in propagate_block.  */

static rtx *reg_next_use;

/* Size of a regset for the current function,
   in (1) bytes and (2) elements.  */

int regset_bytes;
int regset_size;

/* Regset of regs live when calls to `setjmp'-like functions happen.  */
/* ??? Does this exist only for the setjmp-clobbered warning message?  */

regset regs_live_at_setjmp;

/* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
   that have to go in the same hard reg.
   The first two regs in the list are a pair, and the next two
   are another pair, etc.  */
rtx regs_may_share;

/* Depth within loops of basic block being scanned for lifetime analysis,
   plus one.  This is the weight attached to references to registers.  */

static int loop_depth;

/* During propagate_block, this is non-zero if the value of CC0 is live.  */

static int cc0_live;

/* During propagate_block, this contains a list of all the MEMs we are
   tracking for dead store elimination. 

   ?!? Note we leak memory by not free-ing items on this list.  We need to
   write some generic routines to operate on memory lists since cse, gcse,
   loop, sched, flow and possibly other passes all need to do basically the
   same operations on these lists.  */

static rtx mem_set_list;

/* Set of registers that may be eliminable.  These are handled specially
   in updating regs_ever_live.  */

static HARD_REG_SET elim_reg_set;

/* The basic block structure for every insn, indexed by uid.  */

varray_type basic_block_for_insn;

/* The labels mentioned in non-jump rtl.  Valid during find_basic_blocks.  */
/* ??? Should probably be using LABEL_NUSES instead.  It would take a 
   bit of surgery to be able to use or co-opt the routines in jump.  */

static rtx label_value_list;

/* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile.  */

#define INSN_VOLATILE(INSN) bitmap_bit_p (uid_volatile, INSN_UID (INSN))
#define SET_INSN_VOLATILE(INSN) bitmap_set_bit (uid_volatile, INSN_UID (INSN))
static bitmap uid_volatile;

/* Forward declarations */
static int count_basic_blocks		PROTO((rtx));
static rtx find_basic_blocks_1		PROTO((rtx, rtx*));
static void create_basic_block		PROTO((int, rtx, rtx, rtx));
static void compute_bb_for_insn		PROTO((varray_type, int));
static void clear_edges			PROTO((void));
static void make_edges			PROTO((rtx, rtx*));
static void make_edge			PROTO((basic_block, basic_block, int));
static void make_label_edge		PROTO((basic_block, rtx, int));
static void mark_critical_edges		PROTO((void));

static void commit_one_edge_insertion	PROTO((edge));

static void delete_unreachable_blocks	PROTO((void));
static void delete_eh_regions		PROTO((void));
static int can_delete_note_p		PROTO((rtx));
static void delete_insn_chain		PROTO((rtx, rtx));
static int delete_block			PROTO((basic_block));
static void expunge_block		PROTO((basic_block));
static rtx flow_delete_insn		PROTO((rtx));
static int can_delete_label_p		PROTO((rtx));
static void merge_blocks_nomove		PROTO((basic_block, basic_block));
static int merge_blocks			PROTO((edge,basic_block,basic_block));
static void tidy_fallthru_edge		PROTO((edge,basic_block,basic_block));
static void calculate_loop_depth	PROTO((rtx));

static int set_noop_p			PROTO((rtx));
static int noop_move_p			PROTO((rtx));
static void notice_stack_pointer_modification PROTO ((rtx, rtx));
static void record_volatile_insns	PROTO((rtx));
static void mark_regs_live_at_end	PROTO((regset));
static void life_analysis_1		PROTO((rtx, int, int));
static void init_regset_vector		PROTO ((regset *, int,
						struct obstack *));
static void propagate_block		PROTO((regset, rtx, rtx, int, 
					       regset, int, int));
static int insn_dead_p			PROTO((rtx, regset, int, rtx));
static int libcall_dead_p		PROTO((rtx, regset, rtx, rtx));
static void mark_set_regs		PROTO((regset, regset, rtx,
					       rtx, regset));
static void mark_set_1			PROTO((regset, regset, rtx,
					       rtx, regset));
#ifdef AUTO_INC_DEC
static void find_auto_inc		PROTO((regset, rtx, rtx));
static int try_pre_increment_1		PROTO((rtx));
static int try_pre_increment		PROTO((rtx, rtx, HOST_WIDE_INT));
#endif
static void mark_used_regs		PROTO((regset, regset, rtx, int, rtx));
void dump_flow_info			PROTO((FILE *));
static void dump_edge_info		PROTO((FILE *, edge, int));

static int_list_ptr alloc_int_list_node PROTO ((int_list_block **));
static int_list_ptr add_int_list_node   PROTO ((int_list_block **,
						int_list **, int));

static void add_pred_succ		PROTO ((int, int, int_list_ptr *,
						int_list_ptr *, int *, int *));

static void count_reg_sets_1		PROTO ((rtx));
static void count_reg_sets		PROTO ((rtx));
static void count_reg_references	PROTO ((rtx));
static void notice_stack_pointer_modification PROTO ((rtx, rtx));
static void invalidate_mems_from_autoinc	PROTO ((rtx));
void verify_flow_info			PROTO ((void));

/* Find basic blocks of the current function.
   F is the first insn of the function and NREGS the number of register
   numbers in use.  */

void
find_basic_blocks (f, nregs, file, do_cleanup)
     rtx f;
     int nregs ATTRIBUTE_UNUSED;
     FILE *file ATTRIBUTE_UNUSED;
     int do_cleanup;
{
  rtx *bb_eh_end;
  int max_uid;

  /* Flush out existing data.  */
  if (basic_block_info != NULL)
    {
      int i;

      clear_edges ();

      /* Clear bb->aux on all extant basic blocks.  We'll use this as a 
	 tag for reuse during create_basic_block, just in case some pass
	 copies around basic block notes improperly.  */
      for (i = 0; i < n_basic_blocks; ++i)
	BASIC_BLOCK (i)->aux = NULL;

      VARRAY_FREE (basic_block_info);
    }

  n_basic_blocks = count_basic_blocks (f);

  /* Size the basic block table.  The actual structures will be allocated
     by find_basic_blocks_1, since we want to keep the structure pointers
     stable across calls to find_basic_blocks.  */
  /* ??? This whole issue would be much simpler if we called find_basic_blocks
     exactly once, and thereafter we don't have a single long chain of 
     instructions at all until close to the end of compilation when we
     actually lay them out.  */

  VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");

  /* An array to record the active exception region at the end of each
     basic block.  It is filled in by find_basic_blocks_1 for make_edges.  */
  bb_eh_end = (rtx *) alloca (n_basic_blocks * sizeof (rtx));

  label_value_list = find_basic_blocks_1 (f, bb_eh_end);
  
  /* Record the block to which an insn belongs.  */
  /* ??? This should be done another way, by which (perhaps) a label is
     tagged directly with the basic block that it starts.  It is used for
     more than that currently, but IMO that is the only valid use.  */

  max_uid = get_max_uid ();
#ifdef AUTO_INC_DEC
  /* Leave space for insns life_analysis makes in some cases for auto-inc.
     These cases are rare, so we don't need too much space.  */
  max_uid += max_uid / 10;
#endif

  VARRAY_BB_INIT (basic_block_for_insn, max_uid, "basic_block_for_insn");
  compute_bb_for_insn (basic_block_for_insn, max_uid);

  /* Discover the edges of our cfg.  */

  make_edges (label_value_list, bb_eh_end);

  /* Delete unreachable blocks.  */

  if (do_cleanup)
    delete_unreachable_blocks ();

  /* Mark critical edges.  */

  mark_critical_edges ();

  /* Discover the loop depth at the start of each basic block to aid
     register allocation.  */
  calculate_loop_depth (f);

  /* Kill the data we won't maintain.  */
  label_value_list = 0;

#ifdef ENABLE_CHECKING
  verify_flow_info ();
#endif
}

/* Count the basic blocks of the function.  */

static int 
count_basic_blocks (f)
     rtx f;
{
  register rtx insn;
  register RTX_CODE prev_code;
  register int count = 0;
  int eh_region = 0;
  int call_had_abnormal_edge = 0;
  rtx prev_call = NULL_RTX;

  prev_code = JUMP_INSN;
  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      register RTX_CODE code = GET_CODE (insn);

      if (code == CODE_LABEL
	  || (GET_RTX_CLASS (code) == 'i'
	      && (prev_code == JUMP_INSN
		  || prev_code == BARRIER
		  || (prev_code == CALL_INSN && call_had_abnormal_edge))))
	{
	  count++;

	  /* If the previous insn was a call that did not create an
	     abnormal edge, we want to add a nop so that the CALL_INSN
	     itself is not at basic_block_end.  This allows us to
	     easily distinguish between normal calls and those which
	     create abnormal edges in the flow graph.  */

	  if (count > 0 && prev_call != 0 && !call_had_abnormal_edge)
	    {
	      rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
	      emit_insn_after (nop, prev_call);
	    }
	}

      /* Record whether this call created an edge.  */
      if (code == CALL_INSN)
	{
	  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
	  int region = (note ? XINT (XEXP (note, 0), 0) : 1);
	  prev_call = insn;
	  call_had_abnormal_edge = 0;

	  /* If there is a specified EH region, we have an edge.  */
	  if (eh_region && region > 0)
	    call_had_abnormal_edge = 1;
	  else
	    {
	      /* If there is a nonlocal goto label and the specified
		 region number isn't -1, we have an edge. (0 means
		 no throw, but might have a nonlocal goto).  */
	      if (nonlocal_goto_handler_labels && region >= 0)
		call_had_abnormal_edge = 1;
	    }
	}
      else if (code != NOTE)
	prev_call = NULL_RTX;

      if (code != NOTE)
	prev_code = code;
      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
	++eh_region;
      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
	--eh_region;

    }

  /* The rest of the compiler works a bit smoother when we don't have to
     check for the edge case of do-nothing functions with no basic blocks.  */
  if (count == 0)
    {
      emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
      count = 1;
    }

  return count;
}

/* Find all basic blocks of the function whose first insn is F.
   Store the correct data in the tables that describe the basic blocks,
   set up the chains of references for each CODE_LABEL, and
   delete any entire basic blocks that cannot be reached.

   NONLOCAL_LABEL_LIST is a list of non-local labels in the function.  Blocks
   that are otherwise unreachable may be reachable with a non-local goto.

   BB_EH_END is an array in which we record the list of exception regions
   active at the end of every basic block.  */

static rtx
find_basic_blocks_1 (f, bb_eh_end)
     rtx f;
     rtx *bb_eh_end;
{
  register rtx insn, next;
  int call_has_abnormal_edge = 0;
  int i = 0;
  rtx bb_note = NULL_RTX;
  rtx eh_list = NULL_RTX;
  rtx label_value_list = NULL_RTX;
  rtx head = NULL_RTX;
  rtx end = NULL_RTX;
  
  /* We process the instructions in a slightly different way than we did
     previously.  This is so that we see a NOTE_BASIC_BLOCK after we have
     closed out the previous block, so that it gets attached at the proper
     place.  Since this form should be equivalent to the previous,
     find_basic_blocks_0 continues to use the old form as a check.  */

  for (insn = f; insn; insn = next)
    {
      enum rtx_code code = GET_CODE (insn);

      next = NEXT_INSN (insn);

      if (code == CALL_INSN)
	{
	  /* Record whether this call created an edge.  */
	  rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
	  int region = (note ? XINT (XEXP (note, 0), 0) : 1);
	  call_has_abnormal_edge = 0;

	  /* If there is an EH region, we have an edge.  */
	  if (eh_list && region > 0)
	    call_has_abnormal_edge = 1;
	  else
	    {
	      /* If there is a nonlocal goto label and the specified
		 region number isn't -1, we have an edge. (0 means
		 no throw, but might have a nonlocal goto).  */
	      if (nonlocal_goto_handler_labels && region >= 0)
		call_has_abnormal_edge = 1;
	    }
	}

      switch (code)
	{
	case NOTE:
	  {
	    int kind = NOTE_LINE_NUMBER (insn);

	    /* Keep a LIFO list of the currently active exception notes.  */
	    if (kind == NOTE_INSN_EH_REGION_BEG)
	      eh_list = gen_rtx_INSN_LIST (VOIDmode, insn, eh_list);
	    else if (kind == NOTE_INSN_EH_REGION_END)
	      eh_list = XEXP (eh_list, 1);

	    /* Look for basic block notes with which to keep the 
	       basic_block_info pointers stable.  Unthread the note now;
	       we'll put it back at the right place in create_basic_block.
	       Or not at all if we've already found a note in this block.  */
	    else if (kind == NOTE_INSN_BASIC_BLOCK)
	      {
		if (bb_note == NULL_RTX)
		  bb_note = insn;
		next = flow_delete_insn (insn);
	      }

	    break;
	  }

	case CODE_LABEL:
	  /* A basic block starts at a label.  If we've closed one off due 
	     to a barrier or some such, no need to do it again.  */
	  if (head != NULL_RTX)
	    {
	      /* While we now have edge lists with which other portions of
		 the compiler might determine a call ending a basic block
		 does not imply an abnormal edge, it will be a bit before
		 everything can be updated.  So continue to emit a noop at
		 the end of such a block.  */
	      if (GET_CODE (end) == CALL_INSN)
		{
		  rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
		  end = emit_insn_after (nop, end);
		}

	      bb_eh_end[i] = eh_list;
	      create_basic_block (i++, head, end, bb_note);
	      bb_note = NULL_RTX;
	    }
	  head = end = insn;
	  break;

	case JUMP_INSN:
	  /* A basic block ends at a jump.  */
	  if (head == NULL_RTX)
	    head = insn;
	  else
	    {
	      /* ??? Make a special check for table jumps.  The way this 
		 happens is truely and amazingly gross.  We are about to
		 create a basic block that contains just a code label and
		 an addr*vec jump insn.  Worse, an addr_diff_vec creates
		 its own natural loop.

		 Prevent this bit of brain damage, pasting things together
		 correctly in make_edges.  

		 The correct solution involves emitting the table directly
		 on the tablejump instruction as a note, or JUMP_LABEL.  */

	      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
		  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
		{
		  head = end = NULL;
		  n_basic_blocks--;
		  break;
		}
	    }
	  end = insn;
	  goto new_bb_inclusive;

	case BARRIER:
	  /* A basic block ends at a barrier.  It may be that an unconditional
	     jump already closed the basic block -- no need to do it again.  */
	  if (head == NULL_RTX)
	    break;

	  /* While we now have edge lists with which other portions of the
	     compiler might determine a call ending a basic block does not
	     imply an abnormal edge, it will be a bit before everything can
	     be updated.  So continue to emit a noop at the end of such a
	     block.  */
	  if (GET_CODE (end) == CALL_INSN)
	    {
	      rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
	      end = emit_insn_after (nop, end);
	    }
	  goto new_bb_exclusive;

	case CALL_INSN:
	  /* A basic block ends at a call that can either throw or
	     do a non-local goto.  */
	  if (call_has_abnormal_edge)
	    {
	    new_bb_inclusive:
	      if (head == NULL_RTX)
		head = insn;
	      end = insn;

	    new_bb_exclusive:
	      bb_eh_end[i] = eh_list;
	      create_basic_block (i++, head, end, bb_note);
	      head = end = NULL_RTX;
	      bb_note = NULL_RTX;
	      break;
	    }
	  /* FALLTHRU */

	default:
	  if (GET_RTX_CLASS (code) == 'i')
	    {
	      if (head == NULL_RTX)
		head = insn;
	      end = insn;
	    }
	  break;
	}

      if (GET_RTX_CLASS (code) == 'i')
	{
	  rtx note;

	  /* Make a list of all labels referred to other than by jumps
	     (which just don't have the REG_LABEL notes). 

	     Make a special exception for labels followed by an ADDR*VEC,
	     as this would be a part of the tablejump setup code. 

	     Make a special exception for the eh_return_stub_label, which
	     we know isn't part of any otherwise visible control flow.  */
	     
	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	    if (REG_NOTE_KIND (note) == REG_LABEL)
	      {
	        rtx lab = XEXP (note, 0), next;

		if (lab == eh_return_stub_label)
		  ;
		else if ((next = next_nonnote_insn (lab)) != NULL
			 && GET_CODE (next) == JUMP_INSN
			 && (GET_CODE (PATTERN (next)) == ADDR_VEC
			     || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
		  ;
		else
		  label_value_list
		    = gen_rtx_EXPR_LIST (VOIDmode, XEXP (note, 0),
				         label_value_list);
	      }
	}
    }

  if (head != NULL_RTX)
    {
      bb_eh_end[i] = eh_list;
      create_basic_block (i++, head, end, bb_note);
    }

  if (i != n_basic_blocks)
    abort ();

  return label_value_list;
}

/* Create a new basic block consisting of the instructions between
   HEAD and END inclusive.  Reuses the note and basic block struct
   in BB_NOTE, if any.  */

static void
create_basic_block (index, head, end, bb_note)
     int index;
     rtx head, end, bb_note;
{
  basic_block bb;

  if (bb_note
      && ! RTX_INTEGRATED_P (bb_note)
      && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
      && bb->aux == NULL)
    {
      /* If we found an existing note, thread it back onto the chain.  */

      if (GET_CODE (head) == CODE_LABEL)
	add_insn_after (bb_note, head);
      else
	{
	  add_insn_before (bb_note, head);
	  head = bb_note;
	}
    }
  else
    {
      /* Otherwise we must create a note and a basic block structure.
	 Since we allow basic block structs in rtl, give the struct
	 the same lifetime by allocating it off the function obstack
	 rather than using malloc.  */

      bb = (basic_block) obstack_alloc (function_obstack, sizeof (*bb));
      memset (bb, 0, sizeof (*bb));

      if (GET_CODE (head) == CODE_LABEL)
	bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
      else
	{
	  bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
	  head = bb_note;
	}
      NOTE_BASIC_BLOCK (bb_note) = bb;
    }

  /* Always include the bb note in the block.  */
  if (NEXT_INSN (end) == bb_note)
    end = bb_note;

  bb->head = head;
  bb->end = end;
  bb->index = index;
  BASIC_BLOCK (index) = bb;

  /* Tag the block so that we know it has been used when considering
     other basic block notes.  */
  bb->aux = bb;
}

/* Records the basic block struct in BB_FOR_INSN, for every instruction
   indexed by INSN_UID.  MAX is the size of the array.  */

static void
compute_bb_for_insn (bb_for_insn, max)
     varray_type bb_for_insn;
     int max;
{
  int i;

  for (i = 0; i < n_basic_blocks; ++i)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx insn, end;

      end = bb->end;
      insn = bb->head;
      while (1)
	{
	  int uid = INSN_UID (insn);
	  if (uid < max)
	    VARRAY_BB (bb_for_insn, uid) = bb;
	  if (insn == end)
	    break;
	  insn = NEXT_INSN (insn);
	}
    }
}

/* Free the memory associated with the edge structures.  */

static void
clear_edges ()
{
  int i;
  edge n, e;

  for (i = 0; i < n_basic_blocks; ++i)
    {
      basic_block bb = BASIC_BLOCK (i);

      for (e = bb->succ; e ; e = n)
	{
	  n = e->succ_next;
	  free (e);
	}

      bb->succ = 0;
      bb->pred = 0;
    }

  for (e = ENTRY_BLOCK_PTR->succ; e ; e = n)
    {
      n = e->succ_next;
      free (e);
    }

  ENTRY_BLOCK_PTR->succ = 0;
  EXIT_BLOCK_PTR->pred = 0;
}

/* Identify the edges between basic blocks.

   NONLOCAL_LABEL_LIST is a list of non-local labels in the function.  Blocks
   that are otherwise unreachable may be reachable with a non-local goto.

   BB_EH_END is an array indexed by basic block number in which we record 
   the list of exception regions active at the end of the basic block.  */

static void
make_edges (label_value_list, bb_eh_end)
     rtx label_value_list;
     rtx *bb_eh_end;
{
  int i;

  /* Assume no computed jump; revise as we create edges.  */
  current_function_has_computed_jump = 0;

  /* By nature of the way these get numbered, block 0 is always the entry.  */
  make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);

  for (i = 0; i < n_basic_blocks; ++i)
    {
      basic_block bb = BASIC_BLOCK (i);
      rtx insn, x, eh_list;
      enum rtx_code code;
      int force_fallthru = 0;

      /* If we have asynchronous exceptions, scan the notes for all exception
	 regions active in the block.  In the normal case, we only need the
	 one active at the end of the block, which is bb_eh_end[i].  */

      eh_list = bb_eh_end[i];
      if (asynchronous_exceptions)
	{
	  for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
	    {
	      if (GET_CODE (insn) == NOTE
		  && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
		eh_list = gen_rtx_INSN_LIST (VOIDmode, insn, eh_list);
	    }
	}

      /* Now examine the last instruction of the block, and discover the
	 ways we can leave the block.  */

      insn = bb->end;
      code = GET_CODE (insn);

      /* A branch.  */
      if (code == JUMP_INSN)
	{
	  rtx tmp;

	  /* ??? Recognize a tablejump and do the right thing.  */
	  if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
	      && (tmp = NEXT_INSN (tmp)) != NULL_RTX
	      && GET_CODE (tmp) == JUMP_INSN
	      && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
		  || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
	    {
	      rtvec vec;
	      int j;

	      if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
		vec = XVEC (PATTERN (tmp), 0);
	      else
		vec = XVEC (PATTERN (tmp), 1);

	      for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
		make_label_edge (bb, XEXP (RTVEC_ELT (vec, j), 0), 0);

	      /* Some targets (eg, ARM) emit a conditional jump that also
		 contains the out-of-range target.  Scan for these and
		 add an edge if necessary.  */
	      if ((tmp = single_set (insn)) != NULL
		  && SET_DEST (tmp) == pc_rtx
		  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
		  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
		make_label_edge (bb, XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);

#ifdef CASE_DROPS_THROUGH
	      /* Silly VAXen.  The ADDR_VEC is going to be in the way of
		 us naturally detecting fallthru into the next block.  */
	      force_fallthru = 1;
#endif
	    }

	  /* If this is a computed jump, then mark it as reaching
	     everything on the label_value_list and forced_labels list.  */
	  else if (computed_jump_p (insn))
	    {
	      current_function_has_computed_jump = 1;

	      for (x = label_value_list; x; x = XEXP (x, 1))
		make_label_edge (bb, XEXP (x, 0), EDGE_ABNORMAL);
	      
	      for (x = forced_labels; x; x = XEXP (x, 1))
		make_label_edge (bb, XEXP (x, 0), EDGE_ABNORMAL);
	    }

	  /* Returns create an exit out.  */
	  else if (returnjump_p (insn))
	    make_edge (bb, EXIT_BLOCK_PTR, 0);

	  /* Otherwise, we have a plain conditional or unconditional jump.  */
	  else
	    {
	      if (! JUMP_LABEL (insn))
		abort ();
	      make_label_edge (bb, JUMP_LABEL (insn), 0);
	    }
	}

      /* If this is a CALL_INSN, then mark it as reaching the active EH
	 handler for this CALL_INSN.  If we're handling asynchronous
	 exceptions then any insn can reach any of the active handlers.

	 Also mark the CALL_INSN as reaching any nonlocal goto handler.  */

      if (code == CALL_INSN || asynchronous_exceptions)
	{
	  int is_call = (code == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
	  handler_info *ptr;

	  /* Use REG_EH_RETHROW and REG_EH_REGION if available.  */
	  /* ??? REG_EH_REGION is not generated presently.  Is it
	     inteded that there be multiple notes for the regions?
	     or is my eh_list collection redundant with handler linking?  */

	  x = find_reg_note (insn, REG_EH_RETHROW, 0);
	  if (!x)
	    x = find_reg_note (insn, REG_EH_REGION, 0);
	  if (x)
	    {
	      if (XINT (XEXP (x, 0), 0) > 0)
		{
		  ptr = get_first_handler (XINT (XEXP (x, 0), 0));
		  while (ptr)
		    {
		      make_label_edge (bb, ptr->handler_label,
				       EDGE_ABNORMAL | EDGE_EH | is_call);
		      ptr = ptr->next;
		    }
		}
	    }
	  else
	    {
	      for (x = eh_list; x; x = XEXP (x, 1))
		{
		  ptr = get_first_handler (NOTE_BLOCK_NUMBER (XEXP (x, 0)));
		  while (ptr)
		    {
		      make_label_edge (bb, ptr->handler_label,
				       EDGE_ABNORMAL | EDGE_EH | is_call);
		      ptr = ptr->next;
		    }
		}
	    }

	  if (code == CALL_INSN && nonlocal_goto_handler_labels)
	    {
	      /* ??? This could be made smarter: in some cases it's possible
		 to tell that certain calls will not do a nonlocal goto.

		 For example, if the nested functions that do the nonlocal
		 gotos do not have their addresses taken, then only calls to
		 those functions or to other nested functions that use them
		 could possibly do nonlocal gotos.  */

	      for (x = nonlocal_goto_handler_labels; x ; x = XEXP (x, 1))
	        make_label_edge (bb, XEXP (x, 0),
			         EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
	    }
	}

      /* We know something about the structure of the function __throw in
	 libgcc2.c.  It is the only function that ever contains eh_stub
	 labels.  It modifies its return address so that the last block
	 returns to one of the eh_stub labels within it.  So we have to
	 make additional edges in the flow graph.  */
      if (i + 1 == n_basic_blocks && eh_return_stub_label != 0)
	make_label_edge (bb, eh_return_stub_label, EDGE_EH);

      /* Find out if we can drop through to the next block.  */
      insn = next_nonnote_insn (insn);
      if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
	make_edge (bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
      else if (i + 1 < n_basic_blocks)
	{
	  rtx tmp = BLOCK_HEAD (i + 1);
	  if (GET_CODE (tmp) == NOTE)
	    tmp = next_nonnote_insn (tmp);
	  if (force_fallthru || insn == tmp)
	    make_edge (bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
	}
    }
}

/* Create an edge between two basic blocks.  FLAGS are auxiliary information
   about the edge that is accumulated between calls.  */

static void
make_edge (src, dst, flags)
     basic_block src, dst;
     int flags;
{
  edge e;

  /* Make sure we don't add duplicate edges.  */

  for (e = src->succ; e ; e = e->succ_next)
    if (e->dest == dst)
      {
	e->flags |= flags;
	return;
      }

  e = (edge) xcalloc (1, sizeof (*e));

  e->succ_next = src->succ;
  e->pred_next = dst->pred;
  e->src = src;
  e->dest = dst;
  e->flags = flags;

  src->succ = e;
  dst->pred = e;
}

/* Create an edge from a basic block to a label.  */

static void
make_label_edge (src, label, flags)
     basic_block src;
     rtx label;
     int flags;
{
  if (GET_CODE (label) != CODE_LABEL)
    abort ();

  /* If the label was never emitted, this insn is junk, but avoid a
     crash trying to refer to BLOCK_FOR_INSN (label).  This can happen
     as a result of a syntax error and a diagnostic has already been
     printed.  */

  if (INSN_UID (label) == 0)
    return;

  make_edge (src, BLOCK_FOR_INSN (label), flags);
}

/* Identify critical edges and set the bits appropriately.  */
static void
mark_critical_edges ()
{
  int i, n = n_basic_blocks;
  basic_block bb;

  /* We begin with the entry block.  This is not terribly important now,
     but could be if a front end (Fortran) implemented alternate entry
     points.  */
  bb = ENTRY_BLOCK_PTR;
  i = -1;

  while (1)
    {
      edge e;

      /* (1) Critical edges must have a source with multiple successors.  */
      if (bb->succ && bb->succ->succ_next)
	{
	  for (e = bb->succ; e ; e = e->succ_next)
	    {
	      /* (2) Critical edges must have a destination with multiple
		 predecessors.  Note that we know there is at least one
		 predecessor -- the edge we followed to get here.  */
	      if (e->dest->pred->pred_next)
		e->flags |= EDGE_CRITICAL;
	      else
		e->flags &= ~EDGE_CRITICAL;
	    }
	}
      else
	{
	  for (e = bb->succ; e ; e = e->succ_next)
	    e->flags &= ~EDGE_CRITICAL;
	}

      if (++i >= n)
	break;
      bb = BASIC_BLOCK (i);
    }
}

/* Split a (typically critical) edge.  Return the new block.
   Abort on abnormal edges. 

   ??? The code generally expects to be called on critical edges.
   The case of a block ending in an unconditional jump to a 
   block with multiple predecessors is not handled optimally.  */

basic_block
split_edge (edge_in)
     edge edge_in;
{
  basic_block old_pred, bb, old_succ;
  edge edge_out;
  rtx bb_note;
  int i;
 
  /* Abnormal edges cannot be split.  */
  if ((edge_in->flags & EDGE_ABNORMAL) != 0)
    abort ();

  old_pred = edge_in->src;
  old_succ = edge_in->dest;

  /* Remove the existing edge from the destination's pred list.  */
  {
    edge *pp;
    for (pp = &old_succ->pred; *pp != edge_in; pp = &(*pp)->pred_next)
      continue;
    *pp = edge_in->pred_next;
    edge_in->pred_next = NULL;
  }

  /* Create the new structures.  */
  bb = (basic_block) obstack_alloc (function_obstack, sizeof (*bb));
  edge_out = (edge) xcalloc (1, sizeof (*edge_out));

  memset (bb, 0, sizeof (*bb));
  bb->local_set = OBSTACK_ALLOC_REG_SET (function_obstack);
  bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (function_obstack);
  bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (function_obstack);

  /* ??? This info is likely going to be out of date very soon.  */
  CLEAR_REG_SET (bb->local_set);
  if (old_succ->global_live_at_start)
    {
      COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
      COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
    }
  else
    {
      CLEAR_REG_SET (bb->global_live_at_start);
      CLEAR_REG_SET (bb->global_live_at_end);
    }

  /* Wire them up.  */
  bb->pred = edge_in;
  bb->succ = edge_out;

  edge_in->dest = bb;
  edge_in->flags &= ~EDGE_CRITICAL;

  edge_out->pred_next = old_succ->pred;
  edge_out->succ_next = NULL;
  edge_out->src = bb;
  edge_out->dest = old_succ;
  edge_out->flags = EDGE_FALLTHRU;
  edge_out->probability = REG_BR_PROB_BASE;

  old_succ->pred = edge_out;

  /* Tricky case -- if there existed a fallthru into the successor
     (and we're not it) we must add a new unconditional jump around
     the new block we're actually interested in. 

     Further, if that edge is critical, this means a second new basic
     block must be created to hold it.  In order to simplify correct
     insn placement, do this before we touch the existing basic block
     ordering for the block we were really wanting.  */
  if ((edge_in->flags & EDGE_FALLTHRU) == 0)
    {
      edge e;
      for (e = edge_out->pred_next; e ; e = e->pred_next)
	if (e->flags & EDGE_FALLTHRU)
	  break;

      if (e)
	{
	  basic_block jump_block;
	  rtx pos;

	  if ((e->flags & EDGE_CRITICAL) == 0)
	    {
	      /* Non critical -- we can simply add a jump to the end
		 of the existing predecessor.  */
	      jump_block = e->src;
	    }
	  else
	    {
	      /* We need a new block to hold the jump.  The simplest
	         way to do the bulk of the work here is to recursively
	         call ourselves.  */
	      jump_block = split_edge (e);
	      e = jump_block->succ;
	    }

	  /* Now add the jump insn ...  */
	  pos = emit_jump_insn_after (gen_jump (old_succ->head),
				      jump_block->end);
	  jump_block->end = pos;
	  emit_barrier_after (pos);

	  /* ... let jump know that label is in use, ...  */
	  ++LABEL_NUSES (old_succ->head);
	  
	  /* ... and clear fallthru on the outgoing edge.  */
	  e->flags &= ~EDGE_FALLTHRU;

	  /* Continue splitting the interesting edge.  */
	}
    }

  /* Place the new block just in front of the successor.  */
  VARRAY_GROW (basic_block_info, ++n_basic_blocks);
  for (i = n_basic_blocks - 1; i > old_succ->index; --i)
    {
      basic_block tmp = BASIC_BLOCK (i - 1);
      BASIC_BLOCK (i) = tmp;
      tmp->index = i;
    }
  BASIC_BLOCK (i) = bb;
  bb->index = i;

  /* Create the basic block note.  */
  bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
  NOTE_BASIC_BLOCK (bb_note) = bb;
  bb->head = bb->end = bb_note;

  /* Not quite simple -- for non-fallthru edges, we must adjust the
     predecessor's jump instruction to target our new block.  */
  if ((edge_in->flags & EDGE_FALLTHRU) == 0)
    {
      rtx tmp, insn = old_pred->end;
      rtx old_label = old_succ->head;
      rtx new_label = gen_label_rtx ();

      if (GET_CODE (insn) != JUMP_INSN)
	abort ();

      /* ??? Recognize a tablejump and adjust all matching cases.  */
      if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
	  && (tmp = NEXT_INSN (tmp)) != NULL_RTX
	  && GET_CODE (tmp) == JUMP_INSN
	  && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
	      || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
	{
	  rtvec vec;
	  int j;

	  if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
	    vec = XVEC (PATTERN (tmp), 0);
	  else
	    vec = XVEC (PATTERN (tmp), 1);

	  for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
	    if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
	      {
	        RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (VOIDmode, new_label);
		--LABEL_NUSES (old_label);
		++LABEL_NUSES (new_label);
	      }
	}
      else
	{
	  /* This would have indicated an abnormal edge.  */
	  if (computed_jump_p (insn))
	    abort ();

	  /* A return instruction can't be redirected.  */
	  if (returnjump_p (insn))
	    abort ();

	  /* If the insn doesn't go where we think, we're confused.  */
	  if (JUMP_LABEL (insn) != old_label)
	    abort ();

	  redirect_jump (insn, new_label);
	}

      emit_label_before (new_label, bb_note);
      bb->head = new_label;
    }

  return bb;
}

/* Queue instructions for insertion on an edge between two basic blocks.
   The new instructions and basic blocks (if any) will not appear in the
   CFG until commit_edge_insertions is called.  */

void
insert_insn_on_edge (pattern, e)
     rtx pattern;
     edge e;
{
  /* We cannot insert instructions on an abnormal critical edge.
     It will be easier to find the culprit if we die now.  */
  if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
      == (EDGE_ABNORMAL|EDGE_CRITICAL))
    abort ();

  if (e->insns == NULL_RTX)
    start_sequence ();
  else
    push_to_sequence (e->insns);

  emit_insn (pattern);

  e->insns = get_insns ();
  end_sequence();
}

/* Update the CFG for the instructions queued on edge E.  */

static void
commit_one_edge_insertion (e)
     edge e;
{
  rtx before = NULL_RTX, after = NULL_RTX, tmp;
  basic_block bb;

  /* Figure out where to put these things.  If the destination has
     one predecessor, insert there.  Except for the exit block.  */
  if (e->dest->pred->pred_next == NULL
      && e->dest != EXIT_BLOCK_PTR)
    {
      bb = e->dest;

      /* Get the location correct wrt a code label, and "nice" wrt
	 a basic block note, and before everything else.  */
      tmp = bb->head;
      if (GET_CODE (tmp) == CODE_LABEL)
	tmp = NEXT_INSN (tmp);
      if (GET_CODE (tmp) == NOTE
	  && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BASIC_BLOCK)
	tmp = NEXT_INSN (tmp);
      if (tmp == bb->head)
	before = tmp;
      else
	after = PREV_INSN (tmp);
    }
  
  /* If the source has one successor and the edge is not abnormal,
     insert there.  Except for the entry block.  */
  else if ((e->flags & EDGE_ABNORMAL) == 0
	   && e->src->succ->succ_next == NULL
	   && e->src != ENTRY_BLOCK_PTR)
    {
      bb = e->src;
      if (GET_CODE (bb->end) == JUMP_INSN)
	{
	  /* ??? Is it possible to wind up with non-simple jumps?  Perhaps
	     a jump with delay slots already filled?  */
	  if (! simplejump_p (bb->end))
	    abort ();

	  before = bb->end;
	}
      else
	{
	  /* We'd better be fallthru, or we've lost track of what's what.  */
	  if ((e->flags & EDGE_FALLTHRU) == 0)
	    abort ();

	  after = bb->end;
	}
    }

  /* Otherwise we must split the edge.  */
  else
    {
      bb = split_edge (e);
      after = bb->end;
    }

  /* Now that we've found the spot, do the insertion.  */
  tmp = e->insns;
  e->insns = NULL_RTX;
  if (before)
    {
      emit_insns_before (tmp, before);
      if (before == bb->head)
	bb->head = before;
    }
  else
    {
      tmp = emit_insns_after (tmp, after);
      if (after == bb->end)
	bb->end = tmp;
    }
}

/* Update the CFG for all queued instructions.  */

void
commit_edge_insertions ()
{
  int i;
  basic_block bb;

  i = -1;
  bb = ENTRY_BLOCK_PTR;
  while (1)
    {
      edge e, next;

      for (e = bb->succ; e ; e = next)
	{
	  next = e->succ_next;
	  if (e->insns)
	    commit_one_edge_insertion (e);
	}

      if (++i >= n_basic_blocks)
	break;
      bb = BASIC_BLOCK (i);
    }
}

/* Delete all unreachable basic blocks.   */

static void
delete_unreachable_blocks ()
{
  basic_block *worklist, *tos;
  int deleted_handler;
  edge e;
  int i, n;

  n = n_basic_blocks;
  tos = worklist = (basic_block *) alloca (sizeof (basic_block) * n);

  /* Use basic_block->aux as a marker.  Clear them all.  */

  for (i = 0; i < n; ++i)
    BASIC_BLOCK (i)->aux = NULL;

  /* Add our starting points to the worklist.  Almost always there will
     be only one.  It isn't inconcievable that we might one day directly
     support Fortran alternate entry points.  */

  for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
    {
      *tos++ = e->dest;

      /* Mark the block with a handy non-null value.  */
      e->dest->aux = e;
    }
      
  /* Iterate: find everything reachable from what we've already seen.  */

  while (tos != worklist)
    {
      basic_block b = *--tos;

      for (e = b->succ; e ; e = e->succ_next)
	if (!e->dest->aux)
	  {
	    *tos++ = e->dest;
	    e->dest->aux = e;
	  }
    }

  /* Delete all unreachable basic blocks.  Count down so that we don't
     interfere with the block renumbering that happens in delete_block.  */

  deleted_handler = 0;

  for (i = n - 1; i >= 0; --i)
    {
      basic_block b = BASIC_BLOCK (i);

      if (b->aux != NULL)
	/* This block was found.  Tidy up the mark.  */
	b->aux = NULL;
      else
	deleted_handler |= delete_block (b);
    }

  /* Fix up edges that now fall through, or rather should now fall through
     but previously required a jump around now deleted blocks.  Simplify
     the search by only examining blocks numerically adjacent, since this
     is how find_basic_blocks created them.  */

  for (i = 1; i < n_basic_blocks; ++i)
    {
      basic_block b = BASIC_BLOCK (i - 1);
      basic_block c = BASIC_BLOCK (i);
      edge s;

      /* We care about simple conditional or unconditional jumps with
	 a single successor.

	 If we had a conditional branch to the next instruction when
	 find_basic_blocks was called, then there will only be one
	 out edge for the block which ended with the conditional
	 branch (since we do not create duplicate edges).

	 Furthermore, the edge will be marked as a fallthru because we
	 merge the flags for the duplicate edges.  So we do not want to
	 check that the edge is not a FALLTHRU edge.  */
      if ((s = b->succ) != NULL
	  && s->succ_next == NULL
	  && s->dest == c)
	tidy_fallthru_edge (s, b, c);
    }

  /* Attempt to merge blocks as made possible by edge removal.  If a block
     has only one successor, and the successor has only one predecessor, 
     they may be combined.  */

  for (i = 0; i < n_basic_blocks; )
    {
      basic_block c, b = BASIC_BLOCK (i);
      edge s;

      /* A loop because chains of blocks might be combineable.  */
      while ((s = b->succ) != NULL
	     && s->succ_next == NULL
	     && (c = s->dest) != EXIT_BLOCK_PTR
	     && c->pred->pred_next == NULL
	     && merge_blocks (s, b, c))
	continue;

      /* Don't get confused by the index shift caused by deleting blocks.  */
      i = b->index + 1;
    }

  /* If we deleted an exception handler, we may have EH region begin/end
     blocks to remove as well. */
  if (deleted_handler)
    delete_eh_regions ();
}

/* Find EH regions for which there is no longer a handler, and delete them.  */

static void
delete_eh_regions ()
{
  rtx insn;

  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == NOTE)
      {
	if ((NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG) ||
	    (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)) 
	  {
	    int num = CODE_LABEL_NUMBER (insn);
	    /* A NULL handler indicates a region is no longer needed */
	    if (get_first_handler (num) == NULL)
	      {
		NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
		NOTE_SOURCE_FILE (insn) = 0;
	      }
	  }
      }
}

/* Return true if NOTE is not one of the ones that must be kept paired,
   so that we may simply delete them.  */

static int
can_delete_note_p (note)
     rtx note;
{
  return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
	  || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
}

/* Unlink a chain of insns between START and FINISH, leaving notes
   that must be paired.  */

static void
delete_insn_chain (start, finish)
     rtx start, finish;
{
  /* Unchain the insns one by one.  It would be quicker to delete all
     of these with a single unchaining, rather than one at a time, but
     we need to keep the NOTE's.  */

  rtx next;

  while (1)
    {
      next = NEXT_INSN (start);
      if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
	;
      else if (GET_CODE (start) == CODE_LABEL && !can_delete_label_p (start))
	;
      else
	next = flow_delete_insn (start);

      if (start == finish)
	break;
      start = next;
    }
}

/* Delete the insns in a (non-live) block.  We physically delete every
   non-deleted-note insn, and update the flow graph appropriately.

   Return nonzero if we deleted an exception handler.  */

/* ??? Preserving all such notes strikes me as wrong.  It would be nice
   to post-process the stream to remove empty blocks, loops, ranges, etc.  */

static int
delete_block (b)
     basic_block b;
{
  int deleted_handler = 0;
  rtx insn, end;

  /* If the head of this block is a CODE_LABEL, then it might be the
     label for an exception handler which can't be reached.

     We need to remove the label from the exception_handler_label list
     and remove the associated NOTE_EH_REGION_BEG and NOTE_EH_REGION_END
     notes.  */

  insn = b->head;
  
  if (GET_CODE (insn) == CODE_LABEL)
    {
      rtx x, *prev = &exception_handler_labels;

      for (x = exception_handler_labels; x; x = XEXP (x, 1))
	{
	  if (XEXP (x, 0) == insn)
	    {
	      /* Found a match, splice this label out of the EH label list.  */
	      *prev = XEXP (x, 1);
	      XEXP (x, 1) = NULL_RTX;
	      XEXP (x, 0) = NULL_RTX;

	      /* Remove the handler from all regions */
	      remove_handler (insn);
	      deleted_handler = 1;
	      break;
	    }
	  prev = &XEXP (x, 1);
	}

      /* This label may be referenced by code solely for its value, or
	 referenced by static data, or something.  We have determined
	 that it is not reachable, but cannot delete the label itself.
	 Save code space and continue to delete the balance of the block,
	 along with properly updating the cfg.  */
      if (!can_delete_label_p (insn))
	{
	  /* If we've only got one of these, skip the whole deleting
	     insns thing.  */
	  if (insn == b->end)
	    goto no_delete_insns;
	  insn = NEXT_INSN (insn);
	}
    }

  /* Selectively unlink the insn chain.  Include any BARRIER that may
     follow the basic block.  */
  end = next_nonnote_insn (b->end);
  if (!end || GET_CODE (end) != BARRIER)
    end = b->end;
  delete_insn_chain (insn, end);

no_delete_insns:

  /* Remove the edges into and out of this block.  Note that there may 
     indeed be edges in, if we are removing an unreachable loop.  */
  {
    edge e, next, *q;

    for (e = b->pred; e ; e = next)
      {
	for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
	  continue;
	*q = e->succ_next;
	next = e->pred_next;
	free (e);
      }
    for (e = b->succ; e ; e = next)
      {
	for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
	  continue;
	*q = e->pred_next;
	next = e->succ_next;
	free (e);
      }

    b->pred = NULL;
    b->succ = NULL;
  }

  /* Remove the basic block from the array, and compact behind it.  */
  expunge_block (b);

  return deleted_handler;
}

/* Remove block B from the basic block array and compact behind it.  */

static void
expunge_block (b)
     basic_block b;
{
  int i, n = n_basic_blocks;

  for (i = b->index; i + 1 < n; ++i)
    {
      basic_block x = BASIC_BLOCK (i + 1);
      BASIC_BLOCK (i) = x;
      x->index = i;
    }

  basic_block_info->num_elements--;
  n_basic_blocks--;
}

/* Delete INSN by patching it out.  Return the next insn.  */

static rtx
flow_delete_insn (insn)
     rtx insn;
{
  rtx prev = PREV_INSN (insn);
  rtx next = NEXT_INSN (insn);

  PREV_INSN (insn) = NULL_RTX;
  NEXT_INSN (insn) = NULL_RTX;

  if (prev)
    NEXT_INSN (prev) = next;
  if (next)
    PREV_INSN (next) = prev;
  else
    set_last_insn (prev);

  if (GET_CODE (insn) == CODE_LABEL)
    remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);

  /* If deleting a jump, decrement the use count of the label.  Deleting
     the label itself should happen in the normal course of block merging.  */
  if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
    LABEL_NUSES (JUMP_LABEL (insn))--;

  return next;
}

/* True if a given label can be deleted.  */

static int 
can_delete_label_p (label)
     rtx label;
{
  rtx x;

  if (LABEL_PRESERVE_P (label))
    return 0;

  for (x = forced_labels; x ; x = XEXP (x, 1))
    if (label == XEXP (x, 0))
      return 0;
  for (x = label_value_list; x ; x = XEXP (x, 1))
    if (label == XEXP (x, 0))
      return 0;
  for (x = exception_handler_labels; x ; x = XEXP (x, 1))
    if (label == XEXP (x, 0))
      return 0;

  /* User declared labels must be preserved.  */
  if (LABEL_NAME (label) != 0)
    return 0;
  
  return 1;
}

/* Blocks A and B are to be merged into a single block.  The insns
   are already contiguous, hence `nomove'.  */

static void
merge_blocks_nomove (a, b)
     basic_block a, b;
{
  edge e;
  rtx b_head, b_end, a_end;
  int b_empty = 0;

  /* If there was a CODE_LABEL beginning B, delete it.  */
  b_head = b->head;
  b_end = b->end;
  if (GET_CODE (b_head) == CODE_LABEL)
    {
      /* Detect basic blocks with nothing but a label.  This can happen
	 in particular at the end of a function.  */
      if (b_head == b_end)
	b_empty = 1;
      b_head = flow_delete_insn (b_head);
    }

  /* Delete the basic block note.  */
  if (GET_CODE (b_head) == NOTE 
      && NOTE_LINE_NUMBER (b_head) == NOTE_INSN_BASIC_BLOCK)
    {
      if (b_head == b_end)
	b_empty = 1;
      b_head = flow_delete_insn (b_head);
    }

  /* If there was a jump out of A, delete it.  */
  a_end = a->end;
  if (GET_CODE (a_end) == JUMP_INSN)
    {
      rtx prev;

      prev = prev_nonnote_insn (a_end);
      if (!prev) 
	prev = a->head;

#ifdef HAVE_cc0
      /* If this was a conditional jump, we need to also delete
	 the insn that set cc0.  */

      if (prev && sets_cc0_p (prev))
	{
          rtx tmp = prev;
	  prev = prev_nonnote_insn (prev);
	  if (!prev)
	    prev = a->head;
	  flow_delete_insn (tmp);
	}
#endif

      /* Note that a->head != a->end, since we should have at least a
	 bb note plus the jump, so prev != insn.  */
      flow_delete_insn (a_end);
      a_end = prev;
    }

  /* By definition, there should only be one successor of A, and that is
     B.  Free that edge struct.  */
  free (a->succ);

  /* Adjust the edges out of B for the new owner.  */
  for (e = b->succ; e ; e = e->succ_next)
    e->src = a;
  a->succ = b->succ;

  /* Reassociate the insns of B with A.  */
  if (!b_empty)
    {
      BLOCK_FOR_INSN (b_head) = a;
      while (b_head != b_end)
	{
	  b_head = NEXT_INSN (b_head);
	  BLOCK_FOR_INSN (b_head) = a;
	}
      a_end = b_head;
    }
  a->end = a_end;
  
  /* Compact the basic block array.  */
  expunge_block (b);
}

/* Attempt to merge basic blocks that are potentially non-adjacent.  
   Return true iff the attempt succeeded.  */

static int
merge_blocks (e, b, c)
     edge e;
     basic_block b, c;
{
  /* If B has a fallthru edge to C, no need to move anything.  */
  if (!(e->flags & EDGE_FALLTHRU))
    {
      /* ??? From here on out we must make sure to not munge nesting
	 of exception regions and lexical blocks.  Need to think about
	 these cases before this gets implemented.  */
      return 0;

      /* If C has an outgoing fallthru, and B does not have an incoming
	 fallthru, move B before C.  The later clause is somewhat arbitrary,
	 but avoids modifying blocks other than the two we've been given.  */

      /* Otherwise, move C after B.  If C had a fallthru, which doesn't
	 happen to be the physical successor to B, insert an unconditional
	 branch.  If C already ended with a conditional branch, the new
	 jump must go in a new basic block D.  */
    }

  /* If a label still appears somewhere and we cannot delete the label,
     then we cannot merge the blocks.  The edge was tidied already.  */
  {
    rtx insn, stop = NEXT_INSN (c->head);
    for (insn = NEXT_INSN (b->end); insn != stop; insn = NEXT_INSN (insn))
      if (GET_CODE (insn) == CODE_LABEL && !can_delete_label_p (insn))
	return 0;
  }

  merge_blocks_nomove (b, c);
  return 1;
}

/* The given edge should potentially a fallthru edge.  If that is in
   fact true, delete the unconditional jump and barriers that are in
   the way.  */

static void
tidy_fallthru_edge (e, b, c)
     edge e;
     basic_block b, c;
{
  rtx q;

  /* ??? In a late-running flow pass, other folks may have deleted basic
     blocks by nopping out blocks, leaving multiple BARRIERs between here
     and the target label. They ought to be chastized and fixed.

     We can also wind up with a sequence of undeletable labels between
     one block and the next.

     So search through a sequence of barriers, labels, and notes for
     the head of block C and assert that we really do fall through.  */

  if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
    return;

  /* Remove what will soon cease being the jump insn from the source block.
     If block B consisted only of this single jump, turn it into a deleted
     note.  */
  q = b->end;
  if (GET_CODE (q) == JUMP_INSN)
    {
#ifdef HAVE_cc0
      /* If this was a conditional jump, we need to also delete
	 the insn that set cc0.  */
      if (! simplejump_p (q) && condjump_p (q))
	q = PREV_INSN (q);
#endif

      if (b->head == q)
	{
	  PUT_CODE (q, NOTE);
	  NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
	  NOTE_SOURCE_FILE (q) = 0;
	}
      else
	b->end = q = PREV_INSN (q);
    }

  /* Selectively unlink the sequence.  */
  if (q != PREV_INSN (c->head))
    delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));

  e->flags |= EDGE_FALLTHRU;
}

/* Discover and record the loop depth at the head of each basic block.  */

static void
calculate_loop_depth (insns)
     rtx insns;
{
  basic_block bb;
  rtx insn;
  int i = 0, depth = 1;

  bb = BASIC_BLOCK (i);
  for (insn = insns; insn ; insn = NEXT_INSN (insn))
    {
      if (insn == bb->head)
	{
	  bb->loop_depth = depth;
	  if (++i >= n_basic_blocks)
	    break;
	  bb = BASIC_BLOCK (i);
	}

      if (GET_CODE (insn) == NOTE)
	{
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	    depth++;
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	    depth--;

	  /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. */
	  if (depth == 0)
	    abort ();
	}
    }
}

/* Perform data flow analysis.
   F is the first insn of the function and NREGS the number of register numbers
   in use.  */

void
life_analysis (f, nregs, file, remove_dead_code)
     rtx f;
     int nregs;
     FILE *file;
     int remove_dead_code;
{
#ifdef ELIMINABLE_REGS
  register size_t i;
  static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
#endif

  /* Record which registers will be eliminated.  We use this in
     mark_used_regs.  */

  CLEAR_HARD_REG_SET (elim_reg_set);

#ifdef ELIMINABLE_REGS
  for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
    SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
#else
  SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
#endif

  /* Allocate a bitmap to be filled in by record_volatile_insns.  */
  uid_volatile = BITMAP_ALLOCA ();

  /* We want alias analysis information for local dead store elimination.  */
  init_alias_analysis ();
  life_analysis_1 (f, nregs, remove_dead_code);
  end_alias_analysis ();

  if (file)
    dump_flow_info (file);

  BITMAP_FREE (uid_volatile);
  free_basic_block_vars (1);
}

/* Free the variables allocated by find_basic_blocks.

   KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed.  */

void
free_basic_block_vars (keep_head_end_p)
     int keep_head_end_p;
{
  if (basic_block_for_insn)
    {
      VARRAY_FREE (basic_block_for_insn);
      basic_block_for_insn = NULL;
    }

  if (! keep_head_end_p)
    {
      clear_edges ();
      VARRAY_FREE (basic_block_info);
      n_basic_blocks = 0;

      ENTRY_BLOCK_PTR->aux = NULL;
      ENTRY_BLOCK_PTR->global_live_at_end = NULL;
      EXIT_BLOCK_PTR->aux = NULL;
      EXIT_BLOCK_PTR->global_live_at_start = NULL;
    }
}

/* Return nonzero if the destination of SET equals the source.  */
static int
set_noop_p (set)
     rtx set;
{
  rtx src = SET_SRC (set);
  rtx dst = SET_DEST (set);
  if (GET_CODE (src) == REG && GET_CODE (dst) == REG
      && REGNO (src) == REGNO (dst))
    return 1;
  if (GET_CODE (src) != SUBREG || GET_CODE (dst) != SUBREG
      || SUBREG_WORD (src) != SUBREG_WORD (dst))
    return 0;
  src = SUBREG_REG (src);
  dst = SUBREG_REG (dst);
  if (GET_CODE (src) == REG && GET_CODE (dst) == REG
      && REGNO (src) == REGNO (dst))
    return 1;
  return 0;
}

/* Return nonzero if an insn consists only of SETs, each of which only sets a
   value to itself.  */
static int
noop_move_p (insn)
     rtx insn;
{
  rtx pat = PATTERN (insn);

  /* Insns carrying these notes are useful later on.  */
  if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
    return 0;

  if (GET_CODE (pat) == SET && set_noop_p (pat))
    return 1;

  if (GET_CODE (pat) == PARALLEL)
    {
      int i;
      /* If nothing but SETs of registers to themselves,
	 this insn can also be deleted.  */
      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx tem = XVECEXP (pat, 0, i);

	  if (GET_CODE (tem) == USE
	      || GET_CODE (tem) == CLOBBER)
	    continue;

	  if (GET_CODE (tem) != SET || ! set_noop_p (tem))
	    return 0;
	}

      return 1;
    }
  return 0;
}

static void
notice_stack_pointer_modification (x, pat)
     rtx x;
     rtx pat ATTRIBUTE_UNUSED;
{
  if (x == stack_pointer_rtx
      /* The stack pointer is only modified indirectly as the result
	 of a push until later in flow.  See the comments in rtl.texi
	 regarding Embedded Side-Effects on Addresses.  */
      || (GET_CODE (x) == MEM
	  && (GET_CODE (XEXP (x, 0)) == PRE_DEC
	      || GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == POST_DEC
	      || GET_CODE (XEXP (x, 0)) == POST_INC)
	  && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
    current_function_sp_is_unchanging = 0;
}

/* Record which insns refer to any volatile memory
   or for any reason can't be deleted just because they are dead stores.
   Also, delete any insns that copy a register to itself.
   And see if the stack pointer is modified.  */
static void
record_volatile_insns (f)
     rtx f;
{
  rtx insn;
  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      enum rtx_code code1 = GET_CODE (insn);
      if (code1 == CALL_INSN)
	SET_INSN_VOLATILE (insn);
      else if (code1 == INSN || code1 == JUMP_INSN)
	{
	  if (GET_CODE (PATTERN (insn)) != USE
	      && volatile_refs_p (PATTERN (insn)))
	    SET_INSN_VOLATILE (insn);

	  /* A SET that makes space on the stack cannot be dead.
	     (Such SETs occur only for allocating variable-size data,
	     so they will always have a PLUS or MINUS according to the
	     direction of stack growth.)
	     Even if this function never uses this stack pointer value,
	     signal handlers do!  */
	  else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
		   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
#ifdef STACK_GROWS_DOWNWARD
		   && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
#else
		   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
#endif
		   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
	    SET_INSN_VOLATILE (insn);

	  /* Delete (in effect) any obvious no-op moves.  */
	  else if (noop_move_p (insn))
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;
	    }
	}

      /* Check if insn modifies the stack pointer.  */
      if ( current_function_sp_is_unchanging
	   && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	note_stores (PATTERN (insn), notice_stack_pointer_modification);
    }
}

/* Mark those regs which are needed at the end of the function as live
   at the end of the last basic block.  */
static void
mark_regs_live_at_end (set)
     regset set;
{
  int i;
  
  /* If exiting needs the right stack value, consider the stack pointer
     live at the end of the function.  */
  if (! EXIT_IGNORE_STACK
      || (! FRAME_POINTER_REQUIRED
	  && ! current_function_calls_alloca
	  && flag_omit_frame_pointer)
      || current_function_sp_is_unchanging)
    {
      SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
    }

  /* Mark the frame pointer if needed at the end of the function.  If
     we end up eliminating it, it will be removed from the live list
     of each basic block by reload.  */

  if (! reload_completed || frame_pointer_needed)
    {
      SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
      /* If they are different, also mark the hard frame pointer as live */
      SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
#endif      
    }

  /* Mark all global registers, and all registers used by the epilogue
     as being live at the end of the function since they may be
     referenced by our caller.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (global_regs[i]
#ifdef EPILOGUE_USES
	|| EPILOGUE_USES (i)
#endif
	)
      SET_REGNO_REG_SET (set, i);

  /* ??? Mark function return value here rather than as uses.  */
}

/* Determine which registers are live at the start of each
   basic block of the function whose first insn is F.
   NREGS is the number of registers used in F.
   We allocate the vector basic_block_live_at_start
   and the regsets that it points to, and fill them with the data.
   regset_size and regset_bytes are also set here.  */

static void
life_analysis_1 (f, nregs, remove_dead_code)
     rtx f;
     int nregs;
     int remove_dead_code;
{
  int first_pass;
  int changed;
  register int i;
  char save_regs_ever_live[FIRST_PSEUDO_REGISTER];
  regset *new_live_at_end;

  struct obstack flow_obstack;

  gcc_obstack_init (&flow_obstack);

  max_regno = nregs;

  /* Allocate and zero out many data structures
     that will record the data from lifetime analysis.  */

  allocate_reg_life_data ();
  allocate_bb_life_data ();

  reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
  memset (reg_next_use, 0, nregs * sizeof (rtx));

  /* Set up regset-vectors used internally within this function.
     Their meanings are documented above, with their declarations.  */

  new_live_at_end = (regset *) alloca ((n_basic_blocks + 1) * sizeof (regset));
  init_regset_vector (new_live_at_end, n_basic_blocks + 1, &flow_obstack);

  /* Stick these vectors into the AUX field of the basic block, so that
     we don't have to keep going through the index.  */

  for (i = 0; i < n_basic_blocks; ++i)
    BASIC_BLOCK (i)->aux = new_live_at_end[i];
  ENTRY_BLOCK_PTR->aux = new_live_at_end[i];

  /* Assume that the stack pointer is unchanging if alloca hasn't been used.
     This will be cleared by record_volatile_insns if it encounters an insn
     which modifies the stack pointer.  */
  current_function_sp_is_unchanging = !current_function_calls_alloca;

  record_volatile_insns (f);

  if (n_basic_blocks > 0)
    {
      regset theend;
      register edge e;

      theend = EXIT_BLOCK_PTR->global_live_at_start;
      mark_regs_live_at_end (theend);

      /* Propogate this exit data to each of EXIT's predecessors.  */
      for (e = EXIT_BLOCK_PTR->pred; e ; e = e->pred_next)
	{
	  COPY_REG_SET (e->src->global_live_at_end, theend);
	  COPY_REG_SET ((regset) e->src->aux, theend);
	}
    }

  /* The post-reload life analysis have (on a global basis) the same registers
     live as was computed by reload itself.

     Otherwise elimination offsets and such may be incorrect.

     Reload will make some registers as live even though they do not appear
     in the rtl.  */
  if (reload_completed)
    memcpy (save_regs_ever_live, regs_ever_live, sizeof (regs_ever_live));
  memset (regs_ever_live, 0, sizeof regs_ever_live);

  /* Propagate life info through the basic blocks
     around the graph of basic blocks.

     This is a relaxation process: each time a new register
     is live at the end of the basic block, we must scan the block
     to determine which registers are, as a consequence, live at the beginning
     of that block.  These registers must then be marked live at the ends
     of all the blocks that can transfer control to that block.
     The process continues until it reaches a fixed point.  */

  first_pass = 1;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (i = n_basic_blocks - 1; i >= 0; i--)
	{
	  basic_block bb = BASIC_BLOCK (i);
	  int consider = first_pass;
	  int must_rescan = first_pass;
	  register int j;

	  if (!first_pass)
	    {
	      /* Set CONSIDER if this block needs thinking about at all
		 (that is, if the regs live now at the end of it
		 are not the same as were live at the end of it when
		 we last thought about it).
		 Set must_rescan if it needs to be thought about
		 instruction by instruction (that is, if any additional
		 reg that is live at the end now but was not live there before
		 is one of the significant regs of this basic block).  */

	      EXECUTE_IF_AND_COMPL_IN_REG_SET
		((regset) bb->aux, bb->global_live_at_end, 0, j,
		 {
		   consider = 1;
		   if (REGNO_REG_SET_P (bb->local_set, j))
		     {
		       must_rescan = 1;
		       goto done;
		     }
		 });
	    done:
	      if (! consider)
		continue;
	    }

	  /* The live_at_start of this block may be changing,
	     so another pass will be required after this one.  */
	  changed = 1;

	  if (! must_rescan)
	    {
	      /* No complete rescan needed;
		 just record those variables newly known live at end
		 as live at start as well.  */
	      IOR_AND_COMPL_REG_SET (bb->global_live_at_start,
				     (regset) bb->aux,
				     bb->global_live_at_end);

	      IOR_AND_COMPL_REG_SET (bb->global_live_at_end,
				     (regset) bb->aux,
				     bb->global_live_at_end);
	    }
	  else
	    {
	      /* Update the basic_block_live_at_start
		 by propagation backwards through the block.  */
	      COPY_REG_SET (bb->global_live_at_end, (regset) bb->aux);
	      COPY_REG_SET (bb->global_live_at_start,
			    bb->global_live_at_end);
	      propagate_block (bb->global_live_at_start,
			       bb->head, bb->end, 0,
			       first_pass ? bb->local_set : (regset) 0,
			       i, remove_dead_code);
	    }

	  /* Update the new_live_at_end's of the block's predecessors.  */
	  {
	    register edge e;

	    for (e = bb->pred; e ; e = e->pred_next)
	      IOR_REG_SET ((regset) e->src->aux, bb->global_live_at_start);
	  }

#ifdef USE_C_ALLOCA
	  alloca (0);
#endif
	}
      first_pass = 0;
    }

  /* The only pseudos that are live at the beginning of the function are
     those that were not set anywhere in the function.  local-alloc doesn't
     know how to handle these correctly, so mark them as not local to any
     one basic block.  */

  if (n_basic_blocks > 0)
    EXECUTE_IF_SET_IN_REG_SET (BASIC_BLOCK (0)->global_live_at_start,
			       FIRST_PSEUDO_REGISTER, i,
			       {
				 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
			       });

  /* Now the life information is accurate.  Make one more pass over each
     basic block to delete dead stores, create autoincrement addressing
     and record how many times each register is used, is set, or dies.  */

  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);

      /* We start with global_live_at_end to determine which stores are
	 dead.  This process is destructive, and we wish to preserve the
	 contents of global_live_at_end for posterity.  Fortunately,
	 new_live_at_end, due to the way we converged on a solution,
	 contains a duplicate of global_live_at_end that we can kill.  */
      propagate_block ((regset) bb->aux, bb->head, bb->end, 1, (regset) 0, i, remove_dead_code);

#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  /* We have a problem with any pseudoreg that lives across the setjmp. 
     ANSI says that if a user variable does not change in value between
     the setjmp and the longjmp, then the longjmp preserves it.  This
     includes longjmp from a place where the pseudo appears dead.
     (In principle, the value still exists if it is in scope.)
     If the pseudo goes in a hard reg, some other value may occupy
     that hard reg where this pseudo is dead, thus clobbering the pseudo.
     Conclusion: such a pseudo must not go in a hard reg.  */
  EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
			     FIRST_PSEUDO_REGISTER, i,
			     {
			       if (regno_reg_rtx[i] != 0)
				 {
				   REG_LIVE_LENGTH (i) = -1;
				   REG_BASIC_BLOCK (i) = -1;
				 }
			     });

  /* Restore regs_ever_live that was provided by reload.  */
  if (reload_completed)
    memcpy (regs_ever_live, save_regs_ever_live, sizeof (regs_ever_live));

  free_regset_vector (new_live_at_end, n_basic_blocks);
  obstack_free (&flow_obstack, NULL_PTR);

  for (i = 0; i < n_basic_blocks; ++i)
    BASIC_BLOCK (i)->aux = NULL;
  ENTRY_BLOCK_PTR->aux = NULL;
}

/* Subroutines of life analysis.  */

/* Allocate the permanent data structures that represent the results
   of life analysis.  Not static since used also for stupid life analysis.  */

void
allocate_bb_life_data ()
{
  register int i;

  for (i = 0; i < n_basic_blocks; i++)
    {
      basic_block bb = BASIC_BLOCK (i);

      bb->local_set = OBSTACK_ALLOC_REG_SET (function_obstack);
      bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (function_obstack);
      bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (function_obstack);
    }

  ENTRY_BLOCK_PTR->global_live_at_end
    = OBSTACK_ALLOC_REG_SET (function_obstack);
  EXIT_BLOCK_PTR->global_live_at_start
    = OBSTACK_ALLOC_REG_SET (function_obstack);

  regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (function_obstack);
}

void
allocate_reg_life_data ()
{
  int i;

  /* Recalculate the register space, in case it has grown.  Old style
     vector oriented regsets would set regset_{size,bytes} here also.  */
  allocate_reg_info (max_regno, FALSE, FALSE);

  /* Because both reg_scan and flow_analysis want to set up the REG_N_SETS
     information, explicitly reset it here.  The allocation should have
     already happened on the previous reg_scan pass.  Make sure in case
     some more registers were allocated.  */
  for (i = 0; i < max_regno; i++)
    REG_N_SETS (i) = 0;
}

/* Make each element of VECTOR point at a regset.  The vector has
   NELTS elements, and space is allocated from the ALLOC_OBSTACK
   obstack.  */

static void
init_regset_vector (vector, nelts, alloc_obstack)
     regset *vector;
     int nelts;
     struct obstack *alloc_obstack;
{
  register int i;

  for (i = 0; i < nelts; i++)
    {
      vector[i] = OBSTACK_ALLOC_REG_SET (alloc_obstack);
      CLEAR_REG_SET (vector[i]);
    }
}

/* Release any additional space allocated for each element of VECTOR point
   other than the regset header itself.  The vector has NELTS elements.  */

void
free_regset_vector (vector, nelts)
     regset *vector;
     int nelts;
{
  register int i;

  for (i = 0; i < nelts; i++)
    FREE_REG_SET (vector[i]);
}

/* Compute the registers live at the beginning of a basic block
   from those live at the end.

   When called, OLD contains those live at the end.
   On return, it contains those live at the beginning.
   FIRST and LAST are the first and last insns of the basic block.

   FINAL is nonzero if we are doing the final pass which is not
   for computing the life info (since that has already been done)
   but for acting on it.  On this pass, we delete dead stores,
   set up the logical links and dead-variables lists of instructions,
   and merge instructions for autoincrement and autodecrement addresses.

   SIGNIFICANT is nonzero only the first time for each basic block.
   If it is nonzero, it points to a regset in which we store
   a 1 for each register that is set within the block.

   BNUM is the number of the basic block.  */

static void
propagate_block (old, first, last, final, significant, bnum, remove_dead_code)
     register regset old;
     rtx first;
     rtx last;
     int final;
     regset significant;
     int bnum;
     int remove_dead_code;
{
  register rtx insn;
  rtx prev;
  regset live;
  regset dead;

  /* Find the loop depth for this block.  Ignore loop level changes in the
     middle of the basic block -- for register allocation purposes, the 
     important uses will be in the blocks wholely contained within the loop
     not in the loop pre-header or post-trailer.  */
  loop_depth = BASIC_BLOCK (bnum)->loop_depth;

  dead = ALLOCA_REG_SET ();
  live = ALLOCA_REG_SET ();

  cc0_live = 0;
  mem_set_list = NULL_RTX;

  if (final)
    {
      register int i;

      /* Process the regs live at the end of the block.
	 Mark them as not local to any one basic block. */
      EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
				 {
				   REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
				 });
    }

  /* Scan the block an insn at a time from end to beginning.  */

  for (insn = last; ; insn = prev)
    {
      prev = PREV_INSN (insn);

      if (GET_CODE (insn) == NOTE)
	{
	  /* If this is a call to `setjmp' et al,
	     warn if any non-volatile datum is live.  */

	  if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
	    IOR_REG_SET (regs_live_at_setjmp, old);
	}

      /* Update the life-status of regs for this insn.
	 First DEAD gets which regs are set in this insn
	 then LIVE gets which regs are used in this insn.
	 Then the regs live before the insn
	 are those live after, with DEAD regs turned off,
	 and then LIVE regs turned on.  */

      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  register int i;
	  rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
	  int insn_is_dead = 0;
	  int libcall_is_dead = 0;

	  if (remove_dead_code)
	    {
	      insn_is_dead = (insn_dead_p (PATTERN (insn), old, 0, REG_NOTES (insn))
	                      /* Don't delete something that refers to volatile storage!  */
	                      && ! INSN_VOLATILE (insn));
	      libcall_is_dead = (insn_is_dead && note != 0
	                         && libcall_dead_p (PATTERN (insn), old, note, insn));
	    }

	  /* If an instruction consists of just dead store(s) on final pass,
	     "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
	     We could really delete it with delete_insn, but that
	     can cause trouble for first or last insn in a basic block.  */
	  if (final && insn_is_dead)
	    {
	      PUT_CODE (insn, NOTE);
	      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (insn) = 0;

	      /* CC0 is now known to be dead.  Either this insn used it,
		 in which case it doesn't anymore, or clobbered it,
		 so the next insn can't use it.  */
	      cc0_live = 0;

	      /* If this insn is copying the return value from a library call,
		 delete the entire library call.  */
	      if (libcall_is_dead)
		{
		  rtx first = XEXP (note, 0);
		  rtx p = insn;
		  while (INSN_DELETED_P (first))
		    first = NEXT_INSN (first);
		  while (p != first)
		    {
		      p = PREV_INSN (p);
		      PUT_CODE (p, NOTE);
		      NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
		      NOTE_SOURCE_FILE (p) = 0;
		    }
		}
	      goto flushed;
	    }

	  CLEAR_REG_SET (dead);
	  CLEAR_REG_SET (live);

	  /* See if this is an increment or decrement that can be
	     merged into a following memory address.  */
#ifdef AUTO_INC_DEC
	  {
	    register rtx x = single_set (insn);

	    /* Does this instruction increment or decrement a register?  */
	    if (!reload_completed
		&& final && x != 0
		&& GET_CODE (SET_DEST (x)) == REG
		&& (GET_CODE (SET_SRC (x)) == PLUS
		    || GET_CODE (SET_SRC (x)) == MINUS)
		&& XEXP (SET_SRC (x), 0) == SET_DEST (x)
		&& GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
		/* Ok, look for a following memory ref we can combine with.
		   If one is found, change the memory ref to a PRE_INC
		   or PRE_DEC, cancel this insn, and return 1.
		   Return 0 if nothing has been done.  */
		&& try_pre_increment_1 (insn))
	      goto flushed;
	  }
#endif /* AUTO_INC_DEC */

	  /* If this is not the final pass, and this insn is copying the
	     value of a library call and it's dead, don't scan the
	     insns that perform the library call, so that the call's
	     arguments are not marked live.  */
	  if (libcall_is_dead)
	    {
	      /* Mark the dest reg as `significant'.  */
	      mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);

	      insn = XEXP (note, 0);
	      prev = PREV_INSN (insn);
	    }
	  else if (GET_CODE (PATTERN (insn)) == SET
		   && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
		   && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
		   && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
		   && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
	    /* We have an insn to pop a constant amount off the stack.
	       (Such insns use PLUS regardless of the direction of the stack,
	       and any insn to adjust the stack by a constant is always a pop.)
	       These insns, if not dead stores, have no effect on life.  */
	    ;
	  else
	    {
	      /* Any regs live at the time of a call instruction
		 must not go in a register clobbered by calls.
		 Find all regs now live and record this for them.  */

	      if (GET_CODE (insn) == CALL_INSN && final)
		EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
					   {
					     REG_N_CALLS_CROSSED (i)++;
					   });

	      /* LIVE gets the regs used in INSN;
		 DEAD gets those set by it.  Dead insns don't make anything
		 live.  */

	      mark_set_regs (old, dead, PATTERN (insn),
			     final ? insn : NULL_RTX, significant);

	      /* If an insn doesn't use CC0, it becomes dead since we 
		 assume that every insn clobbers it.  So show it dead here;
		 mark_used_regs will set it live if it is referenced.  */
	      cc0_live = 0;

	      if (! insn_is_dead)
		mark_used_regs (old, live, PATTERN (insn), final, insn);

	      /* Sometimes we may have inserted something before INSN (such as
		 a move) when we make an auto-inc.  So ensure we will scan
		 those insns.  */
#ifdef AUTO_INC_DEC
	      prev = PREV_INSN (insn);
#endif

	      if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
		{
		  register int i;

		  rtx note;

	          for (note = CALL_INSN_FUNCTION_USAGE (insn);
		       note;
		       note = XEXP (note, 1))
		    if (GET_CODE (XEXP (note, 0)) == USE)
		      mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
				      final, insn);

		  /* Each call clobbers all call-clobbered regs that are not
		     global or fixed.  Note that the function-value reg is a
		     call-clobbered reg, and mark_set_regs has already had
		     a chance to handle it.  */

		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (call_used_regs[i] && ! global_regs[i]
			&& ! fixed_regs[i])
		      SET_REGNO_REG_SET (dead, i);

		  /* The stack ptr is used (honorarily) by a CALL insn.  */
		  SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);

		  /* Calls may also reference any of the global registers,
		     so they are made live.  */
		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		    if (global_regs[i])
		      mark_used_regs (old, live,
				      gen_rtx_REG (reg_raw_mode[i], i),
				      final, insn);

		  /* Calls also clobber memory.  */
		  mem_set_list = NULL_RTX;
		}

	      /* Update OLD for the registers used or set.  */
	      AND_COMPL_REG_SET (old, dead);
	      IOR_REG_SET (old, live);

	    }

	  /* On final pass, update counts of how many insns each reg is live
	     at.  */
	  if (final)
	    EXECUTE_IF_SET_IN_REG_SET (old, 0, i,
				       { REG_LIVE_LENGTH (i)++; });
	}
    flushed: ;
      if (insn == first)
	break;
    }

  FREE_REG_SET (dead);
  FREE_REG_SET (live);
}

/* Return 1 if X (the body of an insn, or part of it) is just dead stores
   (SET expressions whose destinations are registers dead after the insn).
   NEEDED is the regset that says which regs are alive after the insn.

   Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.

   If X is the entire body of an insn, NOTES contains the reg notes
   pertaining to the insn.  */

static int
insn_dead_p (x, needed, call_ok, notes)
     rtx x;
     regset needed;
     int call_ok;
     rtx notes ATTRIBUTE_UNUSED;
{
  enum rtx_code code = GET_CODE (x);

#ifdef AUTO_INC_DEC
  /* If flow is invoked after reload, we must take existing AUTO_INC
     expresions into account.  */
  if (reload_completed)
    {
      for ( ; notes; notes = XEXP (notes, 1))
	{
	  if (REG_NOTE_KIND (notes) == REG_INC)
	    {
	      int regno = REGNO (XEXP (notes, 0));

	      /* Don't delete insns to set global regs.  */
	      if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
		  || REGNO_REG_SET_P (needed, regno))
		return 0;
	    }
	}
    }
#endif

  /* If setting something that's a reg or part of one,
     see if that register's altered value will be live.  */

  if (code == SET)
    {
      rtx r = SET_DEST (x);

      /* A SET that is a subroutine call cannot be dead.  */
      if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
	return 0;

#ifdef HAVE_cc0
      if (GET_CODE (r) == CC0)
	return ! cc0_live;
#endif
      
      if (GET_CODE (r) == MEM && ! MEM_VOLATILE_P (r))
	{
	  rtx temp;
	  /* Walk the set of memory locations we are currently tracking
	     and see if one is an identical match to this memory location.
	     If so, this memory write is dead (remember, we're walking
	     backwards from the end of the block to the start.  */
	  temp = mem_set_list;
	  while (temp)
	    {
	      if (rtx_equal_p (XEXP (temp, 0), r))
		return 1;
	      temp = XEXP (temp, 1);
	    }
	}

      while (GET_CODE (r) == SUBREG || GET_CODE (r) == STRICT_LOW_PART
	     || GET_CODE (r) == ZERO_EXTRACT)
	r = SUBREG_REG (r);

      if (GET_CODE (r) == REG)
	{
	  int regno = REGNO (r);

	  /* Don't delete insns to set global regs.  */
	  if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
	      /* Make sure insns to set frame pointer aren't deleted.  */
	      || (regno == FRAME_POINTER_REGNUM
		  && (! reload_completed || frame_pointer_needed))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
	      || (regno == HARD_FRAME_POINTER_REGNUM
		  && (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      /* Make sure insns to set arg pointer are never deleted
		 (if the arg pointer isn't fixed, there will be a USE for
		 it, so we can treat it normally).  */
	      || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
	      || REGNO_REG_SET_P (needed, regno))
	    return 0;

	  /* If this is a hard register, verify that subsequent words are
	     not needed.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int n = HARD_REGNO_NREGS (regno, GET_MODE (r));

	      while (--n > 0)
		if (REGNO_REG_SET_P (needed, regno+n))
		  return 0;
	    }

	  return 1;
	}
    }

  /* If performing several activities,
     insn is dead if each activity is individually dead.
     Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
     that's inside a PARALLEL doesn't make the insn worth keeping.  */
  else if (code == PARALLEL)
    {
      int i = XVECLEN (x, 0);

      for (i--; i >= 0; i--)
	if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
	    && GET_CODE (XVECEXP (x, 0, i)) != USE
	    && ! insn_dead_p (XVECEXP (x, 0, i), needed, call_ok, NULL_RTX))
	  return 0;

      return 1;
    }

  /* A CLOBBER of a pseudo-register that is dead serves no purpose.  That
     is not necessarily true for hard registers.  */
  else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
	   && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
	   && ! REGNO_REG_SET_P (needed, REGNO (XEXP (x, 0))))
    return 1;

  /* We do not check other CLOBBER or USE here.  An insn consisting of just
     a CLOBBER or just a USE should not be deleted.  */
  return 0;
}

/* If X is the pattern of the last insn in a libcall, and assuming X is dead,
   return 1 if the entire library call is dead.
   This is true if X copies a register (hard or pseudo)
   and if the hard return  reg of the call insn is dead.
   (The caller should have tested the destination of X already for death.)

   If this insn doesn't just copy a register, then we don't
   have an ordinary libcall.  In that case, cse could not have
   managed to substitute the source for the dest later on,
   so we can assume the libcall is dead.

   NEEDED is the bit vector of pseudoregs live before this insn.
   NOTE is the REG_RETVAL note of the insn.  INSN is the insn itself.  */

static int
libcall_dead_p (x, needed, note, insn)
     rtx x;
     regset needed;
     rtx note;
     rtx insn;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET)
    {
      register rtx r = SET_SRC (x);
      if (GET_CODE (r) == REG)
	{
	  rtx call = XEXP (note, 0);
	  rtx call_pat;
	  register int i;

	  /* Find the call insn.  */
	  while (call != insn && GET_CODE (call) != CALL_INSN)
	    call = NEXT_INSN (call);

	  /* If there is none, do nothing special,
	     since ordinary death handling can understand these insns.  */
	  if (call == insn)
	    return 0;

	  /* See if the hard reg holding the value is dead.
	     If this is a PARALLEL, find the call within it.  */
	  call_pat = PATTERN (call);
	  if (GET_CODE (call_pat) == PARALLEL)
	    {
	      for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
		if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
		    && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
		  break;

	      /* This may be a library call that is returning a value
		 via invisible pointer.  Do nothing special, since
		 ordinary death handling can understand these insns.  */
	      if (i < 0)
		return 0;

	      call_pat = XVECEXP (call_pat, 0, i);
	    }

	  return insn_dead_p (call_pat, needed, 1, REG_NOTES (call));
	}
    }
  return 1;
}

/* Return 1 if register REGNO was used before it was set, i.e. if it is
   live at function entry.  Don't count global register variables, variables
   in registers that can be used for function arg passing, or variables in
   fixed hard registers.  */

int
regno_uninitialized (regno)
     int regno;
{
  if (n_basic_blocks == 0
      || (regno < FIRST_PSEUDO_REGISTER
	  && (global_regs[regno]
	      || fixed_regs[regno]
	      || FUNCTION_ARG_REGNO_P (regno))))
    return 0;

  return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
}

/* 1 if register REGNO was alive at a place where `setjmp' was called
   and was set more than once or is an argument.
   Such regs may be clobbered by `longjmp'.  */

int
regno_clobbered_at_setjmp (regno)
     int regno;
{
  if (n_basic_blocks == 0)
    return 0;

  return ((REG_N_SETS (regno) > 1
	   || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
	  && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
}

/* INSN references memory, possibly using autoincrement addressing modes.
   Find any entries on the mem_set_list that need to be invalidated due
   to an address change.  */
static void
invalidate_mems_from_autoinc (insn)
     rtx insn;
{
  rtx note = REG_NOTES (insn);
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    {
      if (REG_NOTE_KIND (note) == REG_INC)
        {
          rtx temp = mem_set_list;
          rtx prev = NULL_RTX;

          while (temp)
	    {
	      if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
	        {
	          /* Splice temp out of list.  */
	          if (prev)
	            XEXP (prev, 1) = XEXP (temp, 1);
	          else
	            mem_set_list = XEXP (temp, 1);
	        }
	      else
	        prev = temp;
              temp = XEXP (temp, 1);
	    }
	}
    }
}

/* Process the registers that are set within X.
   Their bits are set to 1 in the regset DEAD,
   because they are dead prior to this insn.

   If INSN is nonzero, it is the insn being processed
   and the fact that it is nonzero implies this is the FINAL pass
   in propagate_block.  In this case, various info about register
   usage is stored, LOG_LINKS fields of insns are set up.  */

static void
mark_set_regs (needed, dead, x, insn, significant)
     regset needed;
     regset dead;
     rtx x;
     rtx insn;
     regset significant;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    mark_set_1 (needed, dead, x, insn, significant);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
	}
    }
}

/* Process a single SET rtx, X.  */

static void
mark_set_1 (needed, dead, x, insn, significant)
     regset needed;
     regset dead;
     rtx x;
     rtx insn;
     regset significant;
{
  register int regno;
  register rtx reg = SET_DEST (x);

  /* Some targets place small structures in registers for
     return values of functions.  We have to detect this
     case specially here to get correct flow information.  */
  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;

      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	  mark_set_1 (needed, dead, XVECEXP (reg, 0, i), insn, significant);
      return;
    }

  /* Modifying just one hardware register of a multi-reg value
     or just a byte field of a register
     does not mean the value from before this insn is now dead.
     But it does mean liveness of that register at the end of the block
     is significant.

     Within mark_set_1, however, we treat it as if the register is
     indeed modified.  mark_used_regs will, however, also treat this
     register as being used.  Thus, we treat these insns as setting a
     new value for the register as a function of its old value.  This
     cases LOG_LINKS to be made appropriately and this will help combine.  */

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  /* If this set is a MEM, then it kills any aliased writes. 
     If this set is a REG, then it kills any MEMs which use the reg.  */
  if (GET_CODE (reg) == MEM
      || GET_CODE (reg) == REG)
    {
      rtx temp = mem_set_list;
      rtx prev = NULL_RTX;

      while (temp)
	{
	  if ((GET_CODE (reg) == MEM
	       && output_dependence (XEXP (temp, 0), reg))
	      || (GET_CODE (reg) == REG
		  && reg_overlap_mentioned_p (reg, XEXP (temp, 0))))
	    {
	      /* Splice this entry out of the list.  */
	      if (prev)
		XEXP (prev, 1) = XEXP (temp, 1);
	      else
		mem_set_list = XEXP (temp, 1);
	    }
	  else
	    prev = temp;
	  temp = XEXP (temp, 1);
	}
    }

  /* If the memory reference had embedded side effects (autoincrement
     address modes.  Then we may need to kill some entries on the
     memory set list.  */
  if (insn && GET_CODE (reg) == MEM)
    invalidate_mems_from_autoinc (insn);

  if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
      /* We do not know the size of a BLKmode store, so we do not track
	 them for redundant store elimination.  */
      && GET_MODE (reg) != BLKmode
      /* There are no REG_INC notes for SP, so we can't assume we'll see 
	 everything that invalidates it.  To be safe, don't eliminate any
	 stores though SP; none of them should be redundant anyway.  */
      && ! reg_mentioned_p (stack_pointer_rtx, reg))
    mem_set_list = gen_rtx_EXPR_LIST (VOIDmode, reg, mem_set_list);

  if (GET_CODE (reg) == REG
      && (regno = REGNO (reg), ! (regno == FRAME_POINTER_REGNUM
				  && (! reload_completed || frame_pointer_needed)))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
      && ! (regno == HARD_FRAME_POINTER_REGNUM
	    && (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
      && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
      && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
    /* && regno != STACK_POINTER_REGNUM) -- let's try without this.  */
    {
      int some_needed = REGNO_REG_SET_P (needed, regno);
      int some_not_needed = ! some_needed;

      /* Mark it as a significant register for this basic block.  */
      if (significant)
	SET_REGNO_REG_SET (significant, regno);

      /* Mark it as dead before this insn.  */
      SET_REGNO_REG_SET (dead, regno);

      /* A hard reg in a wide mode may really be multiple registers.
	 If so, mark all of them just like the first.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int n;

	  /* Nothing below is needed for the stack pointer; get out asap.
	     Eg, log links aren't needed, since combine won't use them.  */
	  if (regno == STACK_POINTER_REGNUM)
	    return;

	  n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--n > 0)
	    {
	      int regno_n = regno + n;
	      int needed_regno = REGNO_REG_SET_P (needed, regno_n);
	      if (significant)
		SET_REGNO_REG_SET (significant, regno_n);

	      SET_REGNO_REG_SET (dead, regno_n);
	      some_needed |= needed_regno;
	      some_not_needed |= ! needed_regno;
	    }
	}
      /* Additional data to record if this is the final pass.  */
      if (insn)
	{
	  register rtx y = reg_next_use[regno];
	  register int blocknum = BLOCK_NUM (insn);

	  /* If this is a hard reg, record this function uses the reg.  */

	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      register int i;
	      int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));

	      for (i = regno; i < endregno; i++)
		{
		  /* The next use is no longer "next", since a store
		     intervenes.  */
		  reg_next_use[i] = 0;

		  regs_ever_live[i] = 1;
		  REG_N_SETS (i)++;
		}
	    }
	  else
	    {
	      /* The next use is no longer "next", since a store
		 intervenes.  */
	      reg_next_use[regno] = 0;

	      /* Keep track of which basic blocks each reg appears in.  */

	      if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
		REG_BASIC_BLOCK (regno) = blocknum;
	      else if (REG_BASIC_BLOCK (regno) != blocknum)
		REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;

	      /* Count (weighted) references, stores, etc.  This counts a
		 register twice if it is modified, but that is correct.  */
	      REG_N_SETS (regno)++;

	      REG_N_REFS (regno) += loop_depth;
		  
	      /* The insns where a reg is live are normally counted
		 elsewhere, but we want the count to include the insn
		 where the reg is set, and the normal counting mechanism
		 would not count it.  */
	      REG_LIVE_LENGTH (regno)++;
	    }

	  if (! some_not_needed)
	    {
	      /* Make a logical link from the next following insn
		 that uses this register, back to this insn.
		 The following insns have already been processed.

		 We don't build a LOG_LINK for hard registers containing
		 in ASM_OPERANDs.  If these registers get replaced,
		 we might wind up changing the semantics of the insn,
		 even if reload can make what appear to be valid assignments
		 later.  */
	      if (y && (BLOCK_NUM (y) == blocknum)
		  && (regno >= FIRST_PSEUDO_REGISTER
		      || asm_noperands (PATTERN (y)) < 0))
		LOG_LINKS (y)
		  = gen_rtx_INSN_LIST (VOIDmode, insn, LOG_LINKS (y));
	    }
	  else if (! some_needed)
	    {
	      /* Note that dead stores have already been deleted when possible
		 If we get here, we have found a dead store that cannot
		 be eliminated (because the same insn does something useful).
		 Indicate this by marking the reg being set as dying here.  */
	      REG_NOTES (insn)
		= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
	      REG_N_DEATHS (REGNO (reg))++;
	    }
	  else
	    {
	      /* This is a case where we have a multi-word hard register
		 and some, but not all, of the words of the register are
		 needed in subsequent insns.  Write REG_UNUSED notes
		 for those parts that were not needed.  This case should
		 be rare.  */

	      int i;

	      for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
		   i >= 0; i--)
		if (!REGNO_REG_SET_P (needed, regno + i))
		  REG_NOTES (insn)
		    = gen_rtx_EXPR_LIST (REG_UNUSED,
					 gen_rtx_REG (reg_raw_mode[regno + i],
						      regno + i),
					 REG_NOTES (insn));
	    }
	}
    }
  else if (GET_CODE (reg) == REG)
    reg_next_use[regno] = 0;

  /* If this is the last pass and this is a SCRATCH, show it will be dying
     here and count it.  */
  else if (GET_CODE (reg) == SCRATCH && insn != 0)
    {
      REG_NOTES (insn)
	= gen_rtx_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
    }
}

#ifdef AUTO_INC_DEC

/* X is a MEM found in INSN.  See if we can convert it into an auto-increment
   reference.  */

static void
find_auto_inc (needed, x, insn)
     regset needed;
     rtx x;
     rtx insn;
{
  rtx addr = XEXP (x, 0);
  HOST_WIDE_INT offset = 0;
  rtx set;

  /* Here we detect use of an index register which might be good for
     postincrement, postdecrement, preincrement, or predecrement.  */

  if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
    offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);

  if (GET_CODE (addr) == REG)
    {
      register rtx y;
      register int size = GET_MODE_SIZE (GET_MODE (x));
      rtx use;
      rtx incr;
      int regno = REGNO (addr);

      /* Is the next use an increment that might make auto-increment? */
      if ((incr = reg_next_use[regno]) != 0
	  && (set = single_set (incr)) != 0
	  && GET_CODE (set) == SET
	  && BLOCK_NUM (incr) == BLOCK_NUM (insn)
	  /* Can't add side effects to jumps; if reg is spilled and
	     reloaded, there's no way to store back the altered value.  */
	  && GET_CODE (insn) != JUMP_INSN
	  && (y = SET_SRC (set), GET_CODE (y) == PLUS)
	  && XEXP (y, 0) == addr
	  && GET_CODE (XEXP (y, 1)) == CONST_INT
	  && ((HAVE_POST_INCREMENT
	       && (INTVAL (XEXP (y, 1)) == size && offset == 0))
	      || (HAVE_POST_DECREMENT
		  && (INTVAL (XEXP (y, 1)) == - size && offset == 0))
	      || (HAVE_PRE_INCREMENT
		  && (INTVAL (XEXP (y, 1)) == size && offset == size))
	      || (HAVE_PRE_DECREMENT
		  && (INTVAL (XEXP (y, 1)) == - size && offset == - size)))
	  /* Make sure this reg appears only once in this insn.  */
	  && (use = find_use_as_address (PATTERN (insn), addr, offset),
	      use != 0 && use != (rtx) 1))
	{
	  rtx q = SET_DEST (set);
	  enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
				    ? (offset ? PRE_INC : POST_INC)
				    : (offset ? PRE_DEC : POST_DEC));

	  if (dead_or_set_p (incr, addr))
	    {
	      /* This is the simple case.  Try to make the auto-inc.  If
		 we can't, we are done.  Otherwise, we will do any
		 needed updates below.  */
	      if (! validate_change (insn, &XEXP (x, 0),
				     gen_rtx_fmt_e (inc_code, Pmode, addr),
				     0))
		return;
	    }
	  else if (GET_CODE (q) == REG
		   /* PREV_INSN used here to check the semi-open interval
		      [insn,incr).  */
		   && ! reg_used_between_p (q,  PREV_INSN (insn), incr)
		   /* We must also check for sets of q as q may be
		      a call clobbered hard register and there may
		      be a call between PREV_INSN (insn) and incr.  */
		   && ! reg_set_between_p (q,  PREV_INSN (insn), incr))
	    {
	      /* We have *p followed sometime later by q = p+size.
		 Both p and q must be live afterward,
		 and q is not used between INSN and its assignment.
		 Change it to q = p, ...*q..., q = q+size.
		 Then fall into the usual case.  */
	      rtx insns, temp;
	      basic_block bb;

	      start_sequence ();
	      emit_move_insn (q, addr);
	      insns = get_insns ();
	      end_sequence ();

	      bb = BLOCK_FOR_INSN (insn);
	      for (temp = insns; temp; temp = NEXT_INSN (temp))
		set_block_for_insn (temp, bb);

	      /* If we can't make the auto-inc, or can't make the
		 replacement into Y, exit.  There's no point in making
		 the change below if we can't do the auto-inc and doing
		 so is not correct in the pre-inc case.  */

	      validate_change (insn, &XEXP (x, 0),
			       gen_rtx_fmt_e (inc_code, Pmode, q),
			       1);
	      validate_change (incr, &XEXP (y, 0), q, 1);
	      if (! apply_change_group ())
		return;

	      /* We now know we'll be doing this change, so emit the
		 new insn(s) and do the updates.  */
	      emit_insns_before (insns, insn);

	      if (BLOCK_FOR_INSN (insn)->head == insn)
		BLOCK_FOR_INSN (insn)->head = insns;

	      /* INCR will become a NOTE and INSN won't contain a
		 use of ADDR.  If a use of ADDR was just placed in
		 the insn before INSN, make that the next use. 
		 Otherwise, invalidate it.  */
	      if (GET_CODE (PREV_INSN (insn)) == INSN
		  && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
		  && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
		reg_next_use[regno] = PREV_INSN (insn);
	      else
		reg_next_use[regno] = 0;

	      addr = q;
	      regno = REGNO (q);

	      /* REGNO is now used in INCR which is below INSN, but
		 it previously wasn't live here.  If we don't mark
		 it as needed, we'll put a REG_DEAD note for it
		 on this insn, which is incorrect.  */
	      SET_REGNO_REG_SET (needed, regno);

	      /* If there are any calls between INSN and INCR, show
		 that REGNO now crosses them.  */
	      for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
		if (GET_CODE (temp) == CALL_INSN)
		  REG_N_CALLS_CROSSED (regno)++;
	    }
	  else
	    return;

	  /* If we haven't returned, it means we were able to make the
	     auto-inc, so update the status.  First, record that this insn
	     has an implicit side effect.  */

	  REG_NOTES (insn)
	    = gen_rtx_EXPR_LIST (REG_INC, addr, REG_NOTES (insn));

	  /* Modify the old increment-insn to simply copy
	     the already-incremented value of our register.  */
	  if (! validate_change (incr, &SET_SRC (set), addr, 0))
	    abort ();

	  /* If that makes it a no-op (copying the register into itself) delete
	     it so it won't appear to be a "use" and a "set" of this
	     register.  */
	  if (SET_DEST (set) == addr)
	    {
	      PUT_CODE (incr, NOTE);
	      NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
	      NOTE_SOURCE_FILE (incr) = 0;
	    }

	  if (regno >= FIRST_PSEUDO_REGISTER)
	    {
	      /* Count an extra reference to the reg.  When a reg is
		 incremented, spilling it is worse, so we want to make
		 that less likely.  */
	      REG_N_REFS (regno) += loop_depth;

	      /* Count the increment as a setting of the register,
		 even though it isn't a SET in rtl.  */
	      REG_N_SETS (regno)++;
	    }
	}
    }
}
#endif /* AUTO_INC_DEC */

/* Scan expression X and store a 1-bit in LIVE for each reg it uses.
   This is done assuming the registers needed from X
   are those that have 1-bits in NEEDED.

   On the final pass, FINAL is 1.  This means try for autoincrement
   and count the uses and deaths of each pseudo-reg.

   INSN is the containing instruction.  If INSN is dead, this function is not
   called.  */

static void
mark_used_regs (needed, live, x, final, insn)
     regset needed;
     regset live;
     rtx x;
     int final;
     rtx insn;
{
  register RTX_CODE code;
  register int regno;
  int i;

 retry:
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case PC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

#ifdef HAVE_cc0
    case CC0:
      cc0_live = 1;
      return;
#endif

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
      return;

    case MEM:
      /* Invalidate the data for the last MEM stored, but only if MEM is
	 something that can be stored into.  */
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
	; /* needn't clear the memory set list */
      else
	{
	  rtx temp = mem_set_list;
	  rtx prev = NULL_RTX;

	  while (temp)
	    {
	      if (anti_dependence (XEXP (temp, 0), x))
		{
		  /* Splice temp out of the list.  */
		  if (prev)
		    XEXP (prev, 1) = XEXP (temp, 1);
		  else
		    mem_set_list = XEXP (temp, 1);
		}
	      else
		prev = temp;
	      temp = XEXP (temp, 1);
	    }
	}

      /* If the memory reference had embedded side effects (autoincrement
	 address modes.  Then we may need to kill some entries on the
	 memory set list.  */
      if (insn)
	invalidate_mems_from_autoinc (insn);

#ifdef AUTO_INC_DEC
      if (final)
	find_auto_inc (needed, x, insn);
#endif
      break;

    case SUBREG:
      if (GET_CODE (SUBREG_REG (x)) == REG
	  && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
	  && (GET_MODE_SIZE (GET_MODE (x))
	      != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
	REG_CHANGES_SIZE (REGNO (SUBREG_REG (x))) = 1;

      /* While we're here, optimize this case.  */
      x = SUBREG_REG (x);

      /* In case the SUBREG is not of a register, don't optimize */
      if (GET_CODE (x) != REG)
	{
	  mark_used_regs (needed, live, x, final, insn);
	  return;
	}

      /* ... fall through ...  */

    case REG:
      /* See a register other than being set
	 => mark it as needed.  */

      regno = REGNO (x);
      {
	int some_needed = REGNO_REG_SET_P (needed, regno);
	int some_not_needed = ! some_needed;

	SET_REGNO_REG_SET (live, regno);

	/* A hard reg in a wide mode may really be multiple registers.
	   If so, mark all of them just like the first.  */
	if (regno < FIRST_PSEUDO_REGISTER)
	  {
	    int n;

	    /* For stack ptr or fixed arg pointer,
	       nothing below can be necessary, so waste no more time.  */
	    if (regno == STACK_POINTER_REGNUM
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
		|| (regno == HARD_FRAME_POINTER_REGNUM
		    && (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
		|| (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		|| (regno == FRAME_POINTER_REGNUM
		    && (! reload_completed || frame_pointer_needed)))
	      {
		/* If this is a register we are going to try to eliminate,
		   don't mark it live here.  If we are successful in
		   eliminating it, it need not be live unless it is used for
		   pseudos, in which case it will have been set live when
		   it was allocated to the pseudos.  If the register will not
		   be eliminated, reload will set it live at that point.  */

		if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
		  regs_ever_live[regno] = 1;
		return;
	      }
	    /* No death notes for global register variables;
	       their values are live after this function exits.  */
	    if (global_regs[regno])
	      {
		if (final)
		  reg_next_use[regno] = insn;
		return;
	      }

	    n = HARD_REGNO_NREGS (regno, GET_MODE (x));
	    while (--n > 0)
	      {
		int regno_n = regno + n;
		int needed_regno = REGNO_REG_SET_P (needed, regno_n);

		SET_REGNO_REG_SET (live, regno_n);
		some_needed |= needed_regno;
		some_not_needed |= ! needed_regno;
	      }
	  }
	if (final)
	  {
	    /* Record where each reg is used, so when the reg
	       is set we know the next insn that uses it.  */

	    reg_next_use[regno] = insn;

	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		/* If a hard reg is being used,
		   record that this function does use it.  */

		i = HARD_REGNO_NREGS (regno, GET_MODE (x));
		if (i == 0)
		  i = 1;
		do
		  regs_ever_live[regno + --i] = 1;
		while (i > 0);
	      }
	    else
	      {
		/* Keep track of which basic block each reg appears in.  */

		register int blocknum = BLOCK_NUM (insn);

		if (REG_BASIC_BLOCK (regno) == REG_BLOCK_UNKNOWN)
		  REG_BASIC_BLOCK (regno) = blocknum;
		else if (REG_BASIC_BLOCK (regno) != blocknum)
		  REG_BASIC_BLOCK (regno) = REG_BLOCK_GLOBAL;

		/* Count (weighted) number of uses of each reg.  */

		REG_N_REFS (regno) += loop_depth;
	      }

	    /* Record and count the insns in which a reg dies.
	       If it is used in this insn and was dead below the insn
	       then it dies in this insn.  If it was set in this insn,
	       we do not make a REG_DEAD note; likewise if we already
	       made such a note.  */

	    if (some_not_needed
		&& ! dead_or_set_p (insn, x)
#if 0
		&& (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
#endif
		)
	      {
		/* Check for the case where the register dying partially
		   overlaps the register set by this insn.  */
		if (regno < FIRST_PSEUDO_REGISTER
		    && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
		  {
		    int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
		    while (--n >= 0)
		      some_needed |= dead_or_set_regno_p (insn, regno + n);
		  }

		/* If none of the words in X is needed, make a REG_DEAD
		   note.  Otherwise, we must make partial REG_DEAD notes.  */
		if (! some_needed)
		  {
		    REG_NOTES (insn)
		      = gen_rtx_EXPR_LIST (REG_DEAD, x, REG_NOTES (insn));
		    REG_N_DEATHS (regno)++;
		  }
		else
		  {
		    int i;

		    /* Don't make a REG_DEAD note for a part of a register
		       that is set in the insn.  */

		    for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
			 i >= 0; i--)
		      if (!REGNO_REG_SET_P (needed, regno + i)
			  && ! dead_or_set_regno_p (insn, regno + i))
			REG_NOTES (insn)
			  = gen_rtx_EXPR_LIST (REG_DEAD,
					       gen_rtx_REG (reg_raw_mode[regno + i],
							    regno + i),
					       REG_NOTES (insn));
		  }
	      }
	  }
      }
      return;

    case SET:
      {
	register rtx testreg = SET_DEST (x);
	int mark_dest = 0;

	/* If storing into MEM, don't show it as being used.  But do
	   show the address as being used.  */
	if (GET_CODE (testreg) == MEM)
	  {
#ifdef AUTO_INC_DEC
	    if (final)
	      find_auto_inc (needed, testreg, insn);
#endif
	    mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
	    mark_used_regs (needed, live, SET_SRC (x), final, insn);
	    return;
	  }
	    
	/* Storing in STRICT_LOW_PART is like storing in a reg
	   in that this SET might be dead, so ignore it in TESTREG.
	   but in some other ways it is like using the reg.

	   Storing in a SUBREG or a bit field is like storing the entire
	   register in that if the register's value is not used
	   then this SET is not needed.  */
	while (GET_CODE (testreg) == STRICT_LOW_PART
	       || GET_CODE (testreg) == ZERO_EXTRACT
	       || GET_CODE (testreg) == SIGN_EXTRACT
	       || GET_CODE (testreg) == SUBREG)
	  {
	    if (GET_CODE (testreg) == SUBREG
		&& GET_CODE (SUBREG_REG (testreg)) == REG
		&& REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
		&& (GET_MODE_SIZE (GET_MODE (testreg))
		    != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
	      REG_CHANGES_SIZE (REGNO (SUBREG_REG (testreg))) = 1;

	    /* Modifying a single register in an alternate mode
	       does not use any of the old value.  But these other
	       ways of storing in a register do use the old value.  */
	    if (GET_CODE (testreg) == SUBREG
		&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
	      ;
	    else
	      mark_dest = 1;

	    testreg = XEXP (testreg, 0);
	  }

	/* If this is a store into a register,
	   recursively scan the value being stored.  */

	if ((GET_CODE (testreg) == PARALLEL
	     && GET_MODE (testreg) == BLKmode)
	    || (GET_CODE (testreg) == REG
		&& (regno = REGNO (testreg), ! (regno == FRAME_POINTER_REGNUM
						&& (! reload_completed || frame_pointer_needed)))
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
		&& ! (regno == HARD_FRAME_POINTER_REGNUM
		      && (! reload_completed || frame_pointer_needed))
#endif
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
		&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		))
	  /* We used to exclude global_regs here, but that seems wrong.
	     Storing in them is like storing in mem.  */
	  {
	    mark_used_regs (needed, live, SET_SRC (x), final, insn);
	    if (mark_dest)
	      mark_used_regs (needed, live, SET_DEST (x), final, insn);
	    return;
	  }
      }
      break;

    case RETURN:
      /* If exiting needs the right stack value, consider this insn as
	 using the stack pointer.  In any event, consider it as using
	 all global registers and all registers used by return.  */
      if (! EXIT_IGNORE_STACK
	  || (! FRAME_POINTER_REQUIRED
	      && ! current_function_calls_alloca
	      && flag_omit_frame_pointer)
	  || current_function_sp_is_unchanging)
	SET_REGNO_REG_SET (live, STACK_POINTER_REGNUM);

      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	if (global_regs[i]
#ifdef EPILOGUE_USES
	    || EPILOGUE_USES (i)
#endif
	    )
	  SET_REGNO_REG_SET (live, i);
      break;

    case ASM_OPERANDS:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
    case ASM_INPUT:
      {
	/* Traditional and volatile asm instructions must be considered to use
	   and clobber all hard registers, all pseudo-registers and all of
	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.

	   Consider for instance a volatile asm that changes the fpu rounding
	   mode.  An insn should not be moved across this even if it only uses
	   pseudo-regs because it might give an incorrectly rounded result. 

	   ?!? Unfortunately, marking all hard registers as live causes massive
	   problems for the register allocator and marking all pseudos as live
	   creates mountains of uninitialized variable warnings.

	   So for now, just clear the memory set list and mark any regs
	   we can find in ASM_OPERANDS as used.  */
	if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
	  mem_set_list = NULL_RTX;

        /* For all ASM_OPERANDS, we must traverse the vector of input operands.
	   We can not just fall through here since then we would be confused
	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	   traditional asms unlike their normal usage.  */
	if (code == ASM_OPERANDS)
	  {
	    int j;

	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
	      mark_used_regs (needed, live, ASM_OPERANDS_INPUT (x, j),
			      final, insn);
	  }
	break;
      }


    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		x = XEXP (x, 0);
		goto retry;
	      }
	    mark_used_regs (needed, live, XEXP (x, i), final, insn);
	  }
	else if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
	  }
      }
  }
}

#ifdef AUTO_INC_DEC

static int
try_pre_increment_1 (insn)
     rtx insn;
{
  /* Find the next use of this reg.  If in same basic block,
     make it do pre-increment or pre-decrement if appropriate.  */
  rtx x = single_set (insn);
  HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
		* INTVAL (XEXP (SET_SRC (x), 1)));
  int regno = REGNO (SET_DEST (x));
  rtx y = reg_next_use[regno];
  if (y != 0
      && BLOCK_NUM (y) == BLOCK_NUM (insn)
      /* Don't do this if the reg dies, or gets set in y; a standard addressing
	 mode would be better.  */
      && ! dead_or_set_p (y, SET_DEST (x))
      && try_pre_increment (y, SET_DEST (x), amount))
    {
      /* We have found a suitable auto-increment
	 and already changed insn Y to do it.
	 So flush this increment-instruction.  */
      PUT_CODE (insn, NOTE);
      NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (insn) = 0;
      /* Count a reference to this reg for the increment
	 insn we are deleting.  When a reg is incremented.
	 spilling it is worse, so we want to make that
	 less likely.  */
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  REG_N_REFS (regno) += loop_depth;
	  REG_N_SETS (regno)++;
	}
      return 1;
    }
  return 0;
}

/* Try to change INSN so that it does pre-increment or pre-decrement
   addressing on register REG in order to add AMOUNT to REG.
   AMOUNT is negative for pre-decrement.
   Returns 1 if the change could be made.
   This checks all about the validity of the result of modifying INSN.  */

static int
try_pre_increment (insn, reg, amount)
     rtx insn, reg;
     HOST_WIDE_INT amount;
{
  register rtx use;

  /* Nonzero if we can try to make a pre-increment or pre-decrement.
     For example, addl $4,r1; movl (r1),... can become movl +(r1),...  */
  int pre_ok = 0;
  /* Nonzero if we can try to make a post-increment or post-decrement.
     For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
     It is possible for both PRE_OK and POST_OK to be nonzero if the machine
     supports both pre-inc and post-inc, or both pre-dec and post-dec.  */
  int post_ok = 0;

  /* Nonzero if the opportunity actually requires post-inc or post-dec.  */
  int do_post = 0;

  /* From the sign of increment, see which possibilities are conceivable
     on this target machine.  */
  if (HAVE_PRE_INCREMENT && amount > 0)
    pre_ok = 1;
  if (HAVE_POST_INCREMENT && amount > 0)
    post_ok = 1;

  if (HAVE_PRE_DECREMENT && amount < 0)
    pre_ok = 1;
  if (HAVE_POST_DECREMENT && amount < 0)
    post_ok = 1;

  if (! (pre_ok || post_ok))
    return 0;

  /* It is not safe to add a side effect to a jump insn
     because if the incremented register is spilled and must be reloaded
     there would be no way to store the incremented value back in memory.  */

  if (GET_CODE (insn) == JUMP_INSN)
    return 0;

  use = 0;
  if (pre_ok)
    use = find_use_as_address (PATTERN (insn), reg, 0);
  if (post_ok && (use == 0 || use == (rtx) 1))
    {
      use = find_use_as_address (PATTERN (insn), reg, -amount);
      do_post = 1;
    }

  if (use == 0 || use == (rtx) 1)
    return 0;

  if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
    return 0;

  /* See if this combination of instruction and addressing mode exists.  */
  if (! validate_change (insn, &XEXP (use, 0),
			 gen_rtx_fmt_e (amount > 0
					? (do_post ? POST_INC : PRE_INC)
					: (do_post ? POST_DEC : PRE_DEC),
					Pmode, reg), 0))
    return 0;

  /* Record that this insn now has an implicit side effect on X.  */
  REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
  return 1;
}

#endif /* AUTO_INC_DEC */

/* Find the place in the rtx X where REG is used as a memory address.
   Return the MEM rtx that so uses it.
   If PLUSCONST is nonzero, search instead for a memory address equivalent to
   (plus REG (const_int PLUSCONST)).

   If such an address does not appear, return 0.
   If REG appears more than once, or is used other than in such an address,
   return (rtx)1.  */

rtx
find_use_as_address (x, reg, plusconst)
     register rtx x;
     rtx reg;
     HOST_WIDE_INT plusconst;
{
  enum rtx_code code = GET_CODE (x);
  char *fmt = GET_RTX_FORMAT (code);
  register int i;
  register rtx value = 0;
  register rtx tem;

  if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
    return x;

  if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
      && XEXP (XEXP (x, 0), 0) == reg
      && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
      && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
    return x;

  if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
    {
      /* If REG occurs inside a MEM used in a bit-field reference,
	 that is unacceptable.  */
      if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
	return (rtx) (HOST_WIDE_INT) 1;
    }

  if (x == reg)
    return (rtx) (HOST_WIDE_INT) 1;

  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  tem = find_use_as_address (XEXP (x, i), reg, plusconst);
	  if (value == 0)
	    value = tem;
	  else if (tem != 0)
	    return (rtx) (HOST_WIDE_INT) 1;
	}
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	    {
	      tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
	      if (value == 0)
		value = tem;
	      else if (tem != 0)
		return (rtx) (HOST_WIDE_INT) 1;
	    }
	}
    }

  return value;
}

/* Write information about registers and basic blocks into FILE.
   This is part of making a debugging dump.  */

void
dump_flow_info (file)
     FILE *file;
{
  register int i;
  static char *reg_class_names[] = REG_CLASS_NAMES;

  fprintf (file, "%d registers.\n", max_regno);
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (REG_N_REFS (i))
      {
	enum reg_class class, altclass;
	fprintf (file, "\nRegister %d used %d times across %d insns",
		 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
	if (REG_BASIC_BLOCK (i) >= 0)
	  fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
	if (REG_N_SETS (i))
  	  fprintf (file, "; set %d time%s", REG_N_SETS (i),
   		   (REG_N_SETS (i) == 1) ? "" : "s");
	if (REG_USERVAR_P (regno_reg_rtx[i]))
  	  fprintf (file, "; user var");
	if (REG_N_DEATHS (i) != 1)
	  fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
	if (REG_N_CALLS_CROSSED (i) == 1)
	  fprintf (file, "; crosses 1 call");
	else if (REG_N_CALLS_CROSSED (i))
	  fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
	if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
	  fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
	class = reg_preferred_class (i);
	altclass = reg_alternate_class (i);
	if (class != GENERAL_REGS || altclass != ALL_REGS)
	  {
	    if (altclass == ALL_REGS || class == ALL_REGS)
	      fprintf (file, "; pref %s", reg_class_names[(int) class]);
	    else if (altclass == NO_REGS)
	      fprintf (file, "; %s or none", reg_class_names[(int) class]);
	    else
	      fprintf (file, "; pref %s, else %s",
		       reg_class_names[(int) class],
		       reg_class_names[(int) altclass]);
	  }
	if (REGNO_POINTER_FLAG (i))
	  fprintf (file, "; pointer");
	fprintf (file, ".\n");
      }

  fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
  for (i = 0; i < n_basic_blocks; i++)
    {
      register basic_block bb = BASIC_BLOCK (i);
      register int regno;
      register edge e;

      fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
	       i, INSN_UID (bb->head), INSN_UID (bb->end));

      fprintf (file, "Predecessors: ");
      for (e = bb->pred; e ; e = e->pred_next)
	dump_edge_info (file, e, 0);

      fprintf (file, "\nSuccessors: ");
      for (e = bb->succ; e ; e = e->succ_next)
	dump_edge_info (file, e, 1);

      fprintf (file, "\nRegisters live at start:");
      if (bb->global_live_at_start)
	{
          for (regno = 0; regno < max_regno; regno++)
	    if (REGNO_REG_SET_P (bb->global_live_at_start, regno))
	      fprintf (file, " %d", regno);
	}
      else
	fprintf (file, " n/a");

      fprintf (file, "\nRegisters live at end:");
      if (bb->global_live_at_end)
	{
          for (regno = 0; regno < max_regno; regno++)
	    if (REGNO_REG_SET_P (bb->global_live_at_end, regno))
	      fprintf (file, " %d", regno);
	}
      else
	fprintf (file, " n/a");

      putc('\n', file);
    }

  putc('\n', file);
}

static void
dump_edge_info (file, e, do_succ)
     FILE *file;
     edge e;
     int do_succ;
{
  basic_block side = (do_succ ? e->dest : e->src);

  if (side == ENTRY_BLOCK_PTR)
    fputs (" ENTRY", file);
  else if (side == EXIT_BLOCK_PTR)
    fputs (" EXIT", file);
  else
    fprintf (file, " %d", side->index);

  if (e->flags)
    {
      static char * bitnames[] = {
	"fallthru", "crit", "ab", "abcall", "eh", "fake"
      };
      int comma = 0;
      int i, flags = e->flags;

      fputc (' ', file);
      fputc ('(', file);
      for (i = 0; flags; i++)
	if (flags & (1 << i))
	  {
	    flags &= ~(1 << i);

	    if (comma)
	      fputc (',', file);
	    if (i < (int)(sizeof (bitnames) / sizeof (*bitnames)))
	      fputs (bitnames[i], file);
	    else
	      fprintf (file, "%d", i);
	    comma = 1;
	  }
      fputc (')', file);
    }
}


/* Like print_rtl, but also print out live information for the start of each
   basic block.  */

void
print_rtl_with_bb (outf, rtx_first)
     FILE *outf;
     rtx rtx_first;
{
  register rtx tmp_rtx;

  if (rtx_first == 0)
    fprintf (outf, "(nil)\n");
  else
    {
      int i;
      enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
      int max_uid = get_max_uid ();
      basic_block *start = (basic_block *)
	alloca (max_uid * sizeof (basic_block));
      basic_block *end = (basic_block *)
	alloca (max_uid * sizeof (basic_block));
      enum bb_state *in_bb_p = (enum bb_state *)
	alloca (max_uid * sizeof (enum bb_state));

      memset (start, 0, max_uid * sizeof (basic_block));
      memset (end, 0, max_uid * sizeof (basic_block));
      memset (in_bb_p, 0, max_uid * sizeof (enum bb_state));

      for (i = n_basic_blocks - 1; i >= 0; i--)
	{
	  basic_block bb = BASIC_BLOCK (i);
	  rtx x;

	  start[INSN_UID (bb->head)] = bb;
	  end[INSN_UID (bb->end)] = bb;
	  for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
	    {
	      enum bb_state state = IN_MULTIPLE_BB;
	      if (in_bb_p[INSN_UID(x)] == NOT_IN_BB)
		state = IN_ONE_BB;
	      in_bb_p[INSN_UID(x)] = state;

	      if (x == bb->end)
		break;
	    }
	}

      for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
	{
	  int did_output;
	  basic_block bb;

	  if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
	    {
	      fprintf (outf, ";; Start of basic block %d, registers live:",
		       bb->index);

	      EXECUTE_IF_SET_IN_REG_SET (bb->global_live_at_start, 0, i,
					 {
					   fprintf (outf, " %d", i);
					   if (i < FIRST_PSEUDO_REGISTER)
					     fprintf (outf, " [%s]",
						      reg_names[i]);
					 });
	      putc ('\n', outf);
	    }

	  if (in_bb_p[INSN_UID(tmp_rtx)] == NOT_IN_BB
	      && GET_CODE (tmp_rtx) != NOTE
	      && GET_CODE (tmp_rtx) != BARRIER
	      && ! obey_regdecls)
	    fprintf (outf, ";; Insn is not within a basic block\n");
	  else if (in_bb_p[INSN_UID(tmp_rtx)] == IN_MULTIPLE_BB)
	    fprintf (outf, ";; Insn is in multiple basic blocks\n");

	  did_output = print_rtl_single (outf, tmp_rtx);

	  if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
	    fprintf (outf, ";; End of basic block %d\n", bb->index);

	  if (did_output)
	    putc ('\n', outf);
	}
    }
}


/* Integer list support.  */

/* Allocate a node from list *HEAD_PTR.  */

static int_list_ptr
alloc_int_list_node (head_ptr)
     int_list_block **head_ptr;
{
  struct int_list_block *first_blk = *head_ptr;

  if (first_blk == NULL || first_blk->nodes_left <= 0)
    {
      first_blk = (struct int_list_block *) xmalloc (sizeof (struct int_list_block));
      first_blk->nodes_left = INT_LIST_NODES_IN_BLK;
      first_blk->next = *head_ptr;
      *head_ptr = first_blk;
    }

  first_blk->nodes_left--;
  return &first_blk->nodes[first_blk->nodes_left];
}

/* Pointer to head of predecessor/successor block list.  */
static int_list_block *pred_int_list_blocks;

/* Add a new node to integer list LIST with value VAL.
   LIST is a pointer to a list object to allow for different implementations.
   If *LIST is initially NULL, the list is empty.
   The caller must not care whether the element is added to the front or
   to the end of the list (to allow for different implementations).  */

static int_list_ptr
add_int_list_node (blk_list, list, val)
     int_list_block **blk_list;
     int_list **list;
     int val;
{
  int_list_ptr p = alloc_int_list_node (blk_list);

  p->val = val;
  p->next = *list;
  *list = p;
  return p;
}

/* Free the blocks of lists at BLK_LIST.  */

void
free_int_list (blk_list)
     int_list_block **blk_list;
{
  int_list_block *p, *next;

  for (p = *blk_list; p != NULL; p = next)
    {
      next = p->next;
      free (p);
    }

  /* Mark list as empty for the next function we compile.  */
  *blk_list = NULL;
}

/* Predecessor/successor computation.  */

/* Mark PRED_BB a precessor of SUCC_BB,
   and conversely SUCC_BB a successor of PRED_BB.  */

static void
add_pred_succ (pred_bb, succ_bb, s_preds, s_succs, num_preds, num_succs)
     int pred_bb;
     int succ_bb;
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     int *num_preds;
     int *num_succs;
{
  if (succ_bb != EXIT_BLOCK)
    {
      add_int_list_node (&pred_int_list_blocks, &s_preds[succ_bb], pred_bb);
      num_preds[succ_bb]++;
    }
  if (pred_bb != ENTRY_BLOCK)
    {
      add_int_list_node (&pred_int_list_blocks, &s_succs[pred_bb], succ_bb);
      num_succs[pred_bb]++;
    }
}

/* Convert edge lists into pred/succ lists for backward compatibility.  */

void
compute_preds_succs (s_preds, s_succs, num_preds, num_succs)
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     int *num_preds;
     int *num_succs;
{
  int i, n = n_basic_blocks;
  edge e;

  memset (s_preds, 0, n_basic_blocks * sizeof (int_list_ptr));
  memset (s_succs, 0, n_basic_blocks * sizeof (int_list_ptr));
  memset (num_preds, 0, n_basic_blocks * sizeof (int));
  memset (num_succs, 0, n_basic_blocks * sizeof (int));

  for (i = 0; i < n; ++i)
    {
      basic_block bb = BASIC_BLOCK (i);
      
      for (e = bb->succ; e ; e = e->succ_next)
	add_pred_succ (i, e->dest->index, s_preds, s_succs,
		       num_preds, num_succs);
    }

  for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
    add_pred_succ (ENTRY_BLOCK, e->dest->index, s_preds, s_succs,
		   num_preds, num_succs);
}

void
dump_bb_data (file, preds, succs, live_info)
     FILE *file;
     int_list_ptr *preds;
     int_list_ptr *succs;
     int live_info;
{
  int bb;
  int_list_ptr p;

  fprintf (file, "BB data\n\n");
  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      fprintf (file, "BB %d, start %d, end %d\n", bb,
	       INSN_UID (BLOCK_HEAD (bb)), INSN_UID (BLOCK_END (bb)));
      fprintf (file, "  preds:");
      for (p = preds[bb]; p != NULL; p = p->next)
	{
	  int pred_bb = INT_LIST_VAL (p);
	  if (pred_bb == ENTRY_BLOCK)
	    fprintf (file, " entry");
	  else
	    fprintf (file, " %d", pred_bb);
	}
      fprintf (file, "\n");
      fprintf (file, "  succs:");
      for (p = succs[bb]; p != NULL; p = p->next)
	{
	  int succ_bb = INT_LIST_VAL (p);
	  if (succ_bb == EXIT_BLOCK)
	    fprintf (file, " exit");
	  else
	    fprintf (file, " %d", succ_bb);
	}
      if (live_info)
	{
	  int regno;
	  fprintf (file, "\nRegisters live at start:");
	  for (regno = 0; regno < max_regno; regno++)
	    if (REGNO_REG_SET_P (BASIC_BLOCK (bb)->global_live_at_start, regno))
	      fprintf (file, " %d", regno);
	  fprintf (file, "\n");
	}
      fprintf (file, "\n");
    }
  fprintf (file, "\n");
}

/* Free basic block data storage.  */

void
free_bb_mem ()
{
  free_int_list (&pred_int_list_blocks);
}

/* Compute dominator relationships.  */
void
compute_dominators (dominators, post_dominators, s_preds, s_succs)
     sbitmap *dominators;
     sbitmap *post_dominators;
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
{
  int bb, changed, passes;
  sbitmap *temp_bitmap;

  temp_bitmap = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
  sbitmap_vector_ones (dominators, n_basic_blocks);
  sbitmap_vector_ones (post_dominators, n_basic_blocks);
  sbitmap_vector_zero (temp_bitmap, n_basic_blocks);

  sbitmap_zero (dominators[0]);
  SET_BIT (dominators[0], 0);

  sbitmap_zero (post_dominators[n_basic_blocks - 1]);
  SET_BIT (post_dominators[n_basic_blocks - 1], 0);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 1; bb < n_basic_blocks; bb++)
	{
	  sbitmap_intersect_of_predecessors (temp_bitmap[bb], dominators,
					     bb, s_preds);
	  SET_BIT (temp_bitmap[bb], bb);
	  changed |= sbitmap_a_and_b (dominators[bb],
				      dominators[bb],
				      temp_bitmap[bb]);
	  sbitmap_intersect_of_successors (temp_bitmap[bb], post_dominators,
					   bb, s_succs);
	  SET_BIT (temp_bitmap[bb], bb);
	  changed |= sbitmap_a_and_b (post_dominators[bb],
				      post_dominators[bb],
				      temp_bitmap[bb]);
	}
      passes++;
    }

  free (temp_bitmap);
}

/* Given DOMINATORS, compute the immediate dominators into IDOM.  */

void
compute_immediate_dominators (idom, dominators)
     int *idom;
     sbitmap *dominators;
{
  sbitmap *tmp;
  int b;

  tmp = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);

  /* Begin with tmp(n) = dom(n) - { n }.  */
  for (b = n_basic_blocks; --b >= 0; )
    {
      sbitmap_copy (tmp[b], dominators[b]);
      RESET_BIT (tmp[b], b);
    }

  /* Subtract out all of our dominator's dominators.  */
  for (b = n_basic_blocks; --b >= 0; )
    {
      sbitmap tmp_b = tmp[b];
      int s;

      for (s = n_basic_blocks; --s >= 0; )
	if (TEST_BIT (tmp_b, s))
	  sbitmap_difference (tmp_b, tmp_b, tmp[s]);
    }

  /* Find the one bit set in the bitmap and put it in the output array.  */
  for (b = n_basic_blocks; --b >= 0; )
    {
      int t;
      EXECUTE_IF_SET_IN_SBITMAP (tmp[b], 0, t, { idom[b] = t; });
    }

  sbitmap_vector_free (tmp);
}

/* Count for a single SET rtx, X.  */

static void
count_reg_sets_1 (x)
     rtx x;
{
  register int regno;
  register rtx reg = SET_DEST (x);

  /* Find the register that's set/clobbered.  */
  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;
      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	count_reg_sets_1 (XVECEXP (reg, 0, i));
      return;
    }

  if (GET_CODE (reg) == REG)
    {
      regno = REGNO (reg);
      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  /* Count (weighted) references, stores, etc.  This counts a
	     register twice if it is modified, but that is correct.  */
	  REG_N_SETS (regno)++;

	  REG_N_REFS (regno) += loop_depth;
	}
    }
}

/* Increment REG_N_SETS for each SET or CLOBBER found in X; also increment
   REG_N_REFS by the current loop depth for each SET or CLOBBER found.  */

static void
count_reg_sets  (x)
     rtx x;
{
  register RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    count_reg_sets_1 (x);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    count_reg_sets_1 (XVECEXP (x, 0, i));
	}
    }
}

/* Increment REG_N_REFS by the current loop depth each register reference
   found in X.  */

static void
count_reg_references (x)
     rtx x;
{
  register RTX_CODE code;

 retry:
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case PC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ASM_INPUT:
      return;

#ifdef HAVE_cc0
    case CC0:
      return;
#endif

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_references (XEXP (XEXP (x, 0), 0));
      return;

    case SUBREG:
      /* While we're here, optimize this case.  */
      x = SUBREG_REG (x);

      /* In case the SUBREG is not of a register, don't optimize */
      if (GET_CODE (x) != REG)
	{
	  count_reg_references (x);
	  return;
	}

      /* ... fall through ...  */

    case REG:
      if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
	REG_N_REFS (REGNO (x)) += loop_depth;
      return;

    case SET:
      {
	register rtx testreg = SET_DEST (x);
	int mark_dest = 0;

	/* If storing into MEM, don't show it as being used.  But do
	   show the address as being used.  */
	if (GET_CODE (testreg) == MEM)
	  {
	    count_reg_references (XEXP (testreg, 0));
	    count_reg_references (SET_SRC (x));
	    return;
	  }
	    
	/* Storing in STRICT_LOW_PART is like storing in a reg
	   in that this SET might be dead, so ignore it in TESTREG.
	   but in some other ways it is like using the reg.

	   Storing in a SUBREG or a bit field is like storing the entire
	   register in that if the register's value is not used
	   then this SET is not needed.  */
	while (GET_CODE (testreg) == STRICT_LOW_PART
	       || GET_CODE (testreg) == ZERO_EXTRACT
	       || GET_CODE (testreg) == SIGN_EXTRACT
	       || GET_CODE (testreg) == SUBREG)
	  {
	    /* Modifying a single register in an alternate mode
	       does not use any of the old value.  But these other
	       ways of storing in a register do use the old value.  */
	    if (GET_CODE (testreg) == SUBREG
		&& !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
	      ;
	    else
	      mark_dest = 1;

	    testreg = XEXP (testreg, 0);
	  }

	/* If this is a store into a register,
	   recursively scan the value being stored.  */

	if ((GET_CODE (testreg) == PARALLEL
	     && GET_MODE (testreg) == BLKmode)
	    || GET_CODE (testreg) == REG)
	  {
	    count_reg_references (SET_SRC (x));
	    if (mark_dest)
	      count_reg_references (SET_DEST (x));
	    return;
	  }
      }
      break;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  {
    register char *fmt = GET_RTX_FORMAT (code);
    register int i;
    
    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		x = XEXP (x, 0);
		goto retry;
	      }
	    count_reg_references (XEXP (x, i));
	  }
	else if (fmt[i] == 'E')
	  {
	    register int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      count_reg_references (XVECEXP (x, i, j));
	  }
      }
  }
}

/* Recompute register set/reference counts immediately prior to register
   allocation.

   This avoids problems with set/reference counts changing to/from values
   which have special meanings to the register allocators.

   Additionally, the reference counts are the primary component used by the
   register allocators to prioritize pseudos for allocation to hard regs.
   More accurate reference counts generally lead to better register allocation.

   F is the first insn to be scanned.
   LOOP_STEP denotes how much loop_depth should be incremented per
   loop nesting level in order to increase the ref count more for references
   in a loop.

   It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
   possibly other information which is used by the register allocators.  */

void
recompute_reg_usage (f, loop_step)
     rtx f;
     int loop_step;
{
  rtx insn;
  int i, max_reg;

  /* Clear out the old data.  */
  max_reg = max_reg_num ();
  for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
    {
      REG_N_SETS (i) = 0;
      REG_N_REFS (i) = 0;
    }

  /* Scan each insn in the chain and count how many times each register is
     set/used.  */
  loop_depth = 1;
  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
      /* Keep track of loop depth.  */
      if (GET_CODE (insn) == NOTE)
	{
	  /* Look for loop boundaries.  */
	  if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
	    loop_depth -= loop_step;
	  else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
	    loop_depth += loop_step;

	  /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error. 
	     Abort now rather than setting register status incorrectly.  */
	  if (loop_depth == 0)
	    abort ();
	}
      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  rtx links;

	  /* This call will increment REG_N_SETS for each SET or CLOBBER
	     of a register in INSN.  It will also increment REG_N_REFS
	     by the loop depth for each set of a register in INSN.  */
	  count_reg_sets (PATTERN (insn));

	  /* count_reg_sets does not detect autoincrement address modes, so
	     detect them here by looking at the notes attached to INSN.  */
	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
	    {
	      if (REG_NOTE_KIND (links) == REG_INC)
		/* Count (weighted) references, stores, etc.  This counts a
		   register twice if it is modified, but that is correct.  */
		REG_N_SETS (REGNO (XEXP (links, 0)))++;
	    }

	  /* This call will increment REG_N_REFS by the current loop depth for
	     each reference to a register in INSN.  */
	  count_reg_references (PATTERN (insn));

	  /* count_reg_references will not include counts for arguments to
	     function calls, so detect them here by examining the
	     CALL_INSN_FUNCTION_USAGE data.  */
	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      rtx note;

	      for (note = CALL_INSN_FUNCTION_USAGE (insn);
		   note;
		   note = XEXP (note, 1))
		if (GET_CODE (XEXP (note, 0)) == USE)
		  count_reg_references (SET_DEST (XEXP (note, 0)));
	    }
	}
    }
}

/* Record INSN's block as BB.  */

void
set_block_for_insn (insn, bb)
     rtx insn;
     basic_block bb;
{
  size_t uid = INSN_UID (insn);
  if (uid >= basic_block_for_insn->num_elements)
    {
      int new_size;
      
      /* Add one-eighth the size so we don't keep calling xrealloc.  */
      new_size = uid + (uid + 7) / 8;

      VARRAY_GROW (basic_block_for_insn, new_size);
    }
  VARRAY_BB (basic_block_for_insn, uid) = bb;
}

/* Record INSN's block number as BB.  */
/* ??? This has got to go.  */

void
set_block_num (insn, bb)
     rtx insn;
     int bb;
{
  set_block_for_insn (insn, BASIC_BLOCK (bb));
}

/* Verify the CFG consistency.  This function check some CFG invariants and
   aborts when something is wrong.  Hope that this function will help to
   convert many optimization passes to preserve CFG consistent.

   Currently it does following checks: 

   - test head/end pointers
   - overlapping of basic blocks
   - edge list corectness
   - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
   - tails of basic blocks (ensure that boundary is necesary)
   - scans body of the basic block for JUMP_INSN, CODE_LABEL
     and NOTE_INSN_BASIC_BLOCK
   - check that all insns are in the basic blocks 
   (except the switch handling code, barriers and notes)

   In future it can be extended check a lot of other stuff as well
   (reachability of basic blocks, life information, etc. etc.).  */

void
verify_flow_info ()
{
  const int max_uid = get_max_uid ();
  const rtx rtx_first = get_insns ();
  basic_block *bb_info;
  rtx x;
  int i;

  bb_info = (basic_block *) alloca (max_uid * sizeof (basic_block));
  memset (bb_info, 0, max_uid * sizeof (basic_block));

  /* First pass check head/end pointers and set bb_info array used by
     later passes.  */
  for (i = n_basic_blocks - 1; i >= 0; i--)
    {
      basic_block bb = BASIC_BLOCK (i);

      /* Check the head pointer and make sure that it is pointing into
         insn list.  */
      for (x = rtx_first; x != NULL_RTX; x = NEXT_INSN (x))
	if (x == bb->head)
	  break;
      if (!x)
	{
	  fatal ("verify_flow_info: Head insn %d for block %d not found in the insn stream.\n",
		 INSN_UID (bb->head), bb->index);
	}

      /* Check the end pointer and make sure that it is pointing into
         insn list.  */
      for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
	{
	  if (bb_info[INSN_UID (x)] != NULL)
	    {
	      fatal ("verify_flow_info: Insn %d is in multiple basic blocks (%d and %d)",
		     INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
	    }
	  bb_info[INSN_UID (x)] = bb;

	  if (x == bb->end)
	    break;
	}
      if (!x)
	{
	  fatal ("verify_flow_info: End insn %d for block %d not found in the insn stream.\n",
		 INSN_UID (bb->end), bb->index);
	}
    }

  /* Now check the basic blocks (boundaries etc.) */
  for (i = n_basic_blocks - 1; i >= 0; i--)
    {
      basic_block bb = BASIC_BLOCK (i);
      /* Check corectness of edge lists */
      edge e;

      e = bb->succ;
      while (e)
	{
	  if (e->src != bb)
	    {
	      fprintf (stderr, "verify_flow_info: Basic block %d succ edge is corrupted\n",
		       bb->index);
	      fprintf (stderr, "Predecessor: ");
	      dump_edge_info (stderr, e, 0);
	      fprintf (stderr, "\nSuccessor: ");
	      dump_edge_info (stderr, e, 1);
	      fflush (stderr);
	      abort ();
	    }
	  if (e->dest != EXIT_BLOCK_PTR)
	    {
	      edge e2 = e->dest->pred;
	      while (e2 && e2 != e)
		e2 = e2->pred_next;
	      if (!e2)
		{
		  fatal ("verify_flow_info: Basic block %i edge lists are corrupted\n",
			 bb->index);
		}
	    }
	  e = e->succ_next;
	}

      e = bb->pred;
      while (e)
	{
	  if (e->dest != bb)
	    {
	      fprintf (stderr, "verify_flow_info: Basic block %d pred edge is corrupted\n",
		       bb->index);
	      fprintf (stderr, "Predecessor: ");
	      dump_edge_info (stderr, e, 0);
	      fprintf (stderr, "\nSuccessor: ");
	      dump_edge_info (stderr, e, 1);
	      fflush (stderr);
	      abort ();
	    }
	  if (e->src != ENTRY_BLOCK_PTR)
	    {
	      edge e2 = e->src->succ;
	      while (e2 && e2 != e)
		e2 = e2->succ_next;
	      if (!e2)
		{
		  fatal ("verify_flow_info: Basic block %i edge lists are corrupted\n",
			 bb->index);
		}
	    }
	  e = e->pred_next;
	}

      /* OK pointers are correct.  Now check the header of basic
         block.  It ought to contain optional CODE_LABEL followed
	 by NOTE_BASIC_BLOCK.  */
      x = bb->head;
      if (GET_CODE (x) == CODE_LABEL)
	{
	  if (bb->end == x)
	    {
	      fatal ("verify_flow_info: Basic block contains only CODE_LABEL and no NOTE_INSN_BASIC_BLOCK note\n");
	    }
	  x = NEXT_INSN (x);
	}
      if (GET_CODE (x) != NOTE
	  || NOTE_LINE_NUMBER (x) != NOTE_INSN_BASIC_BLOCK
	  || NOTE_BASIC_BLOCK (x) != bb)
	{
	  fatal ("verify_flow_info: NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
		 bb->index);
	}

      if (bb->end == x)
	{
	  /* Do checks for empty blocks here */
	}
      else
	{
	  x = NEXT_INSN (x);
	  while (x)
	    {
	      if (GET_CODE (x) == NOTE
		  && NOTE_LINE_NUMBER (x) == NOTE_INSN_BASIC_BLOCK)
		{
		  fatal ("verify_flow_info: NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d\n",
			 INSN_UID (x), bb->index);
		}

	      if (x == bb->end)
		break;

	      if (GET_CODE (x) == JUMP_INSN
		  || GET_CODE (x) == CODE_LABEL
		  || GET_CODE (x) == BARRIER)
		{
		  fatal_insn ("verify_flow_info: Incorrect insn in the middle of basic block %d\n",
			      x, bb->index);
		}

	      x = NEXT_INSN (x);
	    }
	}
    }

  x = rtx_first;
  while (x)
    {
      if (!bb_info[INSN_UID (x)])
	{
	  switch (GET_CODE (x))
	    {
	    case BARRIER:
	    case NOTE:
	      break;

	    case CODE_LABEL:
	      /* An addr_vec is placed outside any block block.  */
	      if (NEXT_INSN (x)
		  && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
		  && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
		      || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
		{
		  x = NEXT_INSN (x);
		}

	      /* But in any case, non-deletable labels can appear anywhere.  */
	      break;

	    default:
	      fatal_insn ("verify_flow_info: Insn outside basic block\n", x);
	    }
	}

      x = NEXT_INSN (x);
    }
}