summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/haifa-sched.c
blob: 421447692019f04698a9e8887a5ef989c3fec482 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
/* Instruction scheduling pass.
   Copyright (C) 1992, 93-98, 1999 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
   and currently maintained by, Jim Wilson (wilson@cygnus.com)

   This file is part of GNU CC.

   GNU CC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GNU CC is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GNU CC; see the file COPYING.  If not, write to the Free
   the Free Software Foundation, 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */


/* Instruction scheduling pass.

   This pass implements list scheduling within basic blocks.  It is
   run twice: (1) after flow analysis, but before register allocation,
   and (2) after register allocation.

   The first run performs interblock scheduling, moving insns between
   different blocks in the same "region", and the second runs only
   basic block scheduling.

   Interblock motions performed are useful motions and speculative
   motions, including speculative loads.  Motions requiring code
   duplication are not supported.  The identification of motion type
   and the check for validity of speculative motions requires
   construction and analysis of the function's control flow graph.
   The scheduler works as follows:

   We compute insn priorities based on data dependencies.  Flow
   analysis only creates a fraction of the data-dependencies we must
   observe: namely, only those dependencies which the combiner can be
   expected to use.  For this pass, we must therefore create the
   remaining dependencies we need to observe: register dependencies,
   memory dependencies, dependencies to keep function calls in order,
   and the dependence between a conditional branch and the setting of
   condition codes are all dealt with here.

   The scheduler first traverses the data flow graph, starting with
   the last instruction, and proceeding to the first, assigning values
   to insn_priority as it goes.  This sorts the instructions
   topologically by data dependence.

   Once priorities have been established, we order the insns using
   list scheduling.  This works as follows: starting with a list of
   all the ready insns, and sorted according to priority number, we
   schedule the insn from the end of the list by placing its
   predecessors in the list according to their priority order.  We
   consider this insn scheduled by setting the pointer to the "end" of
   the list to point to the previous insn.  When an insn has no
   predecessors, we either queue it until sufficient time has elapsed
   or add it to the ready list.  As the instructions are scheduled or
   when stalls are introduced, the queue advances and dumps insns into
   the ready list.  When all insns down to the lowest priority have
   been scheduled, the critical path of the basic block has been made
   as short as possible.  The remaining insns are then scheduled in
   remaining slots.

   Function unit conflicts are resolved during forward list scheduling
   by tracking the time when each insn is committed to the schedule
   and from that, the time the function units it uses must be free.
   As insns on the ready list are considered for scheduling, those
   that would result in a blockage of the already committed insns are
   queued until no blockage will result.

   The following list shows the order in which we want to break ties
   among insns in the ready list:

   1.  choose insn with the longest path to end of bb, ties
   broken by
   2.  choose insn with least contribution to register pressure,
   ties broken by
   3.  prefer in-block upon interblock motion, ties broken by
   4.  prefer useful upon speculative motion, ties broken by
   5.  choose insn with largest control flow probability, ties
   broken by
   6.  choose insn with the least dependences upon the previously
   scheduled insn, or finally
   7   choose the insn which has the most insns dependent on it.
   8.  choose insn with lowest UID.

   Memory references complicate matters.  Only if we can be certain
   that memory references are not part of the data dependency graph
   (via true, anti, or output dependence), can we move operations past
   memory references.  To first approximation, reads can be done
   independently, while writes introduce dependencies.  Better
   approximations will yield fewer dependencies.

   Before reload, an extended analysis of interblock data dependences
   is required for interblock scheduling.  This is performed in
   compute_block_backward_dependences ().

   Dependencies set up by memory references are treated in exactly the
   same way as other dependencies, by using LOG_LINKS backward
   dependences.  LOG_LINKS are translated into INSN_DEPEND forward
   dependences for the purpose of forward list scheduling.

   Having optimized the critical path, we may have also unduly
   extended the lifetimes of some registers.  If an operation requires
   that constants be loaded into registers, it is certainly desirable
   to load those constants as early as necessary, but no earlier.
   I.e., it will not do to load up a bunch of registers at the
   beginning of a basic block only to use them at the end, if they
   could be loaded later, since this may result in excessive register
   utilization.

   Note that since branches are never in basic blocks, but only end
   basic blocks, this pass will not move branches.  But that is ok,
   since we can use GNU's delayed branch scheduling pass to take care
   of this case.

   Also note that no further optimizations based on algebraic
   identities are performed, so this pass would be a good one to
   perform instruction splitting, such as breaking up a multiply
   instruction into shifts and adds where that is profitable.

   Given the memory aliasing analysis that this pass should perform,
   it should be possible to remove redundant stores to memory, and to
   load values from registers instead of hitting memory.

   Before reload, speculative insns are moved only if a 'proof' exists
   that no exception will be caused by this, and if no live registers
   exist that inhibit the motion (live registers constraints are not
   represented by data dependence edges).

   This pass must update information that subsequent passes expect to
   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
   reg_n_calls_crossed, and reg_live_length.  Also, BLOCK_HEAD,
   BLOCK_END.

   The information in the line number notes is carefully retained by
   this pass.  Notes that refer to the starting and ending of
   exception regions are also carefully retained by this pass.  All
   other NOTE insns are grouped in their same relative order at the
   beginning of basic blocks and regions that have been scheduled.

   The main entry point for this pass is schedule_insns(), called for
   each function.  The work of the scheduler is organized in three
   levels: (1) function level: insns are subject to splitting,
   control-flow-graph is constructed, regions are computed (after
   reload, each region is of one block), (2) region level: control
   flow graph attributes required for interblock scheduling are
   computed (dominators, reachability, etc.), data dependences and
   priorities are computed, and (3) block level: insns in the block
   are actually scheduled.  */

#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "basic-block.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"

extern char *reg_known_equiv_p;
extern rtx *reg_known_value;

#ifdef INSN_SCHEDULING

/* target_units bitmask has 1 for each unit in the cpu.  It should be
   possible to compute this variable from the machine description.
   But currently it is computed by examinning the insn list.  Since
   this is only needed for visualization, it seems an acceptable
   solution.  (For understanding the mapping of bits to units, see
   definition of function_units[] in "insn-attrtab.c") */

static int target_units = 0;

/* issue_rate is the number of insns that can be scheduled in the same
   machine cycle.  It can be defined in the config/mach/mach.h file,
   otherwise we set it to 1.  */

static int issue_rate;

#ifndef ISSUE_RATE
#define ISSUE_RATE 1
#endif

/* sched-verbose controls the amount of debugging output the
   scheduler prints.  It is controlled by -fsched-verbose-N:
   N>0 and no -DSR : the output is directed to stderr.
   N>=10 will direct the printouts to stderr (regardless of -dSR).
   N=1: same as -dSR.
   N=2: bb's probabilities, detailed ready list info, unit/insn info.
   N=3: rtl at abort point, control-flow, regions info.
   N=5: dependences info.  */

#define MAX_RGN_BLOCKS 10
#define MAX_RGN_INSNS 100

static int sched_verbose_param = 0;
static int sched_verbose = 0;

/* nr_inter/spec counts interblock/speculative motion for the function */
static int nr_inter, nr_spec;


/* debugging file. all printouts are sent to dump, which is always set,
   either to stderr, or to the dump listing file (-dRS).  */
static FILE *dump = 0;

/* fix_sched_param() is called from toplev.c upon detection
   of the -fsched-***-N options.  */

void
fix_sched_param (param, val)
     char *param, *val;
{
  if (!strcmp (param, "verbose"))
    sched_verbose_param = atoi (val);
  else
    warning ("fix_sched_param: unknown param: %s", param);
}


/* Arrays set up by scheduling for the same respective purposes as
   similar-named arrays set up by flow analysis.  We work with these
   arrays during the scheduling pass so we can compare values against
   unscheduled code.

   Values of these arrays are copied at the end of this pass into the
   arrays set up by flow analysis.  */
static int *sched_reg_n_calls_crossed;
static int *sched_reg_live_length;
static int *sched_reg_basic_block;

/* We need to know the current block number during the post scheduling
   update of live register information so that we can also update
   REG_BASIC_BLOCK if a register changes blocks.  */
static int current_block_num;

/* Element N is the next insn that sets (hard or pseudo) register
   N within the current basic block; or zero, if there is no
   such insn.  Needed for new registers which may be introduced
   by splitting insns.  */
static rtx *reg_last_uses;
static rtx *reg_last_sets;
static rtx *reg_last_clobbers;
static regset reg_pending_sets;
static regset reg_pending_clobbers;
static int reg_pending_sets_all;

/* Vector indexed by INSN_UID giving the original ordering of the insns.  */
static int *insn_luid;
#define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])

/* Vector indexed by INSN_UID giving each instruction a priority.  */
static int *insn_priority;
#define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])

static short *insn_costs;
#define INSN_COST(INSN)	insn_costs[INSN_UID (INSN)]

/* Vector indexed by INSN_UID giving an encoding of the function units
   used.  */
static short *insn_units;
#define INSN_UNIT(INSN)	insn_units[INSN_UID (INSN)]

/* Vector indexed by INSN_UID giving each instruction a register-weight.
   This weight is an estimation of the insn contribution to registers pressure.  */
static int *insn_reg_weight;
#define INSN_REG_WEIGHT(INSN) (insn_reg_weight[INSN_UID (INSN)])

/* Vector indexed by INSN_UID giving list of insns which
   depend upon INSN.  Unlike LOG_LINKS, it represents forward dependences.  */
static rtx *insn_depend;
#define INSN_DEPEND(INSN) insn_depend[INSN_UID (INSN)]

/* Vector indexed by INSN_UID. Initialized to the number of incoming
   edges in forward dependence graph (= number of LOG_LINKS).  As
   scheduling procedes, dependence counts are decreased.  An
   instruction moves to the ready list when its counter is zero.  */
static int *insn_dep_count;
#define INSN_DEP_COUNT(INSN) (insn_dep_count[INSN_UID (INSN)])

/* Vector indexed by INSN_UID giving an encoding of the blockage range
   function.  The unit and the range are encoded.  */
static unsigned int *insn_blockage;
#define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
#define UNIT_BITS 5
#define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
#define ENCODE_BLOCKAGE(U, R)				\
(((U) << BLOCKAGE_BITS					\
  | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS		\
 | MAX_BLOCKAGE_COST (R))
#define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
#define BLOCKAGE_RANGE(B)                                                \
  (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
   | ((B) & BLOCKAGE_MASK))

/* Encodings of the `<name>_unit_blockage_range' function.  */
#define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
#define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))

#define DONE_PRIORITY	-1
#define MAX_PRIORITY	0x7fffffff
#define TAIL_PRIORITY	0x7ffffffe
#define LAUNCH_PRIORITY	0x7f000001
#define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
#define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)

/* Vector indexed by INSN_UID giving number of insns referring to this insn.  */
static int *insn_ref_count;
#define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])

/* Vector indexed by INSN_UID giving line-number note in effect for each
   insn.  For line-number notes, this indicates whether the note may be
   reused.  */
static rtx *line_note;
#define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])

/* Vector indexed by basic block number giving the starting line-number
   for each basic block.  */
static rtx *line_note_head;

/* List of important notes we must keep around.  This is a pointer to the
   last element in the list.  */
static rtx note_list;

/* Regsets telling whether a given register is live or dead before the last
   scheduled insn.  Must scan the instructions once before scheduling to
   determine what registers are live or dead at the end of the block.  */
static regset bb_live_regs;

/* Regset telling whether a given register is live after the insn currently
   being scheduled.  Before processing an insn, this is equal to bb_live_regs
   above.  This is used so that we can find registers that are newly born/dead
   after processing an insn.  */
static regset old_live_regs;

/* The chain of REG_DEAD notes.  REG_DEAD notes are removed from all insns
   during the initial scan and reused later.  If there are not exactly as
   many REG_DEAD notes in the post scheduled code as there were in the
   prescheduled code then we trigger an abort because this indicates a bug.  */
static rtx dead_notes;

/* Queues, etc.  */

/* An instruction is ready to be scheduled when all insns preceding it
   have already been scheduled.  It is important to ensure that all
   insns which use its result will not be executed until its result
   has been computed.  An insn is maintained in one of four structures:

   (P) the "Pending" set of insns which cannot be scheduled until
   their dependencies have been satisfied.
   (Q) the "Queued" set of insns that can be scheduled when sufficient
   time has passed.
   (R) the "Ready" list of unscheduled, uncommitted insns.
   (S) the "Scheduled" list of insns.

   Initially, all insns are either "Pending" or "Ready" depending on
   whether their dependencies are satisfied.

   Insns move from the "Ready" list to the "Scheduled" list as they
   are committed to the schedule.  As this occurs, the insns in the
   "Pending" list have their dependencies satisfied and move to either
   the "Ready" list or the "Queued" set depending on whether
   sufficient time has passed to make them ready.  As time passes,
   insns move from the "Queued" set to the "Ready" list.  Insns may
   move from the "Ready" list to the "Queued" set if they are blocked
   due to a function unit conflict.

   The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
   insns, i.e., those that are ready, queued, and pending.
   The "Queued" set (Q) is implemented by the variable `insn_queue'.
   The "Ready" list (R) is implemented by the variables `ready' and
   `n_ready'.
   The "Scheduled" list (S) is the new insn chain built by this pass.

   The transition (R->S) is implemented in the scheduling loop in
   `schedule_block' when the best insn to schedule is chosen.
   The transition (R->Q) is implemented in `queue_insn' when an
   insn is found to have a function unit conflict with the already
   committed insns.
   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
   insns move from the ready list to the scheduled list.
   The transition (Q->R) is implemented in 'queue_to_insn' as time
   passes or stalls are introduced.  */

/* Implement a circular buffer to delay instructions until sufficient
   time has passed.  INSN_QUEUE_SIZE is a power of two larger than
   MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c.  This is the
   longest time an isnsn may be queued.  */
static rtx insn_queue[INSN_QUEUE_SIZE];
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
#define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))

/* Vector indexed by INSN_UID giving the minimum clock tick at which
   the insn becomes ready.  This is used to note timing constraints for
   insns in the pending list.  */
static int *insn_tick;
#define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])

/* Data structure for keeping track of register information
   during that register's life.  */

struct sometimes
  {
    int regno;
    int live_length;
    int calls_crossed;
  };

/* Forward declarations.  */
static void add_dependence PROTO ((rtx, rtx, enum reg_note));
static void remove_dependence PROTO ((rtx, rtx));
static rtx find_insn_list PROTO ((rtx, rtx));
static int insn_unit PROTO ((rtx));
static unsigned int blockage_range PROTO ((int, rtx));
static void clear_units PROTO ((void));
static int actual_hazard_this_instance PROTO ((int, int, rtx, int, int));
static void schedule_unit PROTO ((int, rtx, int));
static int actual_hazard PROTO ((int, rtx, int, int));
static int potential_hazard PROTO ((int, rtx, int));
static int insn_cost PROTO ((rtx, rtx, rtx));
static int priority PROTO ((rtx));
static void free_pending_lists PROTO ((void));
static void add_insn_mem_dependence PROTO ((rtx *, rtx *, rtx, rtx));
static void flush_pending_lists PROTO ((rtx, int));
static void sched_analyze_1 PROTO ((rtx, rtx));
static void sched_analyze_2 PROTO ((rtx, rtx));
static void sched_analyze_insn PROTO ((rtx, rtx, rtx));
static void sched_analyze PROTO ((rtx, rtx));
static void sched_note_set PROTO ((rtx, int));
static int rank_for_schedule PROTO ((const GENERIC_PTR, const GENERIC_PTR));
static void swap_sort PROTO ((rtx *, int));
static void queue_insn PROTO ((rtx, int));
static int schedule_insn PROTO ((rtx, rtx *, int, int));
static void create_reg_dead_note PROTO ((rtx, rtx));
static void attach_deaths PROTO ((rtx, rtx, int));
static void attach_deaths_insn PROTO ((rtx));
static int new_sometimes_live PROTO ((struct sometimes *, int, int));
static void finish_sometimes_live PROTO ((struct sometimes *, int));
static int schedule_block PROTO ((int, int));
static void split_hard_reg_notes PROTO ((rtx, rtx, rtx));
static void new_insn_dead_notes PROTO ((rtx, rtx, rtx, rtx));
static void update_n_sets PROTO ((rtx, int));
static char *safe_concat PROTO ((char *, char *, char *));
static int insn_issue_delay PROTO ((rtx));
static int birthing_insn_p PROTO ((rtx));
static void adjust_priority PROTO ((rtx));

/* Mapping of insns to their original block prior to scheduling.  */
static int *insn_orig_block;
#define INSN_BLOCK(insn) (insn_orig_block[INSN_UID (insn)])

/* Some insns (e.g. call) are not allowed to move across blocks.  */
static char *cant_move;
#define CANT_MOVE(insn) (cant_move[INSN_UID (insn)])

/* Control flow graph edges are kept in circular lists.  */
typedef struct
  {
    int from_block;
    int to_block;
    int next_in;
    int next_out;
  }
haifa_edge;
static haifa_edge *edge_table;

#define NEXT_IN(edge) (edge_table[edge].next_in)
#define NEXT_OUT(edge) (edge_table[edge].next_out)
#define FROM_BLOCK(edge) (edge_table[edge].from_block)
#define TO_BLOCK(edge) (edge_table[edge].to_block)

/* Number of edges in the control flow graph.  (in fact larger than
   that by 1, since edge 0 is unused.) */
static int nr_edges;

/* Circular list of incoming/outgoing edges of a block */
static int *in_edges;
static int *out_edges;

#define IN_EDGES(block) (in_edges[block])
#define OUT_EDGES(block) (out_edges[block])

/* List of labels which cannot be deleted, needed for control
   flow graph construction.  */
extern rtx forced_labels;


static int is_cfg_nonregular PROTO ((void));
static int build_control_flow PROTO ((int_list_ptr *, int_list_ptr *,
				      int *, int *));
static void new_edge PROTO ((int, int));


/* A region is the main entity for interblock scheduling: insns
   are allowed to move between blocks in the same region, along
   control flow graph edges, in the 'up' direction.  */
typedef struct
  {
    int rgn_nr_blocks;		/* number of blocks in region */
    int rgn_blocks;		/* blocks in the region (actually index in rgn_bb_table) */
  }
region;

/* Number of regions in the procedure */
static int nr_regions;

/* Table of region descriptions */
static region *rgn_table;

/* Array of lists of regions' blocks */
static int *rgn_bb_table;

/* Topological order of blocks in the region (if b2 is reachable from
   b1, block_to_bb[b2] > block_to_bb[b1]).
   Note: A basic block is always referred to by either block or b,
   while its topological order name (in the region) is refered to by
   bb.
 */
static int *block_to_bb;

/* The number of the region containing a block.  */
static int *containing_rgn;

#define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
#define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
#define BLOCK_TO_BB(block) (block_to_bb[block])
#define CONTAINING_RGN(block) (containing_rgn[block])

void debug_regions PROTO ((void));
static void find_single_block_region PROTO ((void));
static void find_rgns PROTO ((int_list_ptr *, int_list_ptr *,
			      int *, int *, sbitmap *));
static int too_large PROTO ((int, int *, int *));

extern void debug_live PROTO ((int, int));

/* Blocks of the current region being scheduled.  */
static int current_nr_blocks;
static int current_blocks;

/* The mapping from bb to block */
#define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])


/* Bit vectors and bitset operations are needed for computations on
   the control flow graph.  */

typedef unsigned HOST_WIDE_INT *bitset;
typedef struct
  {
    int *first_member;		/* pointer to the list start in bitlst_table.  */
    int nr_members;		/* the number of members of the bit list.     */
  }
bitlst;

static int bitlst_table_last;
static int bitlst_table_size;
static int *bitlst_table;

static char bitset_member PROTO ((bitset, int, int));
static void extract_bitlst PROTO ((bitset, int, bitlst *));

/* target info declarations.

   The block currently being scheduled is referred to as the "target" block,
   while other blocks in the region from which insns can be moved to the
   target are called "source" blocks.  The candidate structure holds info
   about such sources: are they valid?  Speculative?  Etc.  */
typedef bitlst bblst;
typedef struct
  {
    char is_valid;
    char is_speculative;
    int src_prob;
    bblst split_bbs;
    bblst update_bbs;
  }
candidate;

static candidate *candidate_table;

/* A speculative motion requires checking live information on the path
   from 'source' to 'target'.  The split blocks are those to be checked.
   After a speculative motion, live information should be modified in
   the 'update' blocks.

   Lists of split and update blocks for  each candidate of the current
   target  are  in  array bblst_table */
static int *bblst_table, bblst_size, bblst_last;

#define IS_VALID(src) ( candidate_table[src].is_valid )
#define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
#define SRC_PROB(src) ( candidate_table[src].src_prob )

/* The bb being currently scheduled.  */
static int target_bb;

/* List of edges.  */
typedef bitlst edgelst;

/* target info functions */
static void split_edges PROTO ((int, int, edgelst *));
static void compute_trg_info PROTO ((int));
void debug_candidate PROTO ((int));
void debug_candidates PROTO ((int));


/* Bit-set of bbs, where bit 'i' stands for bb 'i'.  */
typedef bitset bbset;

/* Number of words of the bbset.  */
static int bbset_size;

/* Dominators array: dom[i] contains the bbset of dominators of
   bb i in the region.  */
static bbset *dom;

/* bb 0 is the only region entry */
#define IS_RGN_ENTRY(bb) (!bb)

/* Is bb_src dominated by bb_trg.  */
#define IS_DOMINATED(bb_src, bb_trg)                                 \
( bitset_member (dom[bb_src], bb_trg, bbset_size) )

/* Probability: Prob[i] is a float in [0, 1] which is the probability
   of bb i relative to the region entry.  */
static float *prob;

/*  The probability of bb_src, relative to bb_trg.  Note, that while the
   'prob[bb]' is a float in [0, 1], this macro returns an integer
   in [0, 100].  */
#define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
						      prob[bb_trg])))

/* Bit-set of edges, where bit i stands for edge i.  */
typedef bitset edgeset;

/* Number of edges in the region.  */
static int rgn_nr_edges;

/* Array of size rgn_nr_edges.    */
static int *rgn_edges;

/* Number of words in an edgeset.    */
static int edgeset_size;

/* Mapping from each edge in the graph to its number in the rgn.  */
static int *edge_to_bit;
#define EDGE_TO_BIT(edge) (edge_to_bit[edge])

/* The split edges of a source bb is different for each target
   bb.  In order to compute this efficiently, the 'potential-split edges'
   are computed for each bb prior to scheduling a region.  This is actually
   the split edges of each bb relative to the region entry.

   pot_split[bb] is the set of potential split edges of bb.  */
static edgeset *pot_split;

/* For every bb, a set of its ancestor edges.  */
static edgeset *ancestor_edges;

static void compute_dom_prob_ps PROTO ((int));

#define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (INSN_BLOCK (INSN))))
#define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (INSN_BLOCK (INSN))))
#define INSN_BB(INSN) (BLOCK_TO_BB (INSN_BLOCK (INSN)))

/* parameters affecting the decision of rank_for_schedule() */
#define MIN_DIFF_PRIORITY 2
#define MIN_PROBABILITY 40
#define MIN_PROB_DIFF 10

/* speculative scheduling functions */
static int check_live_1 PROTO ((int, rtx));
static void update_live_1 PROTO ((int, rtx));
static int check_live PROTO ((rtx, int));
static void update_live PROTO ((rtx, int));
static void set_spec_fed PROTO ((rtx));
static int is_pfree PROTO ((rtx, int, int));
static int find_conditional_protection PROTO ((rtx, int));
static int is_conditionally_protected PROTO ((rtx, int, int));
static int may_trap_exp PROTO ((rtx, int));
static int haifa_classify_insn PROTO ((rtx));
static int is_prisky PROTO ((rtx, int, int));
static int is_exception_free PROTO ((rtx, int, int));

static char find_insn_mem_list PROTO ((rtx, rtx, rtx, rtx));
static void compute_block_forward_dependences PROTO ((int));
static void init_rgn_data_dependences PROTO ((int));
static void add_branch_dependences PROTO ((rtx, rtx));
static void compute_block_backward_dependences PROTO ((int));
void debug_dependencies PROTO ((void));

/* Notes handling mechanism:
   =========================
   Generally, NOTES are saved before scheduling and restored after scheduling.
   The scheduler distinguishes between three types of notes:

   (1) LINE_NUMBER notes, generated and used for debugging.  Here,
   before scheduling a region, a pointer to the LINE_NUMBER note is
   added to the insn following it (in save_line_notes()), and the note
   is removed (in rm_line_notes() and unlink_line_notes()).  After
   scheduling the region, this pointer is used for regeneration of
   the LINE_NUMBER note (in restore_line_notes()).

   (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
   Before scheduling a region, a pointer to the note is added to the insn
   that follows or precedes it.  (This happens as part of the data dependence
   computation).  After scheduling an insn, the pointer contained in it is
   used for regenerating the corresponding note (in reemit_notes).

   (3) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
   these notes are put in a list (in rm_other_notes() and
   unlink_other_notes ()).  After scheduling the block, these notes are
   inserted at the beginning of the block (in schedule_block()).  */

static rtx unlink_other_notes PROTO ((rtx, rtx));
static rtx unlink_line_notes PROTO ((rtx, rtx));
static void rm_line_notes PROTO ((int));
static void save_line_notes PROTO ((int));
static void restore_line_notes PROTO ((int));
static void rm_redundant_line_notes PROTO ((void));
static void rm_other_notes PROTO ((rtx, rtx));
static rtx reemit_notes PROTO ((rtx, rtx));

static void get_block_head_tail PROTO ((int, rtx *, rtx *));

static void find_pre_sched_live PROTO ((int));
static void find_post_sched_live PROTO ((int));
static void update_reg_usage PROTO ((void));
static int queue_to_ready PROTO ((rtx [], int));

static void debug_ready_list PROTO ((rtx[], int));
static void init_target_units PROTO ((void));
static void insn_print_units PROTO ((rtx));
static int get_visual_tbl_length PROTO ((void));
static void init_block_visualization PROTO ((void));
static void print_block_visualization PROTO ((int, char *));
static void visualize_scheduled_insns PROTO ((int, int));
static void visualize_no_unit PROTO ((rtx));
static void visualize_stall_cycles PROTO ((int, int));
static void print_exp PROTO ((char *, rtx, int));
static void print_value PROTO ((char *, rtx, int));
static void print_pattern PROTO ((char *, rtx, int));
static void print_insn PROTO ((char *, rtx, int));
void debug_reg_vector PROTO ((regset));

static rtx move_insn1 PROTO ((rtx, rtx));
static rtx move_insn PROTO ((rtx, rtx));
static rtx group_leader PROTO ((rtx));
static int set_priorities PROTO ((int));
static void init_rtx_vector PROTO ((rtx **, rtx *, int, int));
static void schedule_region PROTO ((int));

#endif /* INSN_SCHEDULING */

#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))

/* Helper functions for instruction scheduling.  */

/* An INSN_LIST containing all INSN_LISTs allocated but currently unused.  */
static rtx unused_insn_list;

/* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused.  */
static rtx unused_expr_list;

static void free_list PROTO ((rtx *, rtx *));
static rtx alloc_INSN_LIST PROTO ((rtx, rtx));
static rtx alloc_EXPR_LIST PROTO ((int, rtx, rtx));

static void
free_list (listp, unused_listp)
     rtx *listp, *unused_listp;
{
  register rtx link, prev_link;

  if (*listp == 0)
    return;

  prev_link = *listp;
  link = XEXP (prev_link, 1);

  while (link)
    {
      prev_link = link;
      link = XEXP (link, 1);
    }

  XEXP (prev_link, 1) = *unused_listp;
  *unused_listp = *listp;
  *listp = 0;
}

static rtx
alloc_INSN_LIST (val, next)
     rtx val, next;
{
  rtx r;

  if (unused_insn_list)
    {
      r = unused_insn_list;
      unused_insn_list = XEXP (r, 1);
      XEXP (r, 0) = val;
      XEXP (r, 1) = next;
      PUT_REG_NOTE_KIND (r, VOIDmode);
    }
  else
    r = gen_rtx_INSN_LIST (VOIDmode, val, next);

  return r;
}

static rtx
alloc_EXPR_LIST (kind, val, next)
     int kind;
     rtx val, next;
{
  rtx r;

  if (unused_expr_list)
    {
      r = unused_expr_list;
      unused_expr_list = XEXP (r, 1);
      XEXP (r, 0) = val;
      XEXP (r, 1) = next;
      PUT_REG_NOTE_KIND (r, kind);
    }
  else
    r = gen_rtx_EXPR_LIST (kind, val, next);

  return r;
}

/* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
   LOG_LINKS of INSN, if not already there.  DEP_TYPE indicates the type
   of dependence that this link represents.  */

static void
add_dependence (insn, elem, dep_type)
     rtx insn;
     rtx elem;
     enum reg_note dep_type;
{
  rtx link, next;

  /* Don't depend an insn on itself.  */
  if (insn == elem)
    return;

  /* We can get a dependency on deleted insns due to optimizations in
     the register allocation and reloading or due to splitting.  Any
     such dependency is useless and can be ignored.  */
  if (GET_CODE (elem) == NOTE)
    return;
	
  /* If elem is part of a sequence that must be scheduled together, then
     make the dependence point to the last insn of the sequence.
     When HAVE_cc0, it is possible for NOTEs to exist between users and
     setters of the condition codes, so we must skip past notes here.
     Otherwise, NOTEs are impossible here.  */

  next = NEXT_INSN (elem);

#ifdef HAVE_cc0
  while (next && GET_CODE (next) == NOTE)
    next = NEXT_INSN (next);
#endif

  if (next && SCHED_GROUP_P (next)
      && GET_CODE (next) != CODE_LABEL)
    {
      /* Notes will never intervene here though, so don't bother checking
         for them.  */
      /* We must reject CODE_LABELs, so that we don't get confused by one
         that has LABEL_PRESERVE_P set, which is represented by the same
         bit in the rtl as SCHED_GROUP_P.  A CODE_LABEL can never be
         SCHED_GROUP_P.  */
      while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next))
	     && GET_CODE (NEXT_INSN (next)) != CODE_LABEL)
	next = NEXT_INSN (next);

      /* Again, don't depend an insn on itself.  */
      if (insn == next)
	return;

      /* Make the dependence to NEXT, the last insn of the group, instead
         of the original ELEM.  */
      elem = next;
    }

#ifdef INSN_SCHEDULING
  /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
     No need for interblock dependences with calls, since
     calls are not moved between blocks.   Note: the edge where
     elem is a CALL is still required.  */
  if (GET_CODE (insn) == CALL_INSN
      && (INSN_BB (elem) != INSN_BB (insn)))
    return;

#endif

  /* Check that we don't already have this dependence.  */
  for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
    if (XEXP (link, 0) == elem)
      {
	/* If this is a more restrictive type of dependence than the existing
	   one, then change the existing dependence to this type.  */
	if ((int) dep_type < (int) REG_NOTE_KIND (link))
	  PUT_REG_NOTE_KIND (link, dep_type);
	return;
      }
  /* Might want to check one level of transitivity to save conses.  */

  link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
  LOG_LINKS (insn) = link;

  /* Insn dependency, not data dependency.  */
  PUT_REG_NOTE_KIND (link, dep_type);
}

/* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
   of INSN.  Abort if not found.  */

static void
remove_dependence (insn, elem)
     rtx insn;
     rtx elem;
{
  rtx prev, link, next;
  int found = 0;

  for (prev = 0, link = LOG_LINKS (insn); link; link = next)
    {
      next = XEXP (link, 1);
      if (XEXP (link, 0) == elem)
	{
	  if (prev)
	    XEXP (prev, 1) = next;
	  else
	    LOG_LINKS (insn) = next;

	  XEXP (link, 1) = unused_insn_list;
	  unused_insn_list = link;

	  found = 1;
	}
      else
	prev = link;
    }

  if (!found)
    abort ();
  return;
}

#ifndef INSN_SCHEDULING
void
schedule_insns (dump_file)
     FILE *dump_file;
{
}
#else
#ifndef __GNUC__
#define __inline
#endif

#ifndef HAIFA_INLINE
#define HAIFA_INLINE __inline
#endif

/* Computation of memory dependencies.  */

/* The *_insns and *_mems are paired lists.  Each pending memory operation
   will have a pointer to the MEM rtx on one list and a pointer to the
   containing insn on the other list in the same place in the list.  */

/* We can't use add_dependence like the old code did, because a single insn
   may have multiple memory accesses, and hence needs to be on the list
   once for each memory access.  Add_dependence won't let you add an insn
   to a list more than once.  */

/* An INSN_LIST containing all insns with pending read operations.  */
static rtx pending_read_insns;

/* An EXPR_LIST containing all MEM rtx's which are pending reads.  */
static rtx pending_read_mems;

/* An INSN_LIST containing all insns with pending write operations.  */
static rtx pending_write_insns;

/* An EXPR_LIST containing all MEM rtx's which are pending writes.  */
static rtx pending_write_mems;

/* Indicates the combined length of the two pending lists.  We must prevent
   these lists from ever growing too large since the number of dependencies
   produced is at least O(N*N), and execution time is at least O(4*N*N), as
   a function of the length of these pending lists.  */

static int pending_lists_length;

/* The last insn upon which all memory references must depend.
   This is an insn which flushed the pending lists, creating a dependency
   between it and all previously pending memory references.  This creates
   a barrier (or a checkpoint) which no memory reference is allowed to cross.

   This includes all non constant CALL_INSNs.  When we do interprocedural
   alias analysis, this restriction can be relaxed.
   This may also be an INSN that writes memory if the pending lists grow
   too large.  */

static rtx last_pending_memory_flush;

/* The last function call we have seen.  All hard regs, and, of course,
   the last function call, must depend on this.  */

static rtx last_function_call;

/* The LOG_LINKS field of this is a list of insns which use a pseudo register
   that does not already cross a call.  We create dependencies between each
   of those insn and the next call insn, to ensure that they won't cross a call
   after scheduling is done.  */

static rtx sched_before_next_call;

/* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
   so that insns independent of the last scheduled insn will be preferred
   over dependent instructions.  */

static rtx last_scheduled_insn;

/* Data structures for the computation of data dependences in a regions.  We
   keep one copy of each of the declared above variables for each bb in the
   region.  Before analyzing the data dependences for a bb, its variables
   are initialized as a function of the variables of its predecessors.  When
   the analysis for a bb completes, we save the contents of each variable X
   to a corresponding bb_X[bb] variable.  For example, pending_read_insns is
   copied to bb_pending_read_insns[bb].  Another change is that few
   variables are now a list of insns rather than a single insn:
   last_pending_memory_flash, last_function_call, reg_last_sets.  The
   manipulation of these variables was changed appropriately.  */

static rtx **bb_reg_last_uses;
static rtx **bb_reg_last_sets;
static rtx **bb_reg_last_clobbers;

static rtx *bb_pending_read_insns;
static rtx *bb_pending_read_mems;
static rtx *bb_pending_write_insns;
static rtx *bb_pending_write_mems;
static int *bb_pending_lists_length;

static rtx *bb_last_pending_memory_flush;
static rtx *bb_last_function_call;
static rtx *bb_sched_before_next_call;

/* functions for construction of the control flow graph.  */

/* Return 1 if control flow graph should not be constructed, 0 otherwise.

   We decide not to build the control flow graph if there is possibly more
   than one entry to the function, if computed branches exist, of if we
   have nonlocal gotos.  */

static int
is_cfg_nonregular ()
{
  int b;
  rtx insn;
  RTX_CODE code;

  /* If we have a label that could be the target of a nonlocal goto, then
     the cfg is not well structured.  */
  if (nonlocal_goto_handler_labels)
    return 1;

  /* If we have any forced labels, then the cfg is not well structured.  */
  if (forced_labels)
    return 1;

  /* If this function has a computed jump, then we consider the cfg
     not well structured.  */
  if (current_function_has_computed_jump)
    return 1;

  /* If we have exception handlers, then we consider the cfg not well
     structured.  ?!?  We should be able to handle this now that flow.c
     computes an accurate cfg for EH.  */
  if (exception_handler_labels)
    return 1;

  /* If we have non-jumping insns which refer to labels, then we consider
     the cfg not well structured.  */
  /* check for labels referred to other thn by jumps */
  for (b = 0; b < n_basic_blocks; b++)
    for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
      {
	code = GET_CODE (insn);
	if (GET_RTX_CLASS (code) == 'i')
	  {
	    rtx note;

	    for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
	      if (REG_NOTE_KIND (note) == REG_LABEL)
		return 1;
	  }

	if (insn == BLOCK_END (b))
	  break;
      }

  /* All the tests passed.  Consider the cfg well structured.  */
  return 0;
}

/* Build the control flow graph and set nr_edges.

   Instead of trying to build a cfg ourselves, we rely on flow to
   do it for us.  Stamp out useless code (and bug) duplication.

   Return nonzero if an irregularity in the cfg is found which would
   prevent cross block scheduling.  */

static int
build_control_flow (s_preds, s_succs, num_preds, num_succs)
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     int *num_preds;
     int *num_succs;
{
  int i;
  int_list_ptr succ;
  int unreachable;

  /* Count the number of edges in the cfg.  */
  nr_edges = 0;
  unreachable = 0;
  for (i = 0; i < n_basic_blocks; i++)
    {
      nr_edges += num_succs[i];

      /* Unreachable loops with more than one basic block are detected
	 during the DFS traversal in find_rgns.

	 Unreachable loops with a single block are detected here.  This
	 test is redundant with the one in find_rgns, but it's much
	 cheaper to go ahead and catch the trivial case here.  */
      if (num_preds[i] == 0
	  || (num_preds[i] == 1 && INT_LIST_VAL (s_preds[i]) == i))
	unreachable = 1;
    }

  /* Account for entry/exit edges.  */
  nr_edges += 2;

  in_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
  out_edges = (int *) xmalloc (n_basic_blocks * sizeof (int));
  bzero ((char *) in_edges, n_basic_blocks * sizeof (int));
  bzero ((char *) out_edges, n_basic_blocks * sizeof (int));

  edge_table = (haifa_edge *) xmalloc ((nr_edges) * sizeof (haifa_edge));
  bzero ((char *) edge_table, ((nr_edges) * sizeof (haifa_edge)));

  nr_edges = 0;
  for (i = 0; i < n_basic_blocks; i++)
    for (succ = s_succs[i]; succ; succ = succ->next)
      {
	if (INT_LIST_VAL (succ) != EXIT_BLOCK)
	  new_edge (i, INT_LIST_VAL (succ));
      }

  /* increment by 1, since edge 0 is unused.  */
  nr_edges++;

  return unreachable;
}


/* Record an edge in the control flow graph from SOURCE to TARGET.

   In theory, this is redundant with the s_succs computed above, but
   we have not converted all of haifa to use information from the
   integer lists.  */

static void
new_edge (source, target)
     int source, target;
{
  int e, next_edge;
  int curr_edge, fst_edge;

  /* check for duplicates */
  fst_edge = curr_edge = OUT_EDGES (source);
  while (curr_edge)
    {
      if (FROM_BLOCK (curr_edge) == source
	  && TO_BLOCK (curr_edge) == target)
	{
	  return;
	}

      curr_edge = NEXT_OUT (curr_edge);

      if (fst_edge == curr_edge)
	break;
    }

  e = ++nr_edges;

  FROM_BLOCK (e) = source;
  TO_BLOCK (e) = target;

  if (OUT_EDGES (source))
    {
      next_edge = NEXT_OUT (OUT_EDGES (source));
      NEXT_OUT (OUT_EDGES (source)) = e;
      NEXT_OUT (e) = next_edge;
    }
  else
    {
      OUT_EDGES (source) = e;
      NEXT_OUT (e) = e;
    }

  if (IN_EDGES (target))
    {
      next_edge = NEXT_IN (IN_EDGES (target));
      NEXT_IN (IN_EDGES (target)) = e;
      NEXT_IN (e) = next_edge;
    }
  else
    {
      IN_EDGES (target) = e;
      NEXT_IN (e) = e;
    }
}


/* BITSET macros for operations on the control flow graph.  */

/* Compute  bitwise union  of two  bitsets.  */
#define BITSET_UNION(set1, set2, len)                                \
do { register bitset tp = set1, sp = set2;                           \
     register int i;                                                 \
     for (i = 0; i < len; i++)                                       \
       *(tp++) |= *(sp++); } while (0)

/* Compute  bitwise intersection  of two  bitsets.  */
#define BITSET_INTER(set1, set2, len)                                \
do { register bitset tp = set1, sp = set2;                           \
     register int i;                                                 \
     for (i = 0; i < len; i++)                                       \
       *(tp++) &= *(sp++); } while (0)

/* Compute bitwise   difference of  two bitsets.  */
#define BITSET_DIFFER(set1, set2, len)                               \
do { register bitset tp = set1, sp = set2;                           \
     register int i;                                                 \
     for (i = 0; i < len; i++)                                       \
       *(tp++) &= ~*(sp++); } while (0)

/* Inverts every bit of bitset 'set' */
#define BITSET_INVERT(set, len)                                      \
do { register bitset tmpset = set;                                   \
     register int i;                                                 \
     for (i = 0; i < len; i++, tmpset++)                             \
       *tmpset = ~*tmpset; } while (0)

/* Turn on the index'th bit in bitset set.  */
#define BITSET_ADD(set, index, len)                                  \
{                                                                    \
  if (index >= HOST_BITS_PER_WIDE_INT * len)                         \
    abort ();                                                        \
  else                                                               \
    set[index/HOST_BITS_PER_WIDE_INT] |=			     \
      1 << (index % HOST_BITS_PER_WIDE_INT);                         \
}

/* Turn off the index'th bit in set.  */
#define BITSET_REMOVE(set, index, len)                               \
{                                                                    \
  if (index >= HOST_BITS_PER_WIDE_INT * len)                         \
    abort ();                                                        \
  else                                                               \
    set[index/HOST_BITS_PER_WIDE_INT] &=			     \
      ~(1 << (index%HOST_BITS_PER_WIDE_INT));                        \
}


/* Check if the index'th bit in bitset  set is on.  */

static char
bitset_member (set, index, len)
     bitset set;
     int index, len;
{
  if (index >= HOST_BITS_PER_WIDE_INT * len)
    abort ();
  return (set[index / HOST_BITS_PER_WIDE_INT] &
	  1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0;
}


/* Translate a bit-set SET to a list BL of the bit-set members.  */

static void
extract_bitlst (set, len, bl)
     bitset set;
     int len;
     bitlst *bl;
{
  int i, j, offset;
  unsigned HOST_WIDE_INT word;

  /* bblst table space is reused in each call to extract_bitlst */
  bitlst_table_last = 0;

  bl->first_member = &bitlst_table[bitlst_table_last];
  bl->nr_members = 0;

  for (i = 0; i < len; i++)
    {
      word = set[i];
      offset = i * HOST_BITS_PER_WIDE_INT;
      for (j = 0; word; j++)
	{
	  if (word & 1)
	    {
	      bitlst_table[bitlst_table_last++] = offset;
	      (bl->nr_members)++;
	    }
	  word >>= 1;
	  ++offset;
	}
    }

}


/* functions for the construction of regions */

/* Print the regions, for debugging purposes.  Callable from debugger.  */

void
debug_regions ()
{
  int rgn, bb;

  fprintf (dump, "\n;;   ------------ REGIONS ----------\n\n");
  for (rgn = 0; rgn < nr_regions; rgn++)
    {
      fprintf (dump, ";;\trgn %d nr_blocks %d:\n", rgn,
	       rgn_table[rgn].rgn_nr_blocks);
      fprintf (dump, ";;\tbb/block: ");

      for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
	{
	  current_blocks = RGN_BLOCKS (rgn);

	  if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
	    abort ();

	  fprintf (dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
	}

      fprintf (dump, "\n\n");
    }
}


/* Build a single block region for each basic block in the function.
   This allows for using the same code for interblock and basic block
   scheduling.  */

static void
find_single_block_region ()
{
  int i;

  for (i = 0; i < n_basic_blocks; i++)
    {
      rgn_bb_table[i] = i;
      RGN_NR_BLOCKS (i) = 1;
      RGN_BLOCKS (i) = i;
      CONTAINING_RGN (i) = i;
      BLOCK_TO_BB (i) = 0;
    }
  nr_regions = n_basic_blocks;
}


/* Update number of blocks and the estimate for number of insns
   in the region.  Return 1 if the region is "too large" for interblock
   scheduling (compile time considerations), otherwise return 0.  */

static int
too_large (block, num_bbs, num_insns)
     int block, *num_bbs, *num_insns;
{
  (*num_bbs)++;
  (*num_insns) += (INSN_LUID (BLOCK_END (block)) -
		   INSN_LUID (BLOCK_HEAD (block)));
  if ((*num_bbs > MAX_RGN_BLOCKS) || (*num_insns > MAX_RGN_INSNS))
    return 1;
  else
    return 0;
}


/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
   is still an inner loop.  Put in max_hdr[blk] the header of the most inner
   loop containing blk.  */
#define UPDATE_LOOP_RELATIONS(blk, hdr)                              \
{                                                                    \
  if (max_hdr[blk] == -1)                                            \
    max_hdr[blk] = hdr;                                              \
  else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr])                       \
         RESET_BIT (inner, hdr);                                     \
  else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr])                       \
         {                                                           \
            RESET_BIT (inner,max_hdr[blk]);			     \
            max_hdr[blk] = hdr;                                      \
         }                                                           \
}


/* Find regions for interblock scheduling.

   A region for scheduling can be:

     * A loop-free procedure, or

     * A reducible inner loop, or

     * A basic block not contained in any other region.


   ?!? In theory we could build other regions based on extended basic
   blocks or reverse extended basic blocks.  Is it worth the trouble?

   Loop blocks that form a region are put into the region's block list
   in topological order.

   This procedure stores its results into the following global (ick) variables

     * rgn_nr
     * rgn_table
     * rgn_bb_table
     * block_to_bb
     * containing region


   We use dominator relationships to avoid making regions out of non-reducible
   loops.

   This procedure needs to be converted to work on pred/succ lists instead
   of edge tables.  That would simplify it somewhat.  */

static void
find_rgns (s_preds, s_succs, num_preds, num_succs, dom)
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     int *num_preds;
     int *num_succs;
     sbitmap *dom;
{
  int *max_hdr, *dfs_nr, *stack, *queue, *degree;
  char no_loops = 1;
  int node, child, loop_head, i, head, tail;
  int count = 0, sp, idx = 0, current_edge = out_edges[0];
  int num_bbs, num_insns, unreachable;
  int too_large_failure;

  /* Note if an edge has been passed.  */
  sbitmap passed;

  /* Note if a block is a natural loop header.  */
  sbitmap header;

  /* Note if a block is an natural inner loop header.  */
  sbitmap inner;

  /* Note if a block is in the block queue. */
  sbitmap in_queue;

  /* Note if a block is in the block queue. */
  sbitmap in_stack;

  /* Perform a DFS traversal of the cfg.  Identify loop headers, inner loops
     and a mapping from block to its loop header (if the block is contained
     in a loop, else -1).

     Store results in HEADER, INNER, and MAX_HDR respectively, these will
     be used as inputs to the second traversal.

     STACK, SP and DFS_NR are only used during the first traversal.  */

  /* Allocate and initialize variables for the first traversal.  */
  max_hdr = (int *) alloca (n_basic_blocks * sizeof (int));
  dfs_nr = (int *) alloca (n_basic_blocks * sizeof (int));
  bzero ((char *) dfs_nr, n_basic_blocks * sizeof (int));
  stack = (int *) alloca (nr_edges * sizeof (int));

  inner = sbitmap_alloc (n_basic_blocks);
  sbitmap_ones (inner);

  header = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (header);

  passed = sbitmap_alloc (nr_edges);
  sbitmap_zero (passed);

  in_queue = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (in_queue);

  in_stack = sbitmap_alloc (n_basic_blocks);
  sbitmap_zero (in_stack);

  for (i = 0; i < n_basic_blocks; i++)
    max_hdr[i] = -1;

  /* DFS traversal to find inner loops in the cfg.  */

  sp = -1;
  while (1)
    {
      if (current_edge == 0 || TEST_BIT (passed, current_edge))
	{
	  /* We have reached a leaf node or a node that was already
	     processed.  Pop edges off the stack until we find
	     an edge that has not yet been processed.  */
	  while (sp >= 0
		 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
	    {
	      /* Pop entry off the stack.  */
	      current_edge = stack[sp--];
	      node = FROM_BLOCK (current_edge);
	      child = TO_BLOCK (current_edge);
	      RESET_BIT (in_stack, child);
	      if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
		UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
	      current_edge = NEXT_OUT (current_edge);
	    }

	  /* See if have finished the DFS tree traversal.  */
	  if (sp < 0 && TEST_BIT (passed, current_edge))
	    break;

	  /* Nope, continue the traversal with the popped node.  */
	  continue;
	}

      /* Process a node.  */
      node = FROM_BLOCK (current_edge);
      child = TO_BLOCK (current_edge);
      SET_BIT (in_stack, node);
      dfs_nr[node] = ++count;

      /* If the successor is in the stack, then we've found a loop.
	 Mark the loop, if it is not a natural loop, then it will
	 be rejected during the second traversal.  */
      if (TEST_BIT (in_stack, child))
	{
	  no_loops = 0;
	  SET_BIT (header, child);
	  UPDATE_LOOP_RELATIONS (node, child);
	  SET_BIT (passed, current_edge);
	  current_edge = NEXT_OUT (current_edge);
	  continue;
	}

      /* If the child was already visited, then there is no need to visit
	 it again.  Just update the loop relationships and restart
	 with a new edge.  */
      if (dfs_nr[child])
	{
	  if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
	    UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
	  SET_BIT (passed, current_edge);
	  current_edge = NEXT_OUT (current_edge);
	  continue;
	}

      /* Push an entry on the stack and continue DFS traversal.  */
      stack[++sp] = current_edge;
      SET_BIT (passed, current_edge);
      current_edge = OUT_EDGES (child);
    }

  /* Another check for unreachable blocks.  The earlier test in
     is_cfg_nonregular only finds unreachable blocks that do not
     form a loop.

     The DFS traversal will mark every block that is reachable from
     the entry node by placing a nonzero value in dfs_nr.  Thus if
     dfs_nr is zero for any block, then it must be unreachable.  */
  unreachable = 0;
  for (i = 0; i < n_basic_blocks; i++)
    if (dfs_nr[i] == 0)
      {
	unreachable = 1;
	break;
      }

  /* Gross.  To avoid wasting memory, the second pass uses the dfs_nr array
     to hold degree counts.  */
  degree = dfs_nr;

  /* Compute the in-degree of every block in the graph */
  for (i = 0; i < n_basic_blocks; i++)
    degree[i] = num_preds[i];

  /* Do not perform region scheduling if there are any unreachable
     blocks.  */
  if (!unreachable)
    {
      if (no_loops)
	SET_BIT (header, 0);

      /* Second travsersal:find reducible inner loops and topologically sort
	 block of each region.  */

      queue = (int *) alloca (n_basic_blocks * sizeof (int));

      /* Find blocks which are inner loop headers.  We still have non-reducible
	 loops to consider at this point.  */
      for (i = 0; i < n_basic_blocks; i++)
	{
	  if (TEST_BIT (header, i) && TEST_BIT (inner, i))
	    {
	      int_list_ptr ps;
	      int j;

	      /* Now check that the loop is reducible.  We do this separate
		 from finding inner loops so that we do not find a reducible
		 loop which contains an inner  non-reducible loop.

		 A simple way to find reducible/natrual loops is to verify
		 that each block in the loop is dominated by the loop
		 header.

		 If there exists a block that is not dominated by the loop
		 header, then the block is reachable from outside the loop
		 and thus the loop is not a natural loop.  */
	      for (j = 0; j < n_basic_blocks; j++)	
		{
		  /* First identify blocks in the loop, except for the loop
		     entry block.  */
		  if (i == max_hdr[j] && i != j)
		    {
		      /* Now verify that the block is dominated by the loop
			 header.  */
		      if (!TEST_BIT (dom[j], i))
			break;
		    }
		}

	      /* If we exited the loop early, then I is the header of a non
		 reducible loop and we should quit processing it now.  */
	      if (j != n_basic_blocks)
		continue;

	      /* I is a header of an inner loop, or block 0 in a subroutine
		 with no loops at all.  */
	      head = tail = -1;
	      too_large_failure = 0;
	      loop_head = max_hdr[i];

	      /* Decrease degree of all I's successors for topological
		 ordering.  */
	      for (ps = s_succs[i]; ps; ps = ps->next)
		if (INT_LIST_VAL (ps) != EXIT_BLOCK
		    && INT_LIST_VAL (ps) != ENTRY_BLOCK)
		  --degree[INT_LIST_VAL(ps)];

	      /* Estimate # insns, and count # blocks in the region.  */
	      num_bbs = 1;
	      num_insns	= (INSN_LUID (BLOCK_END (i))
			   - INSN_LUID (BLOCK_HEAD (i)));


	      /* Find all loop latches (blocks which back edges to the loop
		 header) or all the leaf blocks in the cfg has no loops.

		 Place those blocks into the queue.  */
	      if (no_loops)
		{
		  for (j = 0; j < n_basic_blocks; j++)
		    /* Leaf nodes have only a single successor which must
		       be EXIT_BLOCK.  */
		    if (num_succs[j] == 1
			&& INT_LIST_VAL (s_succs[j]) == EXIT_BLOCK)
		      {
			queue[++tail] = j;
			SET_BIT (in_queue, j);

			if (too_large (j, &num_bbs, &num_insns))
			  {
			    too_large_failure = 1;
			    break;
			  }
		      }
		}
	      else
		{
		  int_list_ptr ps;

		  for (ps = s_preds[i]; ps; ps = ps->next)
		    {
		      node = INT_LIST_VAL (ps);

		      if (node == ENTRY_BLOCK || node == EXIT_BLOCK)
			continue;
 
		      if (max_hdr[node] == loop_head && node != i)
			{
			  /* This is a loop latch.  */
			  queue[++tail] = node;
			  SET_BIT (in_queue, node);

			  if (too_large (node, &num_bbs, &num_insns))
			    {
			      too_large_failure = 1;
			      break;
			    }
			}
		      
		    }
		}

	      /* Now add all the blocks in the loop to the queue.

	     We know the loop is a natural loop; however the algorithm
	     above will not always mark certain blocks as being in the
	     loop.  Consider:
		node   children
		 a	  b,c
		 b	  c
		 c	  a,d
		 d	  b


	     The algorithm in the DFS traversal may not mark B & D as part
	     of the loop (ie they will not have max_hdr set to A).

	     We know they can not be loop latches (else they would have
	     had max_hdr set since they'd have a backedge to a dominator
	     block).  So we don't need them on the initial queue.

	     We know they are part of the loop because they are dominated
	     by the loop header and can be reached by a backwards walk of
	     the edges starting with nodes on the initial queue.

	     It is safe and desirable to include those nodes in the
	     loop/scheduling region.  To do so we would need to decrease
	     the degree of a node if it is the target of a backedge
	     within the loop itself as the node is placed in the queue.

	     We do not do this because I'm not sure that the actual
	     scheduling code will properly handle this case. ?!? */
	
	      while (head < tail && !too_large_failure)
		{
		  int_list_ptr ps;
		  child = queue[++head];

		  for (ps = s_preds[child]; ps; ps = ps->next)
		    {
		      node = INT_LIST_VAL (ps);

		      /* See discussion above about nodes not marked as in
			 this loop during the initial DFS traversal.  */
		      if (node == ENTRY_BLOCK || node == EXIT_BLOCK
			  || max_hdr[node] != loop_head)
			{
			  tail = -1;
			  break;
			}
		      else if (!TEST_BIT (in_queue, node) && node != i)
			{
			  queue[++tail] = node;
			  SET_BIT (in_queue, node);

			  if (too_large (node, &num_bbs, &num_insns))
			    {
			      too_large_failure = 1;
			      break;
			    }
			}
		    }
		}

	      if (tail >= 0 && !too_large_failure)
		{
		  /* Place the loop header into list of region blocks.  */
		  degree[i] = -1;
		  rgn_bb_table[idx] = i;
		  RGN_NR_BLOCKS (nr_regions) = num_bbs;
		  RGN_BLOCKS (nr_regions) = idx++;
		  CONTAINING_RGN (i) = nr_regions;
		  BLOCK_TO_BB (i) = count = 0;

		  /* Remove blocks from queue[] when their in degree becomes
		 zero.  Repeat until no blocks are left on the list.  This
		 produces a topological list of blocks in the region.  */
		  while (tail >= 0)
		    {
		      int_list_ptr ps;

		      if (head < 0)
			head = tail;
		      child = queue[head];
		      if (degree[child] == 0)
			{
			  degree[child] = -1;
			  rgn_bb_table[idx++] = child;
			  BLOCK_TO_BB (child) = ++count;
			  CONTAINING_RGN (child) = nr_regions;
			  queue[head] = queue[tail--];

			  for (ps = s_succs[child]; ps; ps = ps->next)
			    if (INT_LIST_VAL (ps) != ENTRY_BLOCK
				&& INT_LIST_VAL (ps) != EXIT_BLOCK)
			      --degree[INT_LIST_VAL (ps)];
			}
		      else
			--head;
		    }
		  ++nr_regions;
		}
	    }
	}
    }

  /* Any block that did not end up in a region is placed into a region
     by itself.  */
  for (i = 0; i < n_basic_blocks; i++)
    if (degree[i] >= 0)
      {
	rgn_bb_table[idx] = i;
	RGN_NR_BLOCKS (nr_regions) = 1;
	RGN_BLOCKS (nr_regions) = idx++;
	CONTAINING_RGN (i) = nr_regions++;
	BLOCK_TO_BB (i) = 0;
      }

  free (passed);
  free (header);
  free (inner);
  free (in_queue);
  free (in_stack);
}


/* functions for regions scheduling information */

/* Compute dominators, probability, and potential-split-edges of bb.
   Assume that these values were already computed for bb's predecessors.  */

static void
compute_dom_prob_ps (bb)
     int bb;
{
  int nxt_in_edge, fst_in_edge, pred;
  int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;

  prob[bb] = 0.0;
  if (IS_RGN_ENTRY (bb))
    {
      BITSET_ADD (dom[bb], 0, bbset_size);
      prob[bb] = 1.0;
      return;
    }

  fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));

  /* intialize dom[bb] to '111..1' */
  BITSET_INVERT (dom[bb], bbset_size);

  do
    {
      pred = FROM_BLOCK (nxt_in_edge);
      BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);

      BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
		    edgeset_size);

      BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);

      nr_out_edges = 1;
      nr_rgn_out_edges = 0;
      fst_out_edge = OUT_EDGES (pred);
      nxt_out_edge = NEXT_OUT (fst_out_edge);
      BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
		    edgeset_size);

      BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);

      /* the successor doesn't belong the region? */
      if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
	  CONTAINING_RGN (BB_TO_BLOCK (bb)))
	++nr_rgn_out_edges;

      while (fst_out_edge != nxt_out_edge)
	{
	  ++nr_out_edges;
	  /* the successor doesn't belong the region? */
	  if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
	      CONTAINING_RGN (BB_TO_BLOCK (bb)))
	    ++nr_rgn_out_edges;
	  BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
	  nxt_out_edge = NEXT_OUT (nxt_out_edge);

	}

      /* now nr_rgn_out_edges is the number of region-exit edges from pred,
         and nr_out_edges will be the number of pred out edges not leaving
         the region.  */
      nr_out_edges -= nr_rgn_out_edges;
      if (nr_rgn_out_edges > 0)
	prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
      else
	prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
      nxt_in_edge = NEXT_IN (nxt_in_edge);
    }
  while (fst_in_edge != nxt_in_edge);

  BITSET_ADD (dom[bb], bb, bbset_size);
  BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);

  if (sched_verbose >= 2)
    fprintf (dump, ";;  bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb), (int) (100.0 * prob[bb]));
}				/* compute_dom_prob_ps */

/* functions for target info */

/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
   Note that bb_trg dominates bb_src.  */

static void
split_edges (bb_src, bb_trg, bl)
     int bb_src;
     int bb_trg;
     edgelst *bl;
{
  int es = edgeset_size;
  edgeset src = (edgeset) alloca (es * sizeof (HOST_WIDE_INT));

  while (es--)
    src[es] = (pot_split[bb_src])[es];
  BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
  extract_bitlst (src, edgeset_size, bl);
}


/* Find the valid candidate-source-blocks for the target block TRG, compute
   their probability, and check if they are speculative or not.
   For speculative sources, compute their update-blocks and split-blocks.  */

static void
compute_trg_info (trg)
     int trg;
{
  register candidate *sp;
  edgelst el;
  int check_block, update_idx;
  int i, j, k, fst_edge, nxt_edge;

  /* define some of the fields for the target bb as well */
  sp = candidate_table + trg;
  sp->is_valid = 1;
  sp->is_speculative = 0;
  sp->src_prob = 100;

  for (i = trg + 1; i < current_nr_blocks; i++)
    {
      sp = candidate_table + i;

      sp->is_valid = IS_DOMINATED (i, trg);
      if (sp->is_valid)
	{
	  sp->src_prob = GET_SRC_PROB (i, trg);
	  sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
	}

      if (sp->is_valid)
	{
	  split_edges (i, trg, &el);
	  sp->is_speculative = (el.nr_members) ? 1 : 0;
	  if (sp->is_speculative && !flag_schedule_speculative)
	    sp->is_valid = 0;
	}

      if (sp->is_valid)
	{
	  sp->split_bbs.first_member = &bblst_table[bblst_last];
	  sp->split_bbs.nr_members = el.nr_members;
	  for (j = 0; j < el.nr_members; bblst_last++, j++)
	    bblst_table[bblst_last] =
	      TO_BLOCK (rgn_edges[el.first_member[j]]);
	  sp->update_bbs.first_member = &bblst_table[bblst_last];
	  update_idx = 0;
	  for (j = 0; j < el.nr_members; j++)
	    {
	      check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
	      fst_edge = nxt_edge = OUT_EDGES (check_block);
	      do
		{
		  for (k = 0; k < el.nr_members; k++)
		    if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
		      break;

		  if (k >= el.nr_members)
		    {
		      bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
		      update_idx++;
		    }

		  nxt_edge = NEXT_OUT (nxt_edge);
		}
	      while (fst_edge != nxt_edge);
	    }
	  sp->update_bbs.nr_members = update_idx;

	}
      else
	{
	  sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;

	  sp->is_speculative = 0;
	  sp->src_prob = 0;
	}
    }
}				/* compute_trg_info */


/* Print candidates info, for debugging purposes.  Callable from debugger.  */

void
debug_candidate (i)
     int i;
{
  if (!candidate_table[i].is_valid)
    return;

  if (candidate_table[i].is_speculative)
    {
      int j;
      fprintf (dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);

      fprintf (dump, "split path: ");
      for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
	{
	  int b = candidate_table[i].split_bbs.first_member[j];

	  fprintf (dump, " %d ", b);
	}
      fprintf (dump, "\n");

      fprintf (dump, "update path: ");
      for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
	{
	  int b = candidate_table[i].update_bbs.first_member[j];

	  fprintf (dump, " %d ", b);
	}
      fprintf (dump, "\n");
    }
  else
    {
      fprintf (dump, " src %d equivalent\n", BB_TO_BLOCK (i));
    }
}


/* Print candidates info, for debugging purposes.  Callable from debugger.  */

void
debug_candidates (trg)
     int trg;
{
  int i;

  fprintf (dump, "----------- candidate table: target: b=%d bb=%d ---\n",
	   BB_TO_BLOCK (trg), trg);
  for (i = trg + 1; i < current_nr_blocks; i++)
    debug_candidate (i);
}


/* functions for speculative scheduing */

/* Return 0 if x is a set of a register alive in the beginning of one
   of the split-blocks of src, otherwise return 1.  */

static int
check_live_1 (src, x)
     int src;
     rtx x;
{
  register int i;
  register int regno;
  register rtx reg = SET_DEST (x);

  if (reg == 0)
    return 1;

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;
      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	if (check_live_1 (src, XVECEXP (reg, 0, i)))
	  return 1;
      return 0;
    }

  if (GET_CODE (reg) != REG)
    return 1;

  regno = REGNO (reg);

  if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
    {
      /* Global registers are assumed live */
      return 0;
    }
  else
    {
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  /* check for hard registers */
	  int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--j >= 0)
	    {
	      for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
		{
		  int b = candidate_table[src].split_bbs.first_member[i];

		  if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start,
				       regno + j))
		    {
		      return 0;
		    }
		}
	    }
	}
      else
	{
	  /* check for psuedo registers */
	  for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
	    {
	      int b = candidate_table[src].split_bbs.first_member[i];

	      if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno))
		{
		  return 0;
		}
	    }
	}
    }

  return 1;
}


/* If x is a set of a register R, mark that R is alive in the beginning
   of every update-block of src.  */

static void
update_live_1 (src, x)
     int src;
     rtx x;
{
  register int i;
  register int regno;
  register rtx reg = SET_DEST (x);

  if (reg == 0)
    return;

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
	 || GET_CODE (reg) == SIGN_EXTRACT
	 || GET_CODE (reg) == STRICT_LOW_PART)
    reg = XEXP (reg, 0);

  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;
      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	update_live_1 (src, XVECEXP (reg, 0, i));
      return;
    }

  if (GET_CODE (reg) != REG)
    return;

  /* Global registers are always live, so the code below does not apply
     to them.  */

  regno = REGNO (reg);

  if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
    {
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	  while (--j >= 0)
	    {
	      for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
		{
		  int b = candidate_table[src].update_bbs.first_member[i];

		  SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start,
				     regno + j);
		}
	    }
	}
      else
	{
	  for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
	    {
	      int b = candidate_table[src].update_bbs.first_member[i];

	      SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno);
	    }
	}
    }
}


/* Return 1 if insn can be speculatively moved from block src to trg,
   otherwise return 0.  Called before first insertion of insn to
   ready-list or before the scheduling.  */

static int
check_live (insn, src)
     rtx insn;
     int src;
{
  /* find the registers set by instruction */
  if (GET_CODE (PATTERN (insn)) == SET
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    return check_live_1 (src, PATTERN (insn));
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
	if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
	     || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
	    && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
	  return 0;

      return 1;
    }

  return 1;
}


/* Update the live registers info after insn was moved speculatively from
   block src to trg.  */

static void
update_live (insn, src)
     rtx insn;
     int src;
{
  /* find the registers set by instruction */
  if (GET_CODE (PATTERN (insn)) == SET
      || GET_CODE (PATTERN (insn)) == CLOBBER)
    update_live_1 (src, PATTERN (insn));
  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
	if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
	    || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
	  update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
    }
}

/* Exception Free Loads:

   We define five classes of speculative loads: IFREE, IRISKY,
   PFREE, PRISKY, and MFREE.

   IFREE loads are loads that are proved to be exception-free, just
   by examining the load insn.  Examples for such loads are loads
   from TOC and loads of global data.

   IRISKY loads are loads that are proved to be exception-risky,
   just by examining the load insn.  Examples for such loads are
   volatile loads and loads from shared memory.

   PFREE loads are loads for which we can prove, by examining other
   insns, that they are exception-free.  Currently, this class consists
   of loads for which we are able to find a "similar load", either in
   the target block, or, if only one split-block exists, in that split
   block.  Load2 is similar to load1 if both have same single base
   register.  We identify only part of the similar loads, by finding
   an insn upon which both load1 and load2 have a DEF-USE dependence.

   PRISKY loads are loads for which we can prove, by examining other
   insns, that they are exception-risky.  Currently we have two proofs for
   such loads.  The first proof detects loads that are probably guarded by a
   test on the memory address.  This proof is based on the
   backward and forward data dependence information for the region.
   Let load-insn be the examined load.
   Load-insn is PRISKY iff ALL the following hold:

   - insn1 is not in the same block as load-insn
   - there is a DEF-USE dependence chain (insn1, ..., load-insn)
   - test-insn is either a compare or a branch, not in the same block as load-insn
   - load-insn is reachable from test-insn
   - there is a DEF-USE dependence chain (insn1, ..., test-insn)

   This proof might fail when the compare and the load are fed
   by an insn not in the region.  To solve this, we will add to this
   group all loads that have no input DEF-USE dependence.

   The second proof detects loads that are directly or indirectly
   fed by a speculative load.  This proof is affected by the
   scheduling process.  We will use the flag  fed_by_spec_load.
   Initially, all insns have this flag reset.  After a speculative
   motion of an insn, if insn is either a load, or marked as
   fed_by_spec_load, we will also mark as fed_by_spec_load every
   insn1 for which a DEF-USE dependence (insn, insn1) exists.  A
   load which is fed_by_spec_load is also PRISKY.

   MFREE (maybe-free) loads are all the remaining loads. They may be
   exception-free, but we cannot prove it.

   Now, all loads in IFREE and PFREE classes are considered
   exception-free, while all loads in IRISKY and PRISKY classes are
   considered exception-risky.  As for loads in the MFREE class,
   these are considered either exception-free or exception-risky,
   depending on whether we are pessimistic or optimistic.  We have
   to take the pessimistic approach to assure the safety of
   speculative scheduling, but we can take the optimistic approach
   by invoking the -fsched_spec_load_dangerous option.  */

enum INSN_TRAP_CLASS
{
  TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
  PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
};

#define WORST_CLASS(class1, class2) \
((class1 > class2) ? class1 : class2)

/* Indexed by INSN_UID, and set if there's DEF-USE dependence between */
/* some speculatively moved load insn and this one.  */
char *fed_by_spec_load;
char *is_load_insn;

/* Non-zero if block bb_to is equal to, or reachable from block bb_from.  */
#define IS_REACHABLE(bb_from, bb_to)					\
(bb_from == bb_to                                                       \
   || IS_RGN_ENTRY (bb_from)						\
   || (bitset_member (ancestor_edges[bb_to],				\
		      EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))),	\
		      edgeset_size)))
#define FED_BY_SPEC_LOAD(insn) (fed_by_spec_load[INSN_UID (insn)])
#define IS_LOAD_INSN(insn) (is_load_insn[INSN_UID (insn)])

/* Non-zero iff the address is comprised from at most 1 register */
#define CONST_BASED_ADDRESS_P(x)			\
  (GET_CODE (x) == REG					\
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS   \
	|| (GET_CODE (x) == LO_SUM))	                \
       && (GET_CODE (XEXP (x, 0)) == CONST_INT		\
	   || GET_CODE (XEXP (x, 1)) == CONST_INT)))

/* Turns on the fed_by_spec_load flag for insns fed by load_insn.  */

static void
set_spec_fed (load_insn)
     rtx load_insn;
{
  rtx link;

  for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
    if (GET_MODE (link) == VOIDmode)
      FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
}				/* set_spec_fed */

/* On the path from the insn to load_insn_bb, find a conditional branch */
/* depending on insn, that guards the speculative load.  */

static int
find_conditional_protection (insn, load_insn_bb)
     rtx insn;
     int load_insn_bb;
{
  rtx link;

  /* iterate through DEF-USE forward dependences */
  for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
    {
      rtx next = XEXP (link, 0);
      if ((CONTAINING_RGN (INSN_BLOCK (next)) ==
	   CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
	  && IS_REACHABLE (INSN_BB (next), load_insn_bb)
	  && load_insn_bb != INSN_BB (next)
	  && GET_MODE (link) == VOIDmode
	  && (GET_CODE (next) == JUMP_INSN
	      || find_conditional_protection (next, load_insn_bb)))
	return 1;
    }
  return 0;
}				/* find_conditional_protection */

/* Returns 1 if the same insn1 that participates in the computation
   of load_insn's address is feeding a conditional branch that is
   guarding on load_insn. This is true if we find a the two DEF-USE
   chains:
   insn1 -> ... -> conditional-branch
   insn1 -> ... -> load_insn,
   and if a flow path exist:
   insn1 -> ... -> conditional-branch -> ... -> load_insn,
   and if insn1 is on the path
   region-entry -> ... -> bb_trg -> ... load_insn.

   Locate insn1 by climbing on LOG_LINKS from load_insn.
   Locate the branch by following INSN_DEPEND from insn1.  */

static int
is_conditionally_protected (load_insn, bb_src, bb_trg)
     rtx load_insn;
     int bb_src, bb_trg;
{
  rtx link;

  for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
    {
      rtx insn1 = XEXP (link, 0);

      /* must be a DEF-USE dependence upon non-branch */
      if (GET_MODE (link) != VOIDmode
	  || GET_CODE (insn1) == JUMP_INSN)
	continue;

      /* must exist a path: region-entry -> ... -> bb_trg -> ... load_insn */
      if (INSN_BB (insn1) == bb_src
	  || (CONTAINING_RGN (INSN_BLOCK (insn1))
	      != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
	  || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
	      && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
	continue;

      /* now search for the conditional-branch */
      if (find_conditional_protection (insn1, bb_src))
	return 1;

      /* recursive step: search another insn1, "above" current insn1.  */
      return is_conditionally_protected (insn1, bb_src, bb_trg);
    }

  /* the chain does not exsist */
  return 0;
}				/* is_conditionally_protected */

/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
   load_insn can move speculatively from bb_src to bb_trg.  All the
   following must hold:

   (1) both loads have 1 base register (PFREE_CANDIDATEs).
   (2) load_insn and load1 have a def-use dependence upon
   the same insn 'insn1'.
   (3) either load2 is in bb_trg, or:
   - there's only one split-block, and
   - load1 is on the escape path, and

   From all these we can conclude that the two loads access memory
   addresses that differ at most by a constant, and hence if moving
   load_insn would cause an exception, it would have been caused by
   load2 anyhow.  */

static int
is_pfree (load_insn, bb_src, bb_trg)
     rtx load_insn;
     int bb_src, bb_trg;
{
  rtx back_link;
  register candidate *candp = candidate_table + bb_src;

  if (candp->split_bbs.nr_members != 1)
    /* must have exactly one escape block */
    return 0;

  for (back_link = LOG_LINKS (load_insn);
       back_link; back_link = XEXP (back_link, 1))
    {
      rtx insn1 = XEXP (back_link, 0);

      if (GET_MODE (back_link) == VOIDmode)
	{
	  /* found a DEF-USE dependence (insn1, load_insn) */
	  rtx fore_link;

	  for (fore_link = INSN_DEPEND (insn1);
	       fore_link; fore_link = XEXP (fore_link, 1))
	    {
	      rtx insn2 = XEXP (fore_link, 0);
	      if (GET_MODE (fore_link) == VOIDmode)
		{
		  /* found a DEF-USE dependence (insn1, insn2) */
		  if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
		    /* insn2 not guaranteed to be a 1 base reg load */
		    continue;

		  if (INSN_BB (insn2) == bb_trg)
		    /* insn2 is the similar load, in the target block */
		    return 1;

		  if (*(candp->split_bbs.first_member) == INSN_BLOCK (insn2))
		    /* insn2 is a similar load, in a split-block */
		    return 1;
		}
	    }
	}
    }

  /* couldn't find a similar load */
  return 0;
}				/* is_pfree */

/* Returns a class that insn with GET_DEST(insn)=x may belong to,
   as found by analyzing insn's expression.  */

static int
may_trap_exp (x, is_store)
     rtx x;
     int is_store;
{
  enum rtx_code code;

  if (x == 0)
    return TRAP_FREE;
  code = GET_CODE (x);
  if (is_store)
    {
      if (code == MEM)
	return TRAP_RISKY;
      else
	return TRAP_FREE;
    }
  if (code == MEM)
    {
      /* The insn uses memory */
      /* a volatile load */
      if (MEM_VOLATILE_P (x))
	return IRISKY;
      /* an exception-free load */
      if (!may_trap_p (x))
	return IFREE;
      /* a load with 1 base register, to be further checked */
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
	return PFREE_CANDIDATE;
      /* no info on the load, to be further checked */
      return PRISKY_CANDIDATE;
    }
  else
    {
      char *fmt;
      int i, insn_class = TRAP_FREE;

      /* neither store nor load, check if it may cause a trap */
      if (may_trap_p (x))
	return TRAP_RISKY;
      /* recursive step: walk the insn...  */
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	{
	  if (fmt[i] == 'e')
	    {
	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
	      insn_class = WORST_CLASS (insn_class, tmp_class);
	    }
	  else if (fmt[i] == 'E')
	    {
	      int j;
	      for (j = 0; j < XVECLEN (x, i); j++)
		{
		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
		  insn_class = WORST_CLASS (insn_class, tmp_class);
		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
		    break;
		}
	    }
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
      return insn_class;
    }
}				/* may_trap_exp */


/* Classifies insn for the purpose of verifying that it can be
   moved speculatively, by examining it's patterns, returning:
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
   TRAP_FREE: non-load insn.
   IFREE: load from a globaly safe location.
   IRISKY: volatile load.
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
   being either PFREE or PRISKY.  */

static int
haifa_classify_insn (insn)
     rtx insn;
{
  rtx pat = PATTERN (insn);
  int tmp_class = TRAP_FREE;
  int insn_class = TRAP_FREE;
  enum rtx_code code;

  if (GET_CODE (pat) == PARALLEL)
    {
      int i, len = XVECLEN (pat, 0);

      for (i = len - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (pat, 0, i));
	  switch (code)
	    {
	    case CLOBBER:
	      /* test if it is a 'store' */
	      tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
	      break;
	    case SET:
	      /* test if it is a store */
	      tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
	      if (tmp_class == TRAP_RISKY)
		break;
	      /* test if it is a load  */
	      tmp_class =
		WORST_CLASS (tmp_class,
			   may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0));
	      break;
	    case TRAP_IF:
	      tmp_class = TRAP_RISKY;
	      break;
	    default:;
	    }
	  insn_class = WORST_CLASS (insn_class, tmp_class);
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
    }
  else
    {
      code = GET_CODE (pat);
      switch (code)
	{
	case CLOBBER:
	  /* test if it is a 'store' */
	  tmp_class = may_trap_exp (XEXP (pat, 0), 1);
	  break;
	case SET:
	  /* test if it is a store */
	  tmp_class = may_trap_exp (SET_DEST (pat), 1);
	  if (tmp_class == TRAP_RISKY)
	    break;
	  /* test if it is a load  */
	  tmp_class =
	    WORST_CLASS (tmp_class,
			 may_trap_exp (SET_SRC (pat), 0));
	  break;
	case TRAP_IF:
	  tmp_class = TRAP_RISKY;
	  break;
	default:;
	}
      insn_class = tmp_class;
    }

  return insn_class;

}				/* haifa_classify_insn */

/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
   a load moved speculatively, or if load_insn is protected by
   a compare on load_insn's address).  */

static int
is_prisky (load_insn, bb_src, bb_trg)
     rtx load_insn;
     int bb_src, bb_trg;
{
  if (FED_BY_SPEC_LOAD (load_insn))
    return 1;

  if (LOG_LINKS (load_insn) == NULL)
    /* dependence may 'hide' out of the region.  */
    return 1;

  if (is_conditionally_protected (load_insn, bb_src, bb_trg))
    return 1;

  return 0;
}				/* is_prisky */

/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
   Return 1 if insn is exception-free (and the motion is valid)
   and 0 otherwise.  */

static int
is_exception_free (insn, bb_src, bb_trg)
     rtx insn;
     int bb_src, bb_trg;
{
  int insn_class = haifa_classify_insn (insn);

  /* handle non-load insns */
  switch (insn_class)
    {
    case TRAP_FREE:
      return 1;
    case TRAP_RISKY:
      return 0;
    default:;
    }

  /* handle loads */
  if (!flag_schedule_speculative_load)
    return 0;
  IS_LOAD_INSN (insn) = 1;
  switch (insn_class)
    {
    case IFREE:
      return (1);
    case IRISKY:
      return 0;
    case PFREE_CANDIDATE:
      if (is_pfree (insn, bb_src, bb_trg))
	return 1;
      /* don't 'break' here: PFREE-candidate is also PRISKY-candidate */
    case PRISKY_CANDIDATE:
      if (!flag_schedule_speculative_load_dangerous
	  || is_prisky (insn, bb_src, bb_trg))
	return 0;
      break;
    default:;
    }

  return flag_schedule_speculative_load_dangerous;
}				/* is_exception_free */


/* Process an insn's memory dependencies.  There are four kinds of
   dependencies:

   (0) read dependence: read follows read
   (1) true dependence: read follows write
   (2) anti dependence: write follows read
   (3) output dependence: write follows write

   We are careful to build only dependencies which actually exist, and
   use transitivity to avoid building too many links.  */

/* Return the INSN_LIST containing INSN in LIST, or NULL
   if LIST does not contain INSN.  */

HAIFA_INLINE static rtx
find_insn_list (insn, list)
     rtx insn;
     rtx list;
{
  while (list)
    {
      if (XEXP (list, 0) == insn)
	return list;
      list = XEXP (list, 1);
    }
  return 0;
}


/* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0 otherwise.  */

HAIFA_INLINE static char
find_insn_mem_list (insn, x, list, list1)
     rtx insn, x;
     rtx list, list1;
{
  while (list)
    {
      if (XEXP (list, 0) == insn
	  && XEXP (list1, 0) == x)
	return 1;
      list = XEXP (list, 1);
      list1 = XEXP (list1, 1);
    }
  return 0;
}


/* Compute the function units used by INSN.  This caches the value
   returned by function_units_used.  A function unit is encoded as the
   unit number if the value is non-negative and the compliment of a
   mask if the value is negative.  A function unit index is the
   non-negative encoding.  */

HAIFA_INLINE static int
insn_unit (insn)
     rtx insn;
{
  register int unit = INSN_UNIT (insn);

  if (unit == 0)
    {
      recog_memoized (insn);

      /* A USE insn, or something else we don't need to understand.
         We can't pass these directly to function_units_used because it will
         trigger a fatal error for unrecognizable insns.  */
      if (INSN_CODE (insn) < 0)
	unit = -1;
      else
	{
	  unit = function_units_used (insn);
	  /* Increment non-negative values so we can cache zero.  */
	  if (unit >= 0)
	    unit++;
	}
      /* We only cache 16 bits of the result, so if the value is out of
         range, don't cache it.  */
      if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
	  || unit >= 0
	  || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
	INSN_UNIT (insn) = unit;
    }
  return (unit > 0 ? unit - 1 : unit);
}

/* Compute the blockage range for executing INSN on UNIT.  This caches
   the value returned by the blockage_range_function for the unit.
   These values are encoded in an int where the upper half gives the
   minimum value and the lower half gives the maximum value.  */

HAIFA_INLINE static unsigned int
blockage_range (unit, insn)
     int unit;
     rtx insn;
{
  unsigned int blockage = INSN_BLOCKAGE (insn);
  unsigned int range;

  if ((int) UNIT_BLOCKED (blockage) != unit + 1)
    {
      range = function_units[unit].blockage_range_function (insn);
      /* We only cache the blockage range for one unit and then only if
         the values fit.  */
      if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
	INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
    }
  else
    range = BLOCKAGE_RANGE (blockage);

  return range;
}

/* A vector indexed by function unit instance giving the last insn to use
   the unit.  The value of the function unit instance index for unit U
   instance I is (U + I * FUNCTION_UNITS_SIZE).  */
static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];

/* A vector indexed by function unit instance giving the minimum time when
   the unit will unblock based on the maximum blockage cost.  */
static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];

/* A vector indexed by function unit number giving the number of insns
   that remain to use the unit.  */
static int unit_n_insns[FUNCTION_UNITS_SIZE];

/* Reset the function unit state to the null state.  */

static void
clear_units ()
{
  bzero ((char *) unit_last_insn, sizeof (unit_last_insn));
  bzero ((char *) unit_tick, sizeof (unit_tick));
  bzero ((char *) unit_n_insns, sizeof (unit_n_insns));
}

/* Return the issue-delay of an insn */

HAIFA_INLINE static int
insn_issue_delay (insn)
     rtx insn;
{
  int i, delay = 0;
  int unit = insn_unit (insn);

  /* efficiency note: in fact, we are working 'hard' to compute a
     value that was available in md file, and is not available in
     function_units[] structure.  It would be nice to have this
     value there, too.  */
  if (unit >= 0)
    {
      if (function_units[unit].blockage_range_function &&
	  function_units[unit].blockage_function)
	delay = function_units[unit].blockage_function (insn, insn);
    }
  else
    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
      if ((unit & 1) != 0 && function_units[i].blockage_range_function
	  && function_units[i].blockage_function)
	delay = MAX (delay, function_units[i].blockage_function (insn, insn));

  return delay;
}

/* Return the actual hazard cost of executing INSN on the unit UNIT,
   instance INSTANCE at time CLOCK if the previous actual hazard cost
   was COST.  */

HAIFA_INLINE static int
actual_hazard_this_instance (unit, instance, insn, clock, cost)
     int unit, instance, clock, cost;
     rtx insn;
{
  int tick = unit_tick[instance];	/* issue time of the last issued insn */

  if (tick - clock > cost)
    {
      /* The scheduler is operating forward, so unit's last insn is the
         executing insn and INSN is the candidate insn.  We want a
         more exact measure of the blockage if we execute INSN at CLOCK
         given when we committed the execution of the unit's last insn.

         The blockage value is given by either the unit's max blockage
         constant, blockage range function, or blockage function.  Use
         the most exact form for the given unit.  */

      if (function_units[unit].blockage_range_function)
	{
	  if (function_units[unit].blockage_function)
	    tick += (function_units[unit].blockage_function
		     (unit_last_insn[instance], insn)
		     - function_units[unit].max_blockage);
	  else
	    tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
		     - function_units[unit].max_blockage);
	}
      if (tick - clock > cost)
	cost = tick - clock;
    }
  return cost;
}

/* Record INSN as having begun execution on the units encoded by UNIT at
   time CLOCK.  */

HAIFA_INLINE static void
schedule_unit (unit, insn, clock)
     int unit, clock;
     rtx insn;
{
  int i;

  if (unit >= 0)
    {
      int instance = unit;
#if MAX_MULTIPLICITY > 1
      /* Find the first free instance of the function unit and use that
         one.  We assume that one is free.  */
      for (i = function_units[unit].multiplicity - 1; i > 0; i--)
	{
	  if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
	    break;
	  instance += FUNCTION_UNITS_SIZE;
	}
#endif
      unit_last_insn[instance] = insn;
      unit_tick[instance] = (clock + function_units[unit].max_blockage);
    }
  else
    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
      if ((unit & 1) != 0)
	schedule_unit (i, insn, clock);
}

/* Return the actual hazard cost of executing INSN on the units encoded by
   UNIT at time CLOCK if the previous actual hazard cost was COST.  */

HAIFA_INLINE static int
actual_hazard (unit, insn, clock, cost)
     int unit, clock, cost;
     rtx insn;
{
  int i;

  if (unit >= 0)
    {
      /* Find the instance of the function unit with the minimum hazard.  */
      int instance = unit;
      int best_cost = actual_hazard_this_instance (unit, instance, insn,
						   clock, cost);
      int this_cost;

#if MAX_MULTIPLICITY > 1
      if (best_cost > cost)
	{
	  for (i = function_units[unit].multiplicity - 1; i > 0; i--)
	    {
	      instance += FUNCTION_UNITS_SIZE;
	      this_cost = actual_hazard_this_instance (unit, instance, insn,
						       clock, cost);
	      if (this_cost < best_cost)
		{
		  best_cost = this_cost;
		  if (this_cost <= cost)
		    break;
		}
	    }
	}
#endif
      cost = MAX (cost, best_cost);
    }
  else
    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
      if ((unit & 1) != 0)
	cost = actual_hazard (i, insn, clock, cost);

  return cost;
}

/* Return the potential hazard cost of executing an instruction on the
   units encoded by UNIT if the previous potential hazard cost was COST.
   An insn with a large blockage time is chosen in preference to one
   with a smaller time; an insn that uses a unit that is more likely
   to be used is chosen in preference to one with a unit that is less
   used.  We are trying to minimize a subsequent actual hazard.  */

HAIFA_INLINE static int
potential_hazard (unit, insn, cost)
     int unit, cost;
     rtx insn;
{
  int i, ncost;
  unsigned int minb, maxb;

  if (unit >= 0)
    {
      minb = maxb = function_units[unit].max_blockage;
      if (maxb > 1)
	{
	  if (function_units[unit].blockage_range_function)
	    {
	      maxb = minb = blockage_range (unit, insn);
	      maxb = MAX_BLOCKAGE_COST (maxb);
	      minb = MIN_BLOCKAGE_COST (minb);
	    }

	  if (maxb > 1)
	    {
	      /* Make the number of instructions left dominate.  Make the
	         minimum delay dominate the maximum delay.  If all these
	         are the same, use the unit number to add an arbitrary
	         ordering.  Other terms can be added.  */
	      ncost = minb * 0x40 + maxb;
	      ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
	      if (ncost > cost)
		cost = ncost;
	    }
	}
    }
  else
    for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
      if ((unit & 1) != 0)
	cost = potential_hazard (i, insn, cost);

  return cost;
}

/* Compute cost of executing INSN given the dependence LINK on the insn USED.
   This is the number of cycles between instruction issue and
   instruction results.  */

HAIFA_INLINE static int
insn_cost (insn, link, used)
     rtx insn, link, used;
{
  register int cost = INSN_COST (insn);

  if (cost == 0)
    {
      recog_memoized (insn);

      /* A USE insn, or something else we don't need to understand.
         We can't pass these directly to result_ready_cost because it will
         trigger a fatal error for unrecognizable insns.  */
      if (INSN_CODE (insn) < 0)
	{
	  INSN_COST (insn) = 1;
	  return 1;
	}
      else
	{
	  cost = result_ready_cost (insn);

	  if (cost < 1)
	    cost = 1;

	  INSN_COST (insn) = cost;
	}
    }

  /* in this case estimate cost without caring how insn is used.  */
  if (link == 0 && used == 0)
    return cost;

  /* A USE insn should never require the value used to be computed.  This
     allows the computation of a function's result and parameter values to
     overlap the return and call.  */
  recog_memoized (used);
  if (INSN_CODE (used) < 0)
    LINK_COST_FREE (link) = 1;

  /* If some dependencies vary the cost, compute the adjustment.  Most
     commonly, the adjustment is complete: either the cost is ignored
     (in the case of an output- or anti-dependence), or the cost is
     unchanged.  These values are cached in the link as LINK_COST_FREE
     and LINK_COST_ZERO.  */

  if (LINK_COST_FREE (link))
    cost = 1;
#ifdef ADJUST_COST
  else if (!LINK_COST_ZERO (link))
    {
      int ncost = cost;

      ADJUST_COST (used, link, insn, ncost);
      if (ncost <= 1)
	LINK_COST_FREE (link) = ncost = 1;
      if (cost == ncost)
	LINK_COST_ZERO (link) = 1;
      cost = ncost;
    }
#endif
  return cost;
}

/* Compute the priority number for INSN.  */

static int
priority (insn)
     rtx insn;
{
  int this_priority;
  rtx link;

  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    return 0;

  if ((this_priority = INSN_PRIORITY (insn)) == 0)
    {
      if (INSN_DEPEND (insn) == 0)
	this_priority = insn_cost (insn, 0, 0);
      else
	for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
	  {
	    rtx next;
	    int next_priority;

	    if (RTX_INTEGRATED_P (link))
	      continue;

	    next = XEXP (link, 0);

	    /* critical path is meaningful in block boundaries only */
	    if (INSN_BLOCK (next) != INSN_BLOCK (insn))
	      continue;

	    next_priority = insn_cost (insn, link, next) + priority (next);
	    if (next_priority > this_priority)
	      this_priority = next_priority;
	  }
      INSN_PRIORITY (insn) = this_priority;
    }
  return this_priority;
}


/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
   them to the unused_*_list variables, so that they can be reused.  */

static void
free_pending_lists ()
{
  if (current_nr_blocks <= 1)
    {
      free_list (&pending_read_insns, &unused_insn_list);
      free_list (&pending_write_insns, &unused_insn_list);
      free_list (&pending_read_mems, &unused_expr_list);
      free_list (&pending_write_mems, &unused_expr_list);
    }
  else
    {
      /* interblock scheduling */
      int bb;

      for (bb = 0; bb < current_nr_blocks; bb++)
	{
	  free_list (&bb_pending_read_insns[bb], &unused_insn_list);
	  free_list (&bb_pending_write_insns[bb], &unused_insn_list);
	  free_list (&bb_pending_read_mems[bb], &unused_expr_list);
	  free_list (&bb_pending_write_mems[bb], &unused_expr_list);
	}
    }
}

/* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
   The MEM is a memory reference contained within INSN, which we are saving
   so that we can do memory aliasing on it.  */

static void
add_insn_mem_dependence (insn_list, mem_list, insn, mem)
     rtx *insn_list, *mem_list, insn, mem;
{
  register rtx link;

  link = alloc_INSN_LIST (insn, *insn_list);
  *insn_list = link;

  link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
  *mem_list = link;

  pending_lists_length++;
}


/* Make a dependency between every memory reference on the pending lists
   and INSN, thus flushing the pending lists.  If ONLY_WRITE, don't flush
   the read list.  */

static void
flush_pending_lists (insn, only_write)
     rtx insn;
     int only_write;
{
  rtx u;
  rtx link;

  while (pending_read_insns && ! only_write)
    {
      add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);

      link = pending_read_insns;
      pending_read_insns = XEXP (pending_read_insns, 1);
      XEXP (link, 1) = unused_insn_list;
      unused_insn_list = link;

      link = pending_read_mems;
      pending_read_mems = XEXP (pending_read_mems, 1);
      XEXP (link, 1) = unused_expr_list;
      unused_expr_list = link;
    }
  while (pending_write_insns)
    {
      add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);

      link = pending_write_insns;
      pending_write_insns = XEXP (pending_write_insns, 1);
      XEXP (link, 1) = unused_insn_list;
      unused_insn_list = link;

      link = pending_write_mems;
      pending_write_mems = XEXP (pending_write_mems, 1);
      XEXP (link, 1) = unused_expr_list;
      unused_expr_list = link;
    }
  pending_lists_length = 0;

  /* last_pending_memory_flush is now a list of insns */
  for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

  free_list (&last_pending_memory_flush, &unused_insn_list);
  last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
}

/* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
   by the write to the destination of X, and reads of everything mentioned.  */

static void
sched_analyze_1 (x, insn)
     rtx x;
     rtx insn;
{
  register int regno;
  register rtx dest = SET_DEST (x);
  enum rtx_code code = GET_CODE (x);

  if (dest == 0)
    return;

  if (GET_CODE (dest) == PARALLEL
      && GET_MODE (dest) == BLKmode)
    {
      register int i;
      for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
	sched_analyze_1 (XVECEXP (dest, 0, i), insn);
      if (GET_CODE (x) == SET)
	sched_analyze_2 (SET_SRC (x), insn);
      return;
    }

  while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
      || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
    {
      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  /* The second and third arguments are values read by this insn.  */
	  sched_analyze_2 (XEXP (dest, 1), insn);
	  sched_analyze_2 (XEXP (dest, 2), insn);
	}
      dest = SUBREG_REG (dest);
    }

  if (GET_CODE (dest) == REG)
    {
      register int i;

      regno = REGNO (dest);

      /* A hard reg in a wide mode may really be multiple registers.
         If so, mark all of them just like the first.  */
      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
	  while (--i >= 0)
	    {
	      rtx u;

	      for (u = reg_last_uses[regno + i]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

	      for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);

	      /* Clobbers need not be ordered with respect to one another,
		 but sets must be ordered with respect to a pending clobber. */
	      if (code == SET)
		{
	          reg_last_uses[regno + i] = 0;
	          for (u = reg_last_clobbers[regno + i]; u; u = XEXP (u, 1))
		    add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
	          SET_REGNO_REG_SET (reg_pending_sets, regno + i);
		}
	      else
		SET_REGNO_REG_SET (reg_pending_clobbers, regno + i);

	      /* Function calls clobber all call_used regs.  */
	      if (global_regs[regno + i]
		  || (code == SET && call_used_regs[regno + i]))
		for (u = last_function_call; u; u = XEXP (u, 1))
		  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	    }
	}
      else
	{
	  rtx u;

	  for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
	    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

	  for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
	    add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);

	  if (code == SET)
	    {
	      reg_last_uses[regno] = 0;
	      for (u = reg_last_clobbers[regno]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
	      SET_REGNO_REG_SET (reg_pending_sets, regno);
	    }
	  else
	    SET_REGNO_REG_SET (reg_pending_clobbers, regno);

	  /* Pseudos that are REG_EQUIV to something may be replaced
	     by that during reloading.  We need only add dependencies for
	     the address in the REG_EQUIV note.  */
	  if (!reload_completed
	      && reg_known_equiv_p[regno]
	      && GET_CODE (reg_known_value[regno]) == MEM)
	    sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);

	  /* Don't let it cross a call after scheduling if it doesn't
	     already cross one.  */

	  if (REG_N_CALLS_CROSSED (regno) == 0)
	    for (u = last_function_call; u; u = XEXP (u, 1))
	      add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	}
    }
  else if (GET_CODE (dest) == MEM)
    {
      /* Writing memory.  */

      if (pending_lists_length > 32)
	{
	  /* Flush all pending reads and writes to prevent the pending lists
	     from getting any larger.  Insn scheduling runs too slowly when
	     these lists get long.  The number 32 was chosen because it
	     seems like a reasonable number.  When compiling GCC with itself,
	     this flush occurs 8 times for sparc, and 10 times for m88k using
	     the number 32.  */
	  flush_pending_lists (insn, 0);
	}
      else
	{
	  rtx u;
	  rtx pending, pending_mem;

	  pending = pending_read_insns;
	  pending_mem = pending_read_mems;
	  while (pending)
	    {
	      /* If a dependency already exists, don't create a new one.  */
	      if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
		if (anti_dependence (XEXP (pending_mem, 0), dest))
		  add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);

	      pending = XEXP (pending, 1);
	      pending_mem = XEXP (pending_mem, 1);
	    }

	  pending = pending_write_insns;
	  pending_mem = pending_write_mems;
	  while (pending)
	    {
	      /* If a dependency already exists, don't create a new one.  */
	      if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
		if (output_dependence (XEXP (pending_mem, 0), dest))
		  add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);

	      pending = XEXP (pending, 1);
	      pending_mem = XEXP (pending_mem, 1);
	    }

	  for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
	    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

	  add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
				   insn, dest);
	}
      sched_analyze_2 (XEXP (dest, 0), insn);
    }

  /* Analyze reads.  */
  if (GET_CODE (x) == SET)
    sched_analyze_2 (SET_SRC (x), insn);
}

/* Analyze the uses of memory and registers in rtx X in INSN.  */

static void
sched_analyze_2 (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  if (x == 0)
    return;

  code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case CONST:
    case LABEL_REF:
      /* Ignore constants.  Note that we must handle CONST_DOUBLE here
         because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
         this does not mean that this insn is using cc0.  */
      return;

#ifdef HAVE_cc0
    case CC0:
      {
	rtx link, prev;

	/* User of CC0 depends on immediately preceding insn.  */
	SCHED_GROUP_P (insn) = 1;

	/* There may be a note before this insn now, but all notes will
	   be removed before we actually try to schedule the insns, so
	   it won't cause a problem later.  We must avoid it here though.  */
	prev = prev_nonnote_insn (insn);

	/* Make a copy of all dependencies on the immediately previous insn,
	   and add to this insn.  This is so that all the dependencies will
	   apply to the group.  Remove an explicit dependence on this insn
	   as SCHED_GROUP_P now represents it.  */

	if (find_insn_list (prev, LOG_LINKS (insn)))
	  remove_dependence (insn, prev);

	for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
	  add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));

	return;
      }
#endif

    case REG:
      {
	rtx u;
	int regno = REGNO (x);
	if (regno < FIRST_PSEUDO_REGISTER)
	  {
	    int i;

	    i = HARD_REGNO_NREGS (regno, GET_MODE (x));
	    while (--i >= 0)
	      {
		reg_last_uses[regno + i]
		  = alloc_INSN_LIST (insn, reg_last_uses[regno + i]);

		for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
		  add_dependence (insn, XEXP (u, 0), 0);

		/* ??? This should never happen.  */
		for (u = reg_last_clobbers[regno + i]; u; u = XEXP (u, 1))
		  add_dependence (insn, XEXP (u, 0), 0);

		if ((call_used_regs[regno + i] || global_regs[regno + i]))
		  /* Function calls clobber all call_used regs.  */
		  for (u = last_function_call; u; u = XEXP (u, 1))
		    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	      }
	  }
	else
	  {
	    reg_last_uses[regno] = alloc_INSN_LIST (insn, reg_last_uses[regno]);

	    for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
	      add_dependence (insn, XEXP (u, 0), 0);

	    /* ??? This should never happen.  */
	    for (u = reg_last_clobbers[regno]; u; u = XEXP (u, 1))
	      add_dependence (insn, XEXP (u, 0), 0);

	    /* Pseudos that are REG_EQUIV to something may be replaced
	       by that during reloading.  We need only add dependencies for
	       the address in the REG_EQUIV note.  */
	    if (!reload_completed
		&& reg_known_equiv_p[regno]
		&& GET_CODE (reg_known_value[regno]) == MEM)
	      sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);

	    /* If the register does not already cross any calls, then add this
	       insn to the sched_before_next_call list so that it will still
	       not cross calls after scheduling.  */
	    if (REG_N_CALLS_CROSSED (regno) == 0)
	      add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
	  }
	return;
      }

    case MEM:
      {
	/* Reading memory.  */
	rtx u;
	rtx pending, pending_mem;

	pending = pending_read_insns;
	pending_mem = pending_read_mems;
	while (pending)
	  {
	    /* If a dependency already exists, don't create a new one.  */
	    if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
	      if (read_dependence (XEXP (pending_mem, 0), x))
		add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);

	    pending = XEXP (pending, 1);
	    pending_mem = XEXP (pending_mem, 1);
	  }

	pending = pending_write_insns;
	pending_mem = pending_write_mems;
	while (pending)
	  {
	    /* If a dependency already exists, don't create a new one.  */
	    if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
	      if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
		  x, rtx_varies_p))
		add_dependence (insn, XEXP (pending, 0), 0);

	    pending = XEXP (pending, 1);
	    pending_mem = XEXP (pending_mem, 1);
	  }

	for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
	  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

	/* Always add these dependencies to pending_reads, since
	   this insn may be followed by a write.  */
	add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
				 insn, x);

	/* Take advantage of tail recursion here.  */
	sched_analyze_2 (XEXP (x, 0), insn);
	return;
      }

    /* Force pending stores to memory in case a trap handler needs them.  */
    case TRAP_IF:
      flush_pending_lists (insn, 1);
      break;

    case ASM_OPERANDS:
    case ASM_INPUT:
    case UNSPEC_VOLATILE:
      {
	rtx u;

	/* Traditional and volatile asm instructions must be considered to use
	   and clobber all hard registers, all pseudo-registers and all of
	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.

	   Consider for instance a volatile asm that changes the fpu rounding
	   mode.  An insn should not be moved across this even if it only uses
	   pseudo-regs because it might give an incorrectly rounded result.  */
	if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
	  {
	    int max_reg = max_reg_num ();
	    for (i = 0; i < max_reg; i++)
	      {
		for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
		  add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
		reg_last_uses[i] = 0;

		for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
		  add_dependence (insn, XEXP (u, 0), 0);

		for (u = reg_last_clobbers[i]; u; u = XEXP (u, 1))
		  add_dependence (insn, XEXP (u, 0), 0);
	      }
	    reg_pending_sets_all = 1;

	    flush_pending_lists (insn, 0);
	  }

	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
	   We can not just fall through here since then we would be confused
	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	   traditional asms unlike their normal usage.  */

	if (code == ASM_OPERANDS)
	  {
	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
	      sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
	    return;
	  }
	break;
      }

    case PRE_DEC:
    case POST_DEC:
    case PRE_INC:
    case POST_INC:
      /* These both read and modify the result.  We must handle them as writes
         to get proper dependencies for following instructions.  We must handle
         them as reads to get proper dependencies from this to previous
         instructions.  Thus we need to pass them to both sched_analyze_1
         and sched_analyze_2.  We must call sched_analyze_2 first in order
         to get the proper antecedent for the read.  */
      sched_analyze_2 (XEXP (x, 0), insn);
      sched_analyze_1 (x, insn);
      return;

    default:
      break;
    }

  /* Other cases: walk the insn.  */
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	sched_analyze_2 (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  sched_analyze_2 (XVECEXP (x, i, j), insn);
    }
}

/* Analyze an INSN with pattern X to find all dependencies.  */

static void
sched_analyze_insn (x, insn, loop_notes)
     rtx x, insn;
     rtx loop_notes;
{
  register RTX_CODE code = GET_CODE (x);
  rtx link;
  int maxreg = max_reg_num ();
  int i;

  if (code == SET || code == CLOBBER)
    sched_analyze_1 (x, insn);
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    sched_analyze_1 (XVECEXP (x, 0, i), insn);
	  else
	    sched_analyze_2 (XVECEXP (x, 0, i), insn);
	}
    }
  else
    sched_analyze_2 (x, insn);

  /* Mark registers CLOBBERED or used by called function.  */
  if (GET_CODE (insn) == CALL_INSN)
    for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
      {
	if (GET_CODE (XEXP (link, 0)) == CLOBBER)
	  sched_analyze_1 (XEXP (link, 0), insn);
	else
	  sched_analyze_2 (XEXP (link, 0), insn);
      }

  /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
     block, then we must be sure that no instructions are scheduled across it.
     Otherwise, the reg_n_refs info (which depends on loop_depth) would
     become incorrect.  */

  if (loop_notes)
    {
      int max_reg = max_reg_num ();
      int schedule_barrier_found = 0;
      rtx link;

      /* Update loop_notes with any notes from this insn.  Also determine
	 if any of the notes on the list correspond to instruction scheduling
	 barriers (loop, eh & setjmp notes, but not range notes.  */
      link = loop_notes;
      while (XEXP (link, 1))
	{
	  if (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG
	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END
	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_BEG
	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_END
	      || INTVAL (XEXP (link, 0)) == NOTE_INSN_SETJMP)
	    schedule_barrier_found = 1;

	  link = XEXP (link, 1);
	}
      XEXP (link, 1) = REG_NOTES (insn);
      REG_NOTES (insn) = loop_notes;

      /* Add dependencies if a scheduling barrier was found.  */
      if (schedule_barrier_found)
	{
	  for (i = 0; i < max_reg; i++)
	    {
	      rtx u;
	      for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
	      reg_last_uses[i] = 0;

	      for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), 0);

	      for (u = reg_last_clobbers[i]; u; u = XEXP (u, 1))
		add_dependence (insn, XEXP (u, 0), 0);
	    }
	  reg_pending_sets_all = 1;

	  flush_pending_lists (insn, 0);
	}

    }

  /* Accumulate clobbers until the next set so that it will be output dependant
     on all of them.  At the next set we can clear the clobber list, since
     subsequent sets will be output dependant on it.  */
  EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
			     {
			       free_list (&reg_last_sets[i], &unused_insn_list);
			       free_list (&reg_last_clobbers[i],
					  &unused_insn_list);
			       reg_last_sets[i]
				 = alloc_INSN_LIST (insn, NULL_RTX);
			     });
  EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i,
			     {
			       reg_last_clobbers[i]
				 = alloc_INSN_LIST (insn, reg_last_clobbers[i]);
			     });
  CLEAR_REG_SET (reg_pending_sets);
  CLEAR_REG_SET (reg_pending_clobbers);

  if (reg_pending_sets_all)
    {
      for (i = 0; i < maxreg; i++)
	{
	  free_list (&reg_last_sets[i], &unused_insn_list);
	  reg_last_sets[i] = alloc_INSN_LIST (insn, NULL_RTX);
	}

      reg_pending_sets_all = 0;
    }

  /* Handle function calls and function returns created by the epilogue
     threading code.  */
  if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
    {
      rtx dep_insn;
      rtx prev_dep_insn;

      /* When scheduling instructions, we make sure calls don't lose their
         accompanying USE insns by depending them one on another in order.

         Also, we must do the same thing for returns created by the epilogue
         threading code.  Note this code works only in this special case,
         because other passes make no guarantee that they will never emit
         an instruction between a USE and a RETURN.  There is such a guarantee
         for USE instructions immediately before a call.  */

      prev_dep_insn = insn;
      dep_insn = PREV_INSN (insn);
      while (GET_CODE (dep_insn) == INSN
	     && GET_CODE (PATTERN (dep_insn)) == USE
	     && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == REG)
	{
	  SCHED_GROUP_P (prev_dep_insn) = 1;

	  /* Make a copy of all dependencies on dep_insn, and add to insn.
	     This is so that all of the dependencies will apply to the
	     group.  */

	  for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
	    add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));

	  prev_dep_insn = dep_insn;
	  dep_insn = PREV_INSN (dep_insn);
	}
    }
}

/* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
   for every dependency.  */

static void
sched_analyze (head, tail)
     rtx head, tail;
{
  register rtx insn;
  register rtx u;
  rtx loop_notes = 0;

  for (insn = head;; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
	{
	  /* Make each JUMP_INSN a scheduling barrier for memory references.  */
	  if (GET_CODE (insn) == JUMP_INSN)
	    last_pending_memory_flush
	      = alloc_INSN_LIST (insn, last_pending_memory_flush);
	  sched_analyze_insn (PATTERN (insn), insn, loop_notes);
	  loop_notes = 0;
	}
      else if (GET_CODE (insn) == CALL_INSN)
	{
	  rtx x;
	  register int i;

	  CANT_MOVE (insn) = 1;

	  /* Any instruction using a hard register which may get clobbered
	     by a call needs to be marked as dependent on this call.
	     This prevents a use of a hard return reg from being moved
	     past a void call (i.e. it does not explicitly set the hard
	     return reg).  */

	  /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
	     all registers, not just hard registers, may be clobbered by this
	     call.  */

	  /* Insn, being a CALL_INSN, magically depends on
	     `last_function_call' already.  */

	  if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
	      && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
	    {
	      int max_reg = max_reg_num ();
	      for (i = 0; i < max_reg; i++)
		{
		  for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
		    add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

		  reg_last_uses[i] = 0;

		  for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
		    add_dependence (insn, XEXP (u, 0), 0);

		  for (u = reg_last_clobbers[i]; u; u = XEXP (u, 1))
		    add_dependence (insn, XEXP (u, 0), 0);
		}
	      reg_pending_sets_all = 1;

	      /* Add a pair of fake REG_NOTE which we will later
		 convert back into a NOTE_INSN_SETJMP note.  See
		 reemit_notes for why we use a pair of NOTEs.  */
	      REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
						  GEN_INT (0),
						  REG_NOTES (insn));
	      REG_NOTES (insn) = alloc_EXPR_LIST (REG_DEAD,
						  GEN_INT (NOTE_INSN_SETJMP),
						  REG_NOTES (insn));
	    }
	  else
	    {
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		if (call_used_regs[i] || global_regs[i])
		  {
		    for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
		      add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

		    for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
		      add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);

		    SET_REGNO_REG_SET (reg_pending_clobbers, i);
		  }
	    }

	  /* For each insn which shouldn't cross a call, add a dependence
	     between that insn and this call insn.  */
	  x = LOG_LINKS (sched_before_next_call);
	  while (x)
	    {
	      add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
	      x = XEXP (x, 1);
	    }
	  LOG_LINKS (sched_before_next_call) = 0;

	  sched_analyze_insn (PATTERN (insn), insn, loop_notes);
	  loop_notes = 0;

	  /* In the absence of interprocedural alias analysis, we must flush
	     all pending reads and writes, and start new dependencies starting
	     from here.  But only flush writes for constant calls (which may
	     be passed a pointer to something we haven't written yet).  */
	  flush_pending_lists (insn, CONST_CALL_P (insn));

	  /* Depend this function call (actually, the user of this
	     function call) on all hard register clobberage.  */

	  /* last_function_call is now a list of insns */
	  free_list(&last_function_call, &unused_insn_list);
	  last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
	}

      /* See comments on reemit_notes as to why we do this.  */
      /* ??? Actually, the reemit_notes just say what is done, not why.  */

      else if (GET_CODE (insn) == NOTE
	       && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_START
		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_RANGE_END))
	{
	  loop_notes = alloc_EXPR_LIST (REG_DEAD, NOTE_RANGE_INFO (insn),
					loop_notes);
	  loop_notes = alloc_EXPR_LIST (REG_DEAD,
					GEN_INT (NOTE_LINE_NUMBER (insn)),
					loop_notes);
	}
      else if (GET_CODE (insn) == NOTE
	       && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
		   || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
		   || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
		       && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
	{
	  loop_notes = alloc_EXPR_LIST (REG_DEAD,
					GEN_INT (NOTE_BLOCK_NUMBER (insn)),
					loop_notes);
	  loop_notes = alloc_EXPR_LIST (REG_DEAD,
					GEN_INT (NOTE_LINE_NUMBER (insn)),
					loop_notes);
	  CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
	}

      if (insn == tail)
	return;
    }
  abort ();
}

/* Called when we see a set of a register.  If death is true, then we are
   scanning backwards.  Mark that register as unborn.  If nobody says
   otherwise, that is how things will remain.  If death is false, then we
   are scanning forwards.  Mark that register as being born.  */

static void
sched_note_set (x, death)
     rtx x;
     int death;
{
  register int regno;
  register rtx reg = SET_DEST (x);
  int subreg_p = 0;

  if (reg == 0)
    return;

  if (GET_CODE (reg) == PARALLEL
      && GET_MODE (reg) == BLKmode)
    {
      register int i;
      for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
	sched_note_set (XVECEXP (reg, 0, i), death);
      return;
    }

  while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
	 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
    {
      /* Must treat modification of just one hardware register of a multi-reg
         value or just a byte field of a register exactly the same way that
         mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
         does not kill the entire register.  */
      if (GET_CODE (reg) != SUBREG
	  || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
	subreg_p = 1;

      reg = SUBREG_REG (reg);
    }

  if (GET_CODE (reg) != REG)
    return;

  /* Global registers are always live, so the code below does not apply
     to them.  */

  regno = REGNO (reg);
  if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
    {
      if (death)
	{
	  /* If we only set part of the register, then this set does not
	     kill it.  */
	  if (subreg_p)
	    return;

	  /* Try killing this register.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	      while (--j >= 0)
		{
		  CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
		}
	    }
	  else
	    {
	      /* Recompute REG_BASIC_BLOCK as we update all the other
		 dataflow information.  */
	      if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
		sched_reg_basic_block[regno] = current_block_num;
	      else if (sched_reg_basic_block[regno] != current_block_num)
		sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;

	      CLEAR_REGNO_REG_SET (bb_live_regs, regno);
	    }
	}
      else
	{
	  /* Make the register live again.  */
	  if (regno < FIRST_PSEUDO_REGISTER)
	    {
	      int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
	      while (--j >= 0)
		{
		  SET_REGNO_REG_SET (bb_live_regs, regno + j);
		}
	    }
	  else
	    {
	      SET_REGNO_REG_SET (bb_live_regs, regno);
	    }
	}
    }
}

/* Macros and functions for keeping the priority queue sorted, and
   dealing with queueing and dequeueing of instructions.  */

#define SCHED_SORT(READY, N_READY)                                   \
do { if ((N_READY) == 2)				             \
       swap_sort (READY, N_READY);			             \
     else if ((N_READY) > 2)                                         \
         qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
while (0)

/* Returns a positive value if x is preferred; returns a negative value if
   y is preferred.  Should never return 0, since that will make the sort
   unstable.  */

static int
rank_for_schedule (x, y)
     const GENERIC_PTR x;
     const GENERIC_PTR y;
{
  rtx tmp = *(rtx *)y;
  rtx tmp2 = *(rtx *)x;
  rtx link;
  int tmp_class, tmp2_class, depend_count1, depend_count2;
  int val, priority_val, spec_val, prob_val, weight_val;


  /* prefer insn with higher priority */
  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
  if (priority_val)
    return priority_val;

  /* prefer an insn with smaller contribution to registers-pressure */
  if (!reload_completed &&
      (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
    return (weight_val);

  /* some comparison make sense in interblock scheduling only */
  if (INSN_BB (tmp) != INSN_BB (tmp2))
    {
      /* prefer an inblock motion on an interblock motion */
      if ((INSN_BB (tmp2) == target_bb) && (INSN_BB (tmp) != target_bb))
	return 1;
      if ((INSN_BB (tmp) == target_bb) && (INSN_BB (tmp2) != target_bb))
	return -1;

      /* prefer a useful motion on a speculative one */
      if ((spec_val = IS_SPECULATIVE_INSN (tmp) - IS_SPECULATIVE_INSN (tmp2)))
	return (spec_val);

      /* prefer a more probable (speculative) insn */
      prob_val = INSN_PROBABILITY (tmp2) - INSN_PROBABILITY (tmp);
      if (prob_val)
	return (prob_val);
    }

  /* compare insns based on their relation to the last-scheduled-insn */
  if (last_scheduled_insn)
    {
      /* Classify the instructions into three classes:
         1) Data dependent on last schedule insn.
         2) Anti/Output dependent on last scheduled insn.
         3) Independent of last scheduled insn, or has latency of one.
         Choose the insn from the highest numbered class if different.  */
      link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
      if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
	tmp_class = 3;
      else if (REG_NOTE_KIND (link) == 0)	/* Data dependence.  */
	tmp_class = 1;
      else
	tmp_class = 2;

      link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
      if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
	tmp2_class = 3;
      else if (REG_NOTE_KIND (link) == 0)	/* Data dependence.  */
	tmp2_class = 1;
      else
	tmp2_class = 2;

      if ((val = tmp2_class - tmp_class))
	return val;
    }

  /* Prefer the insn which has more later insns that depend on it. 
     This gives the scheduler more freedom when scheduling later
     instructions at the expense of added register pressure.  */
  depend_count1 = 0;
  for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
    depend_count1++;

  depend_count2 = 0;
  for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
    depend_count2++;

  val = depend_count2 - depend_count1;
  if (val)
    return val;
  
  /* If insns are equally good, sort by INSN_LUID (original insn order),
     so that we make the sort stable.  This minimizes instruction movement,
     thus minimizing sched's effect on debugging and cross-jumping.  */
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
}

/* Resort the array A in which only element at index N may be out of order.  */

HAIFA_INLINE static void
swap_sort (a, n)
     rtx *a;
     int n;
{
  rtx insn = a[n - 1];
  int i = n - 2;

  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
    {
      a[i + 1] = a[i];
      i -= 1;
    }
  a[i + 1] = insn;
}

static int max_priority;

/* Add INSN to the insn queue so that it can be executed at least
   N_CYCLES after the currently executing insn.  Preserve insns
   chain for debugging purposes.  */

HAIFA_INLINE static void
queue_insn (insn, n_cycles)
     rtx insn;
     int n_cycles;
{
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
  rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
  insn_queue[next_q] = link;
  q_size += 1;

  if (sched_verbose >= 2)
    {
      fprintf (dump, ";;\t\tReady-->Q: insn %d: ", INSN_UID (insn));

      if (INSN_BB (insn) != target_bb)
	fprintf (dump, "(b%d) ", INSN_BLOCK (insn));

      fprintf (dump, "queued for %d cycles.\n", n_cycles);
    }

}

/* Return nonzero if PAT is the pattern of an insn which makes a
   register live.  */

HAIFA_INLINE static int
birthing_insn_p (pat)
     rtx pat;
{
  int j;

  if (reload_completed == 1)
    return 0;

  if (GET_CODE (pat) == SET
      && (GET_CODE (SET_DEST (pat)) == REG
	  || (GET_CODE (SET_DEST (pat)) == PARALLEL
	      && GET_MODE (SET_DEST (pat)) == BLKmode)))
    {
      rtx dest = SET_DEST (pat);
      int i;

      /* It would be more accurate to use refers_to_regno_p or
	 reg_mentioned_p to determine when the dest is not live before this
	 insn.  */
      if (GET_CODE (dest) == REG)
	{
	  i = REGNO (dest);
	  if (REGNO_REG_SET_P (bb_live_regs, i))
	    return (REG_N_SETS (i) == 1);
	}
      else
	{
	  for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
	    {
	      int regno = REGNO (SET_DEST (XVECEXP (dest, 0, i)));
	      if (REGNO_REG_SET_P (bb_live_regs, regno))
		return (REG_N_SETS (regno) == 1);
	    }
	}
      return 0;
    }
  if (GET_CODE (pat) == PARALLEL)
    {
      for (j = 0; j < XVECLEN (pat, 0); j++)
	if (birthing_insn_p (XVECEXP (pat, 0, j)))
	  return 1;
    }
  return 0;
}

/* PREV is an insn that is ready to execute.  Adjust its priority if that
   will help shorten register lifetimes.  */

HAIFA_INLINE static void
adjust_priority (prev)
     rtx prev;
{
  /* Trying to shorten register lives after reload has completed
     is useless and wrong.  It gives inaccurate schedules.  */
  if (reload_completed == 0)
    {
      rtx note;
      int n_deaths = 0;

      /* ??? This code has no effect, because REG_DEAD notes are removed
	 before we ever get here.  */
      for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
	if (REG_NOTE_KIND (note) == REG_DEAD)
	  n_deaths += 1;

      /* Defer scheduling insns which kill registers, since that
	 shortens register lives.  Prefer scheduling insns which
	 make registers live for the same reason.  */
      switch (n_deaths)
	{
	default:
	  INSN_PRIORITY (prev) >>= 3;
	  break;
	case 3:
	  INSN_PRIORITY (prev) >>= 2;
	  break;
	case 2:
	case 1:
	  INSN_PRIORITY (prev) >>= 1;
	  break;
	case 0:
	  if (birthing_insn_p (PATTERN (prev)))
	    {
	      int max = max_priority;

	      if (max > INSN_PRIORITY (prev))
		INSN_PRIORITY (prev) = max;
	    }
	  break;
	}
#ifdef ADJUST_PRIORITY
      ADJUST_PRIORITY (prev);
#endif
    }
}

/* Clock at which the previous instruction was issued.  */
static int last_clock_var;

/* INSN is the "currently executing insn".  Launch each insn which was
   waiting on INSN.  READY is a vector of insns which are ready to fire.
   N_READY is the number of elements in READY.  CLOCK is the current
   cycle.  */

static int
schedule_insn (insn, ready, n_ready, clock)
     rtx insn;
     rtx *ready;
     int n_ready;
     int clock;
{
  rtx link;
  int unit;

  unit = insn_unit (insn);

  if (sched_verbose >= 2)
    {
      fprintf (dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ", INSN_UID (insn));
      insn_print_units (insn);
      fprintf (dump, "\n");
    }

  if (sched_verbose && unit == -1)
    visualize_no_unit (insn);

  if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
    schedule_unit (unit, insn, clock);

  if (INSN_DEPEND (insn) == 0)
    return n_ready;

  /* This is used by the function adjust_priority above.  */
  if (n_ready > 0)
    max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
  else
    max_priority = INSN_PRIORITY (insn);

  for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
    {
      rtx next = XEXP (link, 0);
      int cost = insn_cost (insn, link, next);

      INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);

      if ((INSN_DEP_COUNT (next) -= 1) == 0)
	{
	  int effective_cost = INSN_TICK (next) - clock;

	  /* For speculative insns, before inserting to ready/queue,
	     check live, exception-free, and issue-delay */
	  if (INSN_BB (next) != target_bb
	      && (!IS_VALID (INSN_BB (next))
		  || CANT_MOVE (next)
		  || (IS_SPECULATIVE_INSN (next)
		      && (insn_issue_delay (next) > 3
			  || !check_live (next, INSN_BB (next))
		 || !is_exception_free (next, INSN_BB (next), target_bb)))))
	    continue;

	  if (sched_verbose >= 2)
	    {
	      fprintf (dump, ";;\t\tdependences resolved: insn %d ", INSN_UID (next));

	      if (current_nr_blocks > 1 && INSN_BB (next) != target_bb)
		fprintf (dump, "/b%d ", INSN_BLOCK (next));

	      if (effective_cost <= 1)
		fprintf (dump, "into ready\n");
	      else
		fprintf (dump, "into queue with cost=%d\n", effective_cost);
	    }

	  /* Adjust the priority of NEXT and either put it on the ready
	     list or queue it.  */
	  adjust_priority (next);
	  if (effective_cost <= 1)
	    ready[n_ready++] = next;
	  else
	    queue_insn (next, effective_cost);
	}
    }

  /* Annotate the instruction with issue information -- TImode 
     indicates that the instruction is expected not to be able
     to issue on the same cycle as the previous insn.  A machine
     may use this information to decide how the instruction should
     be aligned.  */
  if (reload_completed && issue_rate > 1)
    {
      PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
      last_clock_var = clock;
    }

  return n_ready;
}


/* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
   dead_notes list.  */

static void
create_reg_dead_note (reg, insn)
     rtx reg, insn;
{
  rtx link;

  /* The number of registers killed after scheduling must be the same as the
     number of registers killed before scheduling.  The number of REG_DEAD
     notes may not be conserved, i.e. two SImode hard register REG_DEAD notes
     might become one DImode hard register REG_DEAD note, but the number of
     registers killed will be conserved.

     We carefully remove REG_DEAD notes from the dead_notes list, so that
     there will be none left at the end.  If we run out early, then there
     is a bug somewhere in flow, combine and/or sched.  */

  if (dead_notes == 0)
    {
      if (current_nr_blocks <= 1)
	abort ();
      else
	link = alloc_EXPR_LIST (REG_DEAD, NULL_RTX, NULL_RTX);
    }
  else
    {
      /* Number of regs killed by REG.  */
      int regs_killed = (REGNO (reg) >= FIRST_PSEUDO_REGISTER ? 1
			 : HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
      /* Number of regs killed by REG_DEAD notes taken off the list.  */
      int reg_note_regs;

      link = dead_notes;
      reg_note_regs = (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
		       : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
					   GET_MODE (XEXP (link, 0))));
      while (reg_note_regs < regs_killed)
	{
	  link = XEXP (link, 1);

	  /* LINK might be zero if we killed more registers after scheduling
	     than before, and the last hard register we kill is actually
	     multiple hard regs. 

	     This is normal for interblock scheduling, so deal with it in
	     that case, else abort.  */
	  if (link == NULL_RTX && current_nr_blocks <= 1)
	    abort ();
	  else if (link == NULL_RTX)
	    link = alloc_EXPR_LIST (REG_DEAD, gen_rtx_REG (word_mode, 0),
				    NULL_RTX);
	     
	  reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
			    : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
						GET_MODE (XEXP (link, 0))));
	}
      dead_notes = XEXP (link, 1);

      /* If we took too many regs kills off, put the extra ones back.  */
      while (reg_note_regs > regs_killed)
	{
	  rtx temp_reg, temp_link;

	  temp_reg = gen_rtx_REG (word_mode, 0);
	  temp_link = alloc_EXPR_LIST (REG_DEAD, temp_reg, dead_notes);
	  dead_notes = temp_link;
	  reg_note_regs--;
	}
    }

  XEXP (link, 0) = reg;
  XEXP (link, 1) = REG_NOTES (insn);
  REG_NOTES (insn) = link;
}

/* Subroutine on attach_deaths_insn--handles the recursive search
   through INSN.  If SET_P is true, then x is being modified by the insn.  */

static void
attach_deaths (x, insn, set_p)
     rtx x;
     rtx insn;
     int set_p;
{
  register int i;
  register int j;
  register enum rtx_code code;
  register char *fmt;

  if (x == 0)
    return;

  code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST:
    case CODE_LABEL:
    case PC:
    case CC0:
      /* Get rid of the easy cases first.  */
      return;

    case REG:
      {
	/* If the register dies in this insn, queue that note, and mark
	   this register as needing to die.  */
	/* This code is very similar to mark_used_1 (if set_p is false)
	   and mark_set_1 (if set_p is true) in flow.c.  */

	register int regno;
	int some_needed;
	int all_needed;

	if (set_p)
	  return;

	regno = REGNO (x);
	all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
	if (regno < FIRST_PSEUDO_REGISTER)
	  {
	    int n;

	    n = HARD_REGNO_NREGS (regno, GET_MODE (x));
	    while (--n > 0)
	      {
		int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
		some_needed |= needed;
		all_needed &= needed;
	      }
	  }

	/* If it wasn't live before we started, then add a REG_DEAD note.
	   We must check the previous lifetime info not the current info,
	   because we may have to execute this code several times, e.g.
	   once for a clobber (which doesn't add a note) and later
	   for a use (which does add a note).

	   Always make the register live.  We must do this even if it was
	   live before, because this may be an insn which sets and uses
	   the same register, in which case the register has already been
	   killed, so we must make it live again.

	   Global registers are always live, and should never have a REG_DEAD
	   note added for them, so none of the code below applies to them.  */

	if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
	  {
	    /* Never add REG_DEAD notes for STACK_POINTER_REGNUM
	       since it's always considered to be live.  Similarly
	       for FRAME_POINTER_REGNUM if a frame pointer is needed
	       and for ARG_POINTER_REGNUM if it is fixed.  */
	    if (! (regno == FRAME_POINTER_REGNUM
		   && (! reload_completed || frame_pointer_needed))
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
		&& ! (regno == HARD_FRAME_POINTER_REGNUM
		      && (! reload_completed || frame_pointer_needed))
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
		&& ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
		&& regno != STACK_POINTER_REGNUM)
	      {
		if (! all_needed && ! dead_or_set_p (insn, x))
		  {
		    /* Check for the case where the register dying partially
		       overlaps the register set by this insn.  */
		    if (regno < FIRST_PSEUDO_REGISTER
			&& HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
		      {
			int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
			while (--n >= 0)
			  some_needed |= dead_or_set_regno_p (insn, regno + n);
		      }

		    /* If none of the words in X is needed, make a REG_DEAD
		       note.  Otherwise, we must make partial REG_DEAD
		       notes.  */
		    if (! some_needed)
		      create_reg_dead_note (x, insn);
		    else
		      {
			int i;

			/* Don't make a REG_DEAD note for a part of a
			   register that is set in the insn.  */
			for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
			     i >= 0; i--)
			  if (! REGNO_REG_SET_P (old_live_regs, regno+i)
			      && ! dead_or_set_regno_p (insn, regno + i))
			    create_reg_dead_note (gen_rtx_REG (reg_raw_mode[regno + i],
							       regno + i),
						  insn);
		      }
		  }
	      }

	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
		while (--j >= 0)
		  {
		    SET_REGNO_REG_SET (bb_live_regs, regno + j);
		  }
	      }
	    else
	      {
		/* Recompute REG_BASIC_BLOCK as we update all the other
		   dataflow information.  */
		if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
		  sched_reg_basic_block[regno] = current_block_num;
		else if (sched_reg_basic_block[regno] != current_block_num)
		  sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;

		SET_REGNO_REG_SET (bb_live_regs, regno);
	      }
	  }
	return;
      }

    case MEM:
      /* Handle tail-recursive case.  */
      attach_deaths (XEXP (x, 0), insn, 0);
      return;

    case SUBREG:
      attach_deaths (SUBREG_REG (x), insn,
		     set_p && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
				<= UNITS_PER_WORD)
			       || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
				   == GET_MODE_SIZE (GET_MODE ((x))))));
      return;

    case STRICT_LOW_PART:
      attach_deaths (XEXP (x, 0), insn, 0);
      return;

    case ZERO_EXTRACT:
    case SIGN_EXTRACT:
      attach_deaths (XEXP (x, 0), insn, 0);
      attach_deaths (XEXP (x, 1), insn, 0);
      attach_deaths (XEXP (x, 2), insn, 0);
      return;

    case PARALLEL:
      if (set_p
	  && GET_MODE (x) == BLKmode)
	{
	  for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	    attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
	  return;
	}

      /* fallthrough */
    default:
      /* Other cases: walk the insn.  */
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	{
	  if (fmt[i] == 'e')
	    attach_deaths (XEXP (x, i), insn, 0);
	  else if (fmt[i] == 'E')
	    for (j = 0; j < XVECLEN (x, i); j++)
	      attach_deaths (XVECEXP (x, i, j), insn, 0);
	}
    }
}

/* After INSN has executed, add register death notes for each register
   that is dead after INSN.  */

static void
attach_deaths_insn (insn)
     rtx insn;
{
  rtx x = PATTERN (insn);
  register RTX_CODE code = GET_CODE (x);
  rtx link;

  if (code == SET)
    {
      attach_deaths (SET_SRC (x), insn, 0);

      /* A register might die here even if it is the destination, e.g.
         it is the target of a volatile read and is otherwise unused.
         Hence we must always call attach_deaths for the SET_DEST.  */
      attach_deaths (SET_DEST (x), insn, 1);
    }
  else if (code == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET)
	    {
	      attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);

	      attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
	    }
	  /* Flow does not add REG_DEAD notes to registers that die in
	     clobbers, so we can't either.  */
	  else if (code != CLOBBER)
	    attach_deaths (XVECEXP (x, 0, i), insn, 0);
	}
    }
  /* If this is a CLOBBER, only add REG_DEAD notes to registers inside a
     MEM being clobbered, just like flow.  */
  else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == MEM)
    attach_deaths (XEXP (XEXP (x, 0), 0), insn, 0);
  /* Otherwise don't add a death note to things being clobbered.  */
  else if (code != CLOBBER)
    attach_deaths (x, insn, 0);

  /* Make death notes for things used in the called function.  */
  if (GET_CODE (insn) == CALL_INSN)
    for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
      attach_deaths (XEXP (XEXP (link, 0), 0), insn,
		     GET_CODE (XEXP (link, 0)) == CLOBBER);
}

/* functions for handlnig of notes */

/* Delete notes beginning with INSN and put them in the chain
   of notes ended by NOTE_LIST.
   Returns the insn following the notes.  */

static rtx
unlink_other_notes (insn, tail)
     rtx insn, tail;
{
  rtx prev = PREV_INSN (insn);

  while (insn != tail && GET_CODE (insn) == NOTE)
    {
      rtx next = NEXT_INSN (insn);
      /* Delete the note from its current position.  */
      if (prev)
	NEXT_INSN (prev) = next;
      if (next)
	PREV_INSN (next) = prev;

      /* Don't save away NOTE_INSN_SETJMPs, because they must remain
         immediately after the call they follow.  We use a fake
         (REG_DEAD (const_int -1)) note to remember them.
         Likewise with NOTE_INSN_{LOOP,EHREGION}_{BEG, END}.  */
      if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_START
	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
	{
	  /* Insert the note at the end of the notes list.  */
	  PREV_INSN (insn) = note_list;
	  if (note_list)
	    NEXT_INSN (note_list) = insn;
	  note_list = insn;
	}

      insn = next;
    }
  return insn;
}

/* Delete line notes beginning with INSN. Record line-number notes so
   they can be reused.  Returns the insn following the notes.  */

static rtx
unlink_line_notes (insn, tail)
     rtx insn, tail;
{
  rtx prev = PREV_INSN (insn);

  while (insn != tail && GET_CODE (insn) == NOTE)
    {
      rtx next = NEXT_INSN (insn);

      if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
	{
	  /* Delete the note from its current position.  */
	  if (prev)
	    NEXT_INSN (prev) = next;
	  if (next)
	    PREV_INSN (next) = prev;

	  /* Record line-number notes so they can be reused.  */
	  LINE_NOTE (insn) = insn;
	}
      else
	prev = insn;

      insn = next;
    }
  return insn;
}

/* Return the head and tail pointers of BB.  */

HAIFA_INLINE static void
get_block_head_tail (bb, headp, tailp)
     int bb;
     rtx *headp;
     rtx *tailp;
{

  rtx head;
  rtx tail;
  int b;

  b = BB_TO_BLOCK (bb);

  /* HEAD and TAIL delimit the basic block being scheduled.  */
  head = BLOCK_HEAD (b);
  tail = BLOCK_END (b);

  /* Don't include any notes or labels at the beginning of the
     basic block, or notes at the ends of basic blocks.  */
  while (head != tail)
    {
      if (GET_CODE (head) == NOTE)
	head = NEXT_INSN (head);
      else if (GET_CODE (tail) == NOTE)
	tail = PREV_INSN (tail);
      else if (GET_CODE (head) == CODE_LABEL)
	head = NEXT_INSN (head);
      else
	break;
    }

  *headp = head;
  *tailp = tail;
}

/* Delete line notes from bb. Save them so they can be later restored
   (in restore_line_notes ()).  */

static void
rm_line_notes (bb)
     int bb;
{
  rtx next_tail;
  rtx tail;
  rtx head;
  rtx insn;

  get_block_head_tail (bb, &head, &tail);

  if (head == tail
      && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
    return;

  next_tail = NEXT_INSN (tail);
  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx prev;

      /* Farm out notes, and maybe save them in NOTE_LIST.
         This is needed to keep the debugger from
         getting completely deranged.  */
      if (GET_CODE (insn) == NOTE)
	{
	  prev = insn;
	  insn = unlink_line_notes (insn, next_tail);

	  if (prev == tail)
	    abort ();
	  if (prev == head)
	    abort ();
	  if (insn == next_tail)
	    abort ();
	}
    }
}

/* Save line number notes for each insn in bb.  */

static void
save_line_notes (bb)
     int bb;
{
  rtx head, tail;
  rtx next_tail;

  /* We must use the true line number for the first insn in the block
     that was computed and saved at the start of this pass.  We can't
     use the current line number, because scheduling of the previous
     block may have changed the current line number.  */

  rtx line = line_note_head[BB_TO_BLOCK (bb)];
  rtx insn;

  get_block_head_tail (bb, &head, &tail);
  next_tail = NEXT_INSN (tail);

  for (insn = BLOCK_HEAD (BB_TO_BLOCK (bb));
       insn != next_tail;
       insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
      line = insn;
    else
      LINE_NOTE (insn) = line;
}


/* After bb was scheduled, insert line notes into the insns list.  */

static void
restore_line_notes (bb)
     int bb;
{
  rtx line, note, prev, new;
  int added_notes = 0;
  int b;
  rtx head, next_tail, insn;

  b = BB_TO_BLOCK (bb);

  head = BLOCK_HEAD (b);
  next_tail = NEXT_INSN (BLOCK_END (b));

  /* Determine the current line-number.  We want to know the current
     line number of the first insn of the block here, in case it is
     different from the true line number that was saved earlier.  If
     different, then we need a line number note before the first insn
     of this block.  If it happens to be the same, then we don't want to
     emit another line number note here.  */
  for (line = head; line; line = PREV_INSN (line))
    if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
      break;

  /* Walk the insns keeping track of the current line-number and inserting
     the line-number notes as needed.  */
  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
      line = insn;
  /* This used to emit line number notes before every non-deleted note.
     However, this confuses a debugger, because line notes not separated
     by real instructions all end up at the same address.  I can find no
     use for line number notes before other notes, so none are emitted.  */
    else if (GET_CODE (insn) != NOTE
	     && (note = LINE_NOTE (insn)) != 0
	     && note != line
	     && (line == 0
		 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
		 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
      {
	line = note;
	prev = PREV_INSN (insn);
	if (LINE_NOTE (note))
	  {
	    /* Re-use the original line-number note.  */
	    LINE_NOTE (note) = 0;
	    PREV_INSN (note) = prev;
	    NEXT_INSN (prev) = note;
	    PREV_INSN (insn) = note;
	    NEXT_INSN (note) = insn;
	  }
	else
	  {
	    added_notes++;
	    new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
	    NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
	    RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
	  }
      }
  if (sched_verbose && added_notes)
    fprintf (dump, ";; added %d line-number notes\n", added_notes);
}

/* After scheduling the function, delete redundant line notes from the
   insns list.  */

static void
rm_redundant_line_notes ()
{
  rtx line = 0;
  rtx insn = get_insns ();
  int active_insn = 0;
  int notes = 0;

  /* Walk the insns deleting redundant line-number notes.  Many of these
     are already present.  The remainder tend to occur at basic
     block boundaries.  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
      {
	/* If there are no active insns following, INSN is redundant.  */
	if (active_insn == 0)
	  {
	    notes++;
	    NOTE_SOURCE_FILE (insn) = 0;
	    NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	  }
	/* If the line number is unchanged, LINE is redundant.  */
	else if (line
		 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
		 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
	  {
	    notes++;
	    NOTE_SOURCE_FILE (line) = 0;
	    NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
	    line = insn;
	  }
	else
	  line = insn;
	active_insn = 0;
      }
    else if (!((GET_CODE (insn) == NOTE
		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
	       || (GET_CODE (insn) == INSN
		   && (GET_CODE (PATTERN (insn)) == USE
		       || GET_CODE (PATTERN (insn)) == CLOBBER))))
      active_insn++;

  if (sched_verbose && notes)
    fprintf (dump, ";; deleted %d line-number notes\n", notes);
}

/* Delete notes between head and tail and put them in the chain
   of notes ended by NOTE_LIST.  */

static void
rm_other_notes (head, tail)
     rtx head;
     rtx tail;
{
  rtx next_tail;
  rtx insn;

  if (head == tail
      && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
    return;

  next_tail = NEXT_INSN (tail);
  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx prev;

      /* Farm out notes, and maybe save them in NOTE_LIST.
         This is needed to keep the debugger from
         getting completely deranged.  */
      if (GET_CODE (insn) == NOTE)
	{
	  prev = insn;

	  insn = unlink_other_notes (insn, next_tail);

	  if (prev == tail)
	    abort ();
	  if (prev == head)
	    abort ();
	  if (insn == next_tail)
	    abort ();
	}
    }
}

/* Constructor for `sometimes' data structure.  */

static int
new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
     struct sometimes *regs_sometimes_live;
     int regno;
     int sometimes_max;
{
  register struct sometimes *p;

  /* There should never be a register greater than max_regno here.  If there
     is, it means that a define_split has created a new pseudo reg.  This
     is not allowed, since there will not be flow info available for any
     new register, so catch the error here.  */
  if (regno >= max_regno)
    abort ();

  p = &regs_sometimes_live[sometimes_max];
  p->regno = regno;
  p->live_length = 0;
  p->calls_crossed = 0;
  sometimes_max++;
  return sometimes_max;
}

/* Count lengths of all regs we are currently tracking,
   and find new registers no longer live.  */

static void
finish_sometimes_live (regs_sometimes_live, sometimes_max)
     struct sometimes *regs_sometimes_live;
     int sometimes_max;
{
  int i;

  for (i = 0; i < sometimes_max; i++)
    {
      register struct sometimes *p = &regs_sometimes_live[i];
      int regno = p->regno;

      sched_reg_live_length[regno] += p->live_length;
      sched_reg_n_calls_crossed[regno] += p->calls_crossed;
    }
}

/* functions for computation of registers live/usage info */

/* It is assumed that prior to scheduling BASIC_BLOCK (b)->global_live_at_start
   contains the registers that are alive at the entry to b.

   Two passes follow: The first pass is performed before the scheduling
   of a region. It scans each block of the region forward, computing
   the set of registers alive at the end of the basic block and
   discard REG_DEAD notes (done by find_pre_sched_live ()).

   The second path is invoked after scheduling all region blocks.
   It scans each block of the region backward, a block being traversed
   only after its succesors in the region. When the set of registers
   live at the end of a basic block may be changed by the scheduling
   (this may happen for multiple blocks region), it is computed as
   the union of the registers live at the start of its succesors.
   The last-use information is updated by inserting REG_DEAD notes.
   (done by find_post_sched_live ()) */

/* Scan all the insns to be scheduled, removing register death notes.
   Register death notes end up in DEAD_NOTES.
   Recreate the register life information for the end of this basic
   block.  */

static void
find_pre_sched_live (bb)
     int bb;
{
  rtx insn, next_tail, head, tail;
  int b = BB_TO_BLOCK (bb);

  get_block_head_tail (bb, &head, &tail);
  COPY_REG_SET (bb_live_regs, BASIC_BLOCK (b)->global_live_at_start);
  next_tail = NEXT_INSN (tail);

  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx prev, next, link;
      int reg_weight = 0;

      /* Handle register life information.  */
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  /* See if the register gets born here.  */
	  /* We must check for registers being born before we check for
	     registers dying.  It is possible for a register to be born and
	     die in the same insn, e.g. reading from a volatile memory
	     location into an otherwise unused register.  Such a register
	     must be marked as dead after this insn.  */
	  if (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER)
	    {
	      sched_note_set (PATTERN (insn), 0);
	      reg_weight++;
	    }

	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	    {
	      int j;
	      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
		    || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
		  {
		    sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
		    reg_weight++;
		  }

	      /* ??? This code is obsolete and should be deleted.  It
	         is harmless though, so we will leave it in for now.  */
	      for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
		if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
		  sched_note_set (XVECEXP (PATTERN (insn), 0, j), 0);
	    }

	  /* Each call cobbers (makes live) all call-clobbered regs
	     that are not global or fixed.  Note that the function-value
	     reg is a call_clobbered reg.  */
	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      int j;
	      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
		if (call_used_regs[j] && !global_regs[j]
		    && ! fixed_regs[j])
		  {
		    SET_REGNO_REG_SET (bb_live_regs, j);
		  }
	    }

	  /* Need to know what registers this insn kills.  */
	  for (prev = 0, link = REG_NOTES (insn); link; link = next)
	    {
	      next = XEXP (link, 1);
	      if ((REG_NOTE_KIND (link) == REG_DEAD
		   || REG_NOTE_KIND (link) == REG_UNUSED)
	      /* Verify that the REG_NOTE has a valid value.  */
		  && GET_CODE (XEXP (link, 0)) == REG)
		{
		  register int regno = REGNO (XEXP (link, 0));

		  reg_weight--;

		  /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
		     alone.  */
		  if (REG_NOTE_KIND (link) == REG_DEAD)
		    {
		      if (prev)
			XEXP (prev, 1) = next;
		      else
			REG_NOTES (insn) = next;
		      XEXP (link, 1) = dead_notes;
		      dead_notes = link;
		    }
		  else
		    prev = link;

		  if (regno < FIRST_PSEUDO_REGISTER)
		    {
		      int j = HARD_REGNO_NREGS (regno,
						GET_MODE (XEXP (link, 0)));
		      while (--j >= 0)
			{
			  CLEAR_REGNO_REG_SET (bb_live_regs, regno+j);
			}
		    }
		  else
		    {
		      CLEAR_REGNO_REG_SET (bb_live_regs, regno);
		    }
		}
	      else
		prev = link;
	    }
	}

      INSN_REG_WEIGHT (insn) = reg_weight;
    }
}

/* Update register life and usage information for block bb
   after scheduling.  Put register dead notes back in the code.  */

static void
find_post_sched_live (bb)
     int bb;
{
  int sometimes_max;
  int j, i;
  int b;
  rtx insn;
  rtx head, tail, prev_head, next_tail;

  register struct sometimes *regs_sometimes_live;

  b = BB_TO_BLOCK (bb);

  /* compute live regs at the end of bb as a function of its successors.  */
  if (current_nr_blocks > 1)
    {
      int e;
      int first_edge;

      first_edge = e = OUT_EDGES (b);
      CLEAR_REG_SET (bb_live_regs);

      if (e)
	do
	  {
	    int b_succ;

	    b_succ = TO_BLOCK (e);
	    IOR_REG_SET (bb_live_regs,
			 BASIC_BLOCK (b_succ)->global_live_at_start);
	    e = NEXT_OUT (e);
	  }
	while (e != first_edge);
    }

  get_block_head_tail (bb, &head, &tail);
  next_tail = NEXT_INSN (tail);
  prev_head = PREV_INSN (head);

  EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, i,
			     {
			       sched_reg_basic_block[i] = REG_BLOCK_GLOBAL;
			     });

  /* if the block is empty, same regs are alive at its end and its start.
     since this is not guaranteed after interblock scheduling, make sure they
     are truly identical.  */
  if (NEXT_INSN (prev_head) == tail
      && (GET_RTX_CLASS (GET_CODE (tail)) != 'i'))
    {
      if (current_nr_blocks > 1)
	COPY_REG_SET (BASIC_BLOCK (b)->global_live_at_start, bb_live_regs);

      return;
    }

  b = BB_TO_BLOCK (bb);
  current_block_num = b;

  /* Keep track of register lives.  */
  old_live_regs = ALLOCA_REG_SET ();
  regs_sometimes_live
    = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
  sometimes_max = 0;

  /* initiate "sometimes" data, starting with registers live at end */
  sometimes_max = 0;
  COPY_REG_SET (old_live_regs, bb_live_regs);
  EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
			     {
			       sometimes_max
				 = new_sometimes_live (regs_sometimes_live,
						       j, sometimes_max);
			     });

  /* scan insns back, computing regs live info */
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
    {
      /* First we kill registers set by this insn, and then we
         make registers used by this insn live.  This is the opposite
         order used above because we are traversing the instructions
         backwards.  */

      /* Strictly speaking, we should scan REG_UNUSED notes and make
         every register mentioned there live, however, we will just
         kill them again immediately below, so there doesn't seem to
         be any reason why we bother to do this.  */

      /* See if this is the last notice we must take of a register.  */
      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;

      if (GET_CODE (PATTERN (insn)) == SET
	  || GET_CODE (PATTERN (insn)) == CLOBBER)
	sched_note_set (PATTERN (insn), 1);
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	{
	  for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
	    if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
		|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
	      sched_note_set (XVECEXP (PATTERN (insn), 0, j), 1);
	}

      /* This code keeps life analysis information up to date.  */
      if (GET_CODE (insn) == CALL_INSN)
	{
	  register struct sometimes *p;

	  /* A call kills all call used registers that are not
	     global or fixed, except for those mentioned in the call
	     pattern which will be made live again later.  */
	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	    if (call_used_regs[i] && ! global_regs[i]
		&& ! fixed_regs[i])
	      {
		CLEAR_REGNO_REG_SET (bb_live_regs, i);
	      }

	  /* Regs live at the time of a call instruction must not
	     go in a register clobbered by calls.  Record this for
	     all regs now live.  Note that insns which are born or
	     die in a call do not cross a call, so this must be done
	     after the killings (above) and before the births
	     (below).  */
	  p = regs_sometimes_live;
	  for (i = 0; i < sometimes_max; i++, p++)
	    if (REGNO_REG_SET_P (bb_live_regs, p->regno))
	      p->calls_crossed += 1;
	}

      /* Make every register used live, and add REG_DEAD notes for
         registers which were not live before we started.  */
      attach_deaths_insn (insn);

      /* Find registers now made live by that instruction.  */
      EXECUTE_IF_AND_COMPL_IN_REG_SET (bb_live_regs, old_live_regs, 0, j,
				 {
				   sometimes_max
				     = new_sometimes_live (regs_sometimes_live,
							   j, sometimes_max);
				 });
      IOR_REG_SET (old_live_regs, bb_live_regs);

      /* Count lengths of all regs we are worrying about now,
         and handle registers no longer live.  */

      for (i = 0; i < sometimes_max; i++)
	{
	  register struct sometimes *p = &regs_sometimes_live[i];
	  int regno = p->regno;

	  p->live_length += 1;

	  if (!REGNO_REG_SET_P (bb_live_regs, regno))
	    {
	      /* This is the end of one of this register's lifetime
	         segments.  Save the lifetime info collected so far,
	         and clear its bit in the old_live_regs entry.  */
	      sched_reg_live_length[regno] += p->live_length;
	      sched_reg_n_calls_crossed[regno] += p->calls_crossed;
	      CLEAR_REGNO_REG_SET (old_live_regs, p->regno);

	      /* Delete the reg_sometimes_live entry for this reg by
	         copying the last entry over top of it.  */
	      *p = regs_sometimes_live[--sometimes_max];
	      /* ...and decrement i so that this newly copied entry
	         will be processed.  */
	      i--;
	    }
	}
    }

  finish_sometimes_live (regs_sometimes_live, sometimes_max);

  /* In interblock scheduling, global_live_at_start may have changed.  */
  if (current_nr_blocks > 1)
    COPY_REG_SET (BASIC_BLOCK (b)->global_live_at_start, bb_live_regs);


  FREE_REG_SET (old_live_regs);
}				/* find_post_sched_live */

/* After scheduling the subroutine, restore information about uses of
   registers.  */

static void
update_reg_usage ()
{
  int regno;

  if (n_basic_blocks > 0)
    EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, FIRST_PSEUDO_REGISTER, regno,
			       {
				 sched_reg_basic_block[regno]
				   = REG_BLOCK_GLOBAL;
			       });

  for (regno = 0; regno < max_regno; regno++)
    if (sched_reg_live_length[regno])
      {
	if (sched_verbose)
	  {
	    if (REG_LIVE_LENGTH (regno) > sched_reg_live_length[regno])
	      fprintf (dump,
		       ";; register %d life shortened from %d to %d\n",
		       regno, REG_LIVE_LENGTH (regno),
		       sched_reg_live_length[regno]);
	    /* Negative values are special; don't overwrite the current
	       reg_live_length value if it is negative.  */
	    else if (REG_LIVE_LENGTH (regno) < sched_reg_live_length[regno]
		     && REG_LIVE_LENGTH (regno) >= 0)
	      fprintf (dump,
		       ";; register %d life extended from %d to %d\n",
		       regno, REG_LIVE_LENGTH (regno),
		       sched_reg_live_length[regno]);

	    if (!REG_N_CALLS_CROSSED (regno)
		&& sched_reg_n_calls_crossed[regno])
	      fprintf (dump,
		       ";; register %d now crosses calls\n", regno);
	    else if (REG_N_CALLS_CROSSED (regno)
		     && !sched_reg_n_calls_crossed[regno]
		     && REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
	      fprintf (dump,
		       ";; register %d no longer crosses calls\n", regno);

	    if (REG_BASIC_BLOCK (regno) != sched_reg_basic_block[regno]
		&& sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
		&& REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
	      fprintf (dump,
		       ";; register %d changed basic block from %d to %d\n",
			regno, REG_BASIC_BLOCK(regno),
			sched_reg_basic_block[regno]);

	  }
	/* Negative values are special; don't overwrite the current
	   reg_live_length value if it is negative.  */
	if (REG_LIVE_LENGTH (regno) >= 0)
	  REG_LIVE_LENGTH (regno) = sched_reg_live_length[regno];

	if (sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
	    && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
	  REG_BASIC_BLOCK(regno) = sched_reg_basic_block[regno];

	/* We can't change the value of reg_n_calls_crossed to zero for
	   pseudos which are live in more than one block.

	   This is because combine might have made an optimization which
	   invalidated global_live_at_start and reg_n_calls_crossed,
	   but it does not update them.  If we update reg_n_calls_crossed
	   here, the two variables are now inconsistent, and this might
	   confuse the caller-save code into saving a register that doesn't
	   need to be saved.  This is only a problem when we zero calls
	   crossed for a pseudo live in multiple basic blocks.

	   Alternatively, we could try to correctly update basic block live
	   at start here in sched, but that seems complicated.

	   Note: it is possible that a global register became local, as result
	   of interblock motion, but will remain marked as a global register.  */
	if (sched_reg_n_calls_crossed[regno]
	    || REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
	  REG_N_CALLS_CROSSED (regno) = sched_reg_n_calls_crossed[regno];

      }
}

/* Scheduling clock, modified in schedule_block() and queue_to_ready () */
static int clock_var;

/* Move insns that became ready to fire from queue to ready list.  */

static int
queue_to_ready (ready, n_ready)
     rtx ready[];
     int n_ready;
{
  rtx insn;
  rtx link;

  q_ptr = NEXT_Q (q_ptr);

  /* Add all pending insns that can be scheduled without stalls to the
     ready list.  */
  for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
    {

      insn = XEXP (link, 0);
      q_size -= 1;

      if (sched_verbose >= 2)
	fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));

      if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
	fprintf (dump, "(b%d) ", INSN_BLOCK (insn));

      ready[n_ready++] = insn;
      if (sched_verbose >= 2)
	fprintf (dump, "moving to ready without stalls\n");
    }
  insn_queue[q_ptr] = 0;

  /* If there are no ready insns, stall until one is ready and add all
     of the pending insns at that point to the ready list.  */
  if (n_ready == 0)
    {
      register int stalls;

      for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
	{
	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
	    {
	      for (; link; link = XEXP (link, 1))
		{
		  insn = XEXP (link, 0);
		  q_size -= 1;

		  if (sched_verbose >= 2)
		    fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));

		  if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
		    fprintf (dump, "(b%d) ", INSN_BLOCK (insn));

		  ready[n_ready++] = insn;
		  if (sched_verbose >= 2)
		    fprintf (dump, "moving to ready with %d stalls\n", stalls);
		}
	      insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;

	      if (n_ready)
		break;
	    }
	}

      if (sched_verbose && stalls)
	visualize_stall_cycles (BB_TO_BLOCK (target_bb), stalls);
      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
      clock_var += stalls;
    }
  return n_ready;
}

/* Print the ready list for debugging purposes. Callable from debugger.  */

static void
debug_ready_list (ready, n_ready)
     rtx ready[];
     int n_ready;
{
  int i;

  for (i = 0; i < n_ready; i++)
    {
      fprintf (dump, "  %d", INSN_UID (ready[i]));
      if (current_nr_blocks > 1 && INSN_BB (ready[i]) != target_bb)
	fprintf (dump, "/b%d", INSN_BLOCK (ready[i]));
    }
  fprintf (dump, "\n");
}

/* Print names of units on which insn can/should execute, for debugging.  */

static void
insn_print_units (insn)
     rtx insn;
{
  int i;
  int unit = insn_unit (insn);

  if (unit == -1)
    fprintf (dump, "none");
  else if (unit >= 0)
    fprintf (dump, "%s", function_units[unit].name);
  else
    {
      fprintf (dump, "[");
      for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
	if (unit & 1)
	  {
	    fprintf (dump, "%s", function_units[i].name);
	    if (unit != 1)
	      fprintf (dump, " ");
	  }
      fprintf (dump, "]");
    }
}

/* MAX_VISUAL_LINES is the maximum number of lines in visualization table
   of a basic block.  If more lines are needed, table is splitted to two.
   n_visual_lines is the number of lines printed so far for a block.
   visual_tbl contains the block visualization info.
   vis_no_unit holds insns in a cycle that are not mapped to any unit.  */
#define MAX_VISUAL_LINES 100
#define INSN_LEN 30
int n_visual_lines;
char *visual_tbl;
int n_vis_no_unit;
rtx vis_no_unit[10];

/* Finds units that are in use in this fuction. Required only
   for visualization.  */

static void
init_target_units ()
{
  rtx insn;
  int unit;

  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;

      unit = insn_unit (insn);

      if (unit < 0)
	target_units |= ~unit;
      else
	target_units |= (1 << unit);
    }
}

/* Return the length of the visualization table */

static int
get_visual_tbl_length ()
{
  int unit, i;
  int n, n1;
  char *s;

  /* compute length of one field in line */
  s = (char *) alloca (INSN_LEN + 5);
  sprintf (s, "  %33s", "uname");
  n1 = strlen (s);

  /* compute length of one line */
  n = strlen (";; ");
  n += n1;
  for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
    if (function_units[unit].bitmask & target_units)
      for (i = 0; i < function_units[unit].multiplicity; i++)
	n += n1;
  n += n1;
  n += strlen ("\n") + 2;

  /* compute length of visualization string */
  return (MAX_VISUAL_LINES * n);
}

/* Init block visualization debugging info */

static void
init_block_visualization ()
{
  strcpy (visual_tbl, "");
  n_visual_lines = 0;
  n_vis_no_unit = 0;
}

#define BUF_LEN 256

static char *
safe_concat (buf, cur, str)
     char *buf;
     char *cur;
     char *str;
{
  char *end = buf + BUF_LEN - 2;	/* leave room for null */
  int c;

  if (cur > end)
    {
      *end = '\0';
      return end;
    }

  while (cur < end && (c = *str++) != '\0')
    *cur++ = c;

  *cur = '\0';
  return cur;
}

/* This recognizes rtx, I classified as expressions. These are always */
/* represent some action on values or results of other expression, */
/* that may be stored in objects representing values.  */

static void
print_exp (buf, x, verbose)
     char *buf;
     rtx x;
     int verbose;
{
  char tmp[BUF_LEN];
  char *st[4];
  char *cur = buf;
  char *fun = (char *)0;
  char *sep;
  rtx op[4];
  int i;

  for (i = 0; i < 4; i++)
    {
      st[i] = (char *)0;
      op[i] = NULL_RTX;
    }

  switch (GET_CODE (x))
    {
    case PLUS:
      op[0] = XEXP (x, 0);
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && INTVAL (XEXP (x, 1)) < 0)
	{
	  st[1] = "-";
	  op[1] = GEN_INT (-INTVAL (XEXP (x, 1)));
	}
      else
	{
	  st[1] = "+";
	  op[1] = XEXP (x, 1);
	}
      break;
    case LO_SUM:
      op[0] = XEXP (x, 0);
      st[1] = "+low(";
      op[1] = XEXP (x, 1);
      st[2] = ")";
      break;
    case MINUS:
      op[0] = XEXP (x, 0);
      st[1] = "-";
      op[1] = XEXP (x, 1);
      break;
    case COMPARE:
      fun = "cmp";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case NEG:
      st[0] = "-";
      op[0] = XEXP (x, 0);
      break;
    case MULT:
      op[0] = XEXP (x, 0);
      st[1] = "*";
      op[1] = XEXP (x, 1);
      break;
    case DIV:
      op[0] = XEXP (x, 0);
      st[1] = "/";
      op[1] = XEXP (x, 1);
      break;
    case UDIV:
      fun = "udiv";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case MOD:
      op[0] = XEXP (x, 0);
      st[1] = "%";
      op[1] = XEXP (x, 1);
      break;
    case UMOD:
      fun = "umod";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case SMIN:
      fun = "smin";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case SMAX:
      fun = "smax";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case UMIN:
      fun = "umin";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case UMAX:
      fun = "umax";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case NOT:
      st[0] = "!";
      op[0] = XEXP (x, 0);
      break;
    case AND:
      op[0] = XEXP (x, 0);
      st[1] = "&";
      op[1] = XEXP (x, 1);
      break;
    case IOR:
      op[0] = XEXP (x, 0);
      st[1] = "|";
      op[1] = XEXP (x, 1);
      break;
    case XOR:
      op[0] = XEXP (x, 0);
      st[1] = "^";
      op[1] = XEXP (x, 1);
      break;
    case ASHIFT:
      op[0] = XEXP (x, 0);
      st[1] = "<<";
      op[1] = XEXP (x, 1);
      break;
    case LSHIFTRT:
      op[0] = XEXP (x, 0);
      st[1] = " 0>>";
      op[1] = XEXP (x, 1);
      break;
    case ASHIFTRT:
      op[0] = XEXP (x, 0);
      st[1] = ">>";
      op[1] = XEXP (x, 1);
      break;
    case ROTATE:
      op[0] = XEXP (x, 0);
      st[1] = "<-<";
      op[1] = XEXP (x, 1);
      break;
    case ROTATERT:
      op[0] = XEXP (x, 0);
      st[1] = ">->";
      op[1] = XEXP (x, 1);
      break;
    case ABS:
      fun = "abs";
      op[0] = XEXP (x, 0);
      break;
    case SQRT:
      fun = "sqrt";
      op[0] = XEXP (x, 0);
      break;
    case FFS:
      fun = "ffs";
      op[0] = XEXP (x, 0);
      break;
    case EQ:
      op[0] = XEXP (x, 0);
      st[1] = "==";
      op[1] = XEXP (x, 1);
      break;
    case NE:
      op[0] = XEXP (x, 0);
      st[1] = "!=";
      op[1] = XEXP (x, 1);
      break;
    case GT:
      op[0] = XEXP (x, 0);
      st[1] = ">";
      op[1] = XEXP (x, 1);
      break;
    case GTU:
      fun = "gtu";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case LT:
      op[0] = XEXP (x, 0);
      st[1] = "<";
      op[1] = XEXP (x, 1);
      break;
    case LTU:
      fun = "ltu";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case GE:
      op[0] = XEXP (x, 0);
      st[1] = ">=";
      op[1] = XEXP (x, 1);
      break;
    case GEU:
      fun = "geu";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case LE:
      op[0] = XEXP (x, 0);
      st[1] = "<=";
      op[1] = XEXP (x, 1);
      break;
    case LEU:
      fun = "leu";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      break;
    case SIGN_EXTRACT:
      fun = (verbose) ? "sign_extract" : "sxt";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      op[2] = XEXP (x, 2);
      break;
    case ZERO_EXTRACT:
      fun = (verbose) ? "zero_extract" : "zxt";
      op[0] = XEXP (x, 0);
      op[1] = XEXP (x, 1);
      op[2] = XEXP (x, 2);
      break;
    case SIGN_EXTEND:
      fun = (verbose) ? "sign_extend" : "sxn";
      op[0] = XEXP (x, 0);
      break;
    case ZERO_EXTEND:
      fun = (verbose) ? "zero_extend" : "zxn";
      op[0] = XEXP (x, 0);
      break;
    case FLOAT_EXTEND:
      fun = (verbose) ? "float_extend" : "fxn";
      op[0] = XEXP (x, 0);
      break;
    case TRUNCATE:
      fun = (verbose) ? "trunc" : "trn";
      op[0] = XEXP (x, 0);
      break;
    case FLOAT_TRUNCATE:
      fun = (verbose) ? "float_trunc" : "ftr";
      op[0] = XEXP (x, 0);
      break;
    case FLOAT:
      fun = (verbose) ? "float" : "flt";
      op[0] = XEXP (x, 0);
      break;
    case UNSIGNED_FLOAT:
      fun = (verbose) ? "uns_float" : "ufl";
      op[0] = XEXP (x, 0);
      break;
    case FIX:
      fun = "fix";
      op[0] = XEXP (x, 0);
      break;
    case UNSIGNED_FIX:
      fun = (verbose) ? "uns_fix" : "ufx";
      op[0] = XEXP (x, 0);
      break;
    case PRE_DEC:
      st[0] = "--";
      op[0] = XEXP (x, 0);
      break;
    case PRE_INC:
      st[0] = "++";
      op[0] = XEXP (x, 0);
      break;
    case POST_DEC:
      op[0] = XEXP (x, 0);
      st[1] = "--";
      break;
    case POST_INC:
      op[0] = XEXP (x, 0);
      st[1] = "++";
      break;
    case CALL:
      st[0] = "call ";
      op[0] = XEXP (x, 0);
      if (verbose)
	{
	  st[1] = " argc:";
	  op[1] = XEXP (x, 1);
	}
      break;
    case IF_THEN_ELSE:
      st[0] = "{(";
      op[0] = XEXP (x, 0);
      st[1] = ")?";
      op[1] = XEXP (x, 1);
      st[2] = ":";
      op[2] = XEXP (x, 2);
      st[3] = "}";
      break;
    case TRAP_IF:
      fun = "trap_if";
      op[0] = TRAP_CONDITION (x);
      break;
    case UNSPEC:
    case UNSPEC_VOLATILE:
      {
	cur = safe_concat (buf, cur, "unspec");
	if (GET_CODE (x) == UNSPEC_VOLATILE)
	  cur = safe_concat (buf, cur, "/v");
	cur = safe_concat (buf, cur, "[");
	sep = "";
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    print_pattern (tmp, XVECEXP (x, 0, i), verbose);
	    cur = safe_concat (buf, cur, sep);
	    cur = safe_concat (buf, cur, tmp);
	    sep = ",";
	  }
	cur = safe_concat (buf, cur, "] ");
	sprintf (tmp, "%d", XINT (x, 1));
	cur = safe_concat (buf, cur, tmp);
      }
      break;
    default:
      /* if (verbose) debug_rtx (x); */
      st[0] = GET_RTX_NAME (GET_CODE (x));
      break;
    }

  /* Print this as a function? */
  if (fun)
    {
      cur = safe_concat (buf, cur, fun);
      cur = safe_concat (buf, cur, "(");
    }

  for (i = 0; i < 4; i++)
    {
      if (st[i])
	cur = safe_concat (buf, cur, st[i]);

      if (op[i])
	{
	  if (fun && i != 0)
	    cur = safe_concat (buf, cur, ",");

	  print_value (tmp, op[i], verbose);
	  cur = safe_concat (buf, cur, tmp);
	}
    }

  if (fun)
    cur = safe_concat (buf, cur, ")");
}		/* print_exp */

/* Prints rtxes, i customly classified as values. They're constants, */
/* registers, labels, symbols and memory accesses.  */

static void
print_value (buf, x, verbose)
     char *buf;
     rtx x;
     int verbose;
{
  char t[BUF_LEN];
  char *cur = buf;

  switch (GET_CODE (x))
    {
    case CONST_INT:
      sprintf (t, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
      cur = safe_concat (buf, cur, t);
      break;
    case CONST_DOUBLE:
      sprintf (t, "<0x%lx,0x%lx>", (long)XWINT (x, 2), (long)XWINT (x, 3));
      cur = safe_concat (buf, cur, t);
      break;
    case CONST_STRING:
      cur = safe_concat (buf, cur, "\"");
      cur = safe_concat (buf, cur, XSTR (x, 0));
      cur = safe_concat (buf, cur, "\"");
      break;
    case SYMBOL_REF:
      cur = safe_concat (buf, cur, "`");
      cur = safe_concat (buf, cur, XSTR (x, 0));
      cur = safe_concat (buf, cur, "'");
      break;
    case LABEL_REF:
      sprintf (t, "L%d", INSN_UID (XEXP (x, 0)));
      cur = safe_concat (buf, cur, t);
      break;
    case CONST:
      print_value (t, XEXP (x, 0), verbose);
      cur = safe_concat (buf, cur, "const(");
      cur = safe_concat (buf, cur, t);
      cur = safe_concat (buf, cur, ")");
      break;
    case HIGH:
      print_value (t, XEXP (x, 0), verbose);
      cur = safe_concat (buf, cur, "high(");
      cur = safe_concat (buf, cur, t);
      cur = safe_concat (buf, cur, ")");
      break;
    case REG:
      if (REGNO (x) < FIRST_PSEUDO_REGISTER)
	{
	  int c = reg_names[ REGNO (x) ][0];
	  if (c >= '0' && c <= '9')
	    cur = safe_concat (buf, cur, "%");

	  cur = safe_concat (buf, cur, reg_names[ REGNO (x) ]);
	}
      else
	{
	  sprintf (t, "r%d", REGNO (x));
	  cur = safe_concat (buf, cur, t);
	}
      break;
    case SUBREG:
      print_value (t, SUBREG_REG (x), verbose);
      cur = safe_concat (buf, cur, t);
      sprintf (t, "#%d", SUBREG_WORD (x));
      cur = safe_concat (buf, cur, t);
      break;
    case SCRATCH:
      cur = safe_concat (buf, cur, "scratch");
      break;
    case CC0:
      cur = safe_concat (buf, cur, "cc0");
      break;
    case PC:
      cur = safe_concat (buf, cur, "pc");
      break;
    case MEM:
      print_value (t, XEXP (x, 0), verbose);
      cur = safe_concat (buf, cur, "[");
      cur = safe_concat (buf, cur, t);
      cur = safe_concat (buf, cur, "]");
      break;
    default:
      print_exp (t, x, verbose);
      cur = safe_concat (buf, cur, t);
      break;
    }
}				/* print_value */

/* The next step in insn detalization, its pattern recognition */

static void
print_pattern (buf, x, verbose)
     char *buf;
     rtx x;
     int verbose;
{
  char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];

  switch (GET_CODE (x))
    {
    case SET:
      print_value (t1, SET_DEST (x), verbose);
      print_value (t2, SET_SRC (x), verbose);
      sprintf (buf, "%s=%s", t1, t2);
      break;
    case RETURN:
      sprintf (buf, "return");
      break;
    case CALL:
      print_exp (buf, x, verbose);
      break;
    case CLOBBER:
      print_value (t1, XEXP (x, 0), verbose);
      sprintf (buf, "clobber %s", t1);
      break;
    case USE:
      print_value (t1, XEXP (x, 0), verbose);
      sprintf (buf, "use %s", t1);
      break;
    case PARALLEL:
      {
	int i;

	sprintf (t1, "{");
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    print_pattern (t2, XVECEXP (x, 0, i), verbose);
	    sprintf (t3, "%s%s;", t1, t2);
	    strcpy (t1, t3);
	  }
	sprintf (buf, "%s}", t1);
      }
      break;
    case SEQUENCE:
      {
	int i;

	sprintf (t1, "%%{");
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    print_insn (t2, XVECEXP (x, 0, i), verbose);
	    sprintf (t3, "%s%s;", t1, t2);
	    strcpy (t1, t3);
	  }
	sprintf (buf, "%s%%}", t1);
      }
      break;
    case ASM_INPUT:
      sprintf (buf, "asm {%s}", XSTR (x, 0));
      break;
    case ADDR_VEC:
      break;
    case ADDR_DIFF_VEC:
      print_value (buf, XEXP (x, 0), verbose);
      break;
    case TRAP_IF:
      print_value (t1, TRAP_CONDITION (x), verbose);
      sprintf (buf, "trap_if %s", t1);
      break;
    case UNSPEC:
      {
	int i;

	sprintf (t1, "unspec{");
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    print_pattern (t2, XVECEXP (x, 0, i), verbose);
	    sprintf (t3, "%s%s;", t1, t2);
	    strcpy (t1, t3);
	  }
	sprintf (buf, "%s}", t1);
      }
      break;
    case UNSPEC_VOLATILE:
      {
	int i;

	sprintf (t1, "unspec/v{");
	for (i = 0; i < XVECLEN (x, 0); i++)
	  {
	    print_pattern (t2, XVECEXP (x, 0, i), verbose);
	    sprintf (t3, "%s%s;", t1, t2);
	    strcpy (t1, t3);
	  }
	sprintf (buf, "%s}", t1);
      }
      break;
    default:
      print_value (buf, x, verbose);
    }
}				/* print_pattern */

/* This is the main function in rtl visualization mechanism. It
   accepts an rtx and tries to recognize it as an insn, then prints it
   properly in human readable form, resembling assembler mnemonics.  */
/* For every insn it prints its UID and BB the insn belongs */
/* too. (probably the last "option" should be extended somehow, since */
/* it depends now on sched.c inner variables ...) */

static void
print_insn (buf, x, verbose)
     char *buf;
     rtx x;
     int verbose;
{
  char t[BUF_LEN];
  rtx insn = x;

  switch (GET_CODE (x))
    {
    case INSN:
      print_pattern (t, PATTERN (x), verbose);
      if (verbose)
	sprintf (buf, "b%d: i% 4d: %s", INSN_BB (x),
		 INSN_UID (x), t);
      else
	sprintf (buf, "%-4d %s", INSN_UID (x), t);
      break;
    case JUMP_INSN:
      print_pattern (t, PATTERN (x), verbose);
      if (verbose)
	sprintf (buf, "b%d: i% 4d: jump %s", INSN_BB (x),
		 INSN_UID (x), t);
      else
	sprintf (buf, "%-4d %s", INSN_UID (x), t);
      break;
    case CALL_INSN:
      x = PATTERN (insn);
      if (GET_CODE (x) == PARALLEL)
	{
	  x = XVECEXP (x, 0, 0);
	  print_pattern (t, x, verbose);
	}
      else
	strcpy (t, "call <...>");
      if (verbose)
	sprintf (buf, "b%d: i% 4d: %s", INSN_BB (insn),
		 INSN_UID (insn), t);
      else
	sprintf (buf, "%-4d %s", INSN_UID (insn), t);
      break;
    case CODE_LABEL:
      sprintf (buf, "L%d:", INSN_UID (x));
      break;
    case BARRIER:
      sprintf (buf, "i% 4d: barrier", INSN_UID (x));
      break;
    case NOTE:
      if (NOTE_LINE_NUMBER (x) > 0)
	sprintf (buf, "%4d note \"%s\" %d", INSN_UID (x),
		 NOTE_SOURCE_FILE (x), NOTE_LINE_NUMBER (x));
      else
	sprintf (buf, "%4d %s", INSN_UID (x),
		 GET_NOTE_INSN_NAME (NOTE_LINE_NUMBER (x)));
      break;
    default:
      if (verbose)
	{
	  sprintf (buf, "Not an INSN at all\n");
	  debug_rtx (x);
	}
      else
	sprintf (buf, "i%-4d  <What?>", INSN_UID (x));
    }
}				/* print_insn */

/* Print visualization debugging info */

static void
print_block_visualization (b, s)
     int b;
     char *s;
{
  int unit, i;

  /* print header */
  fprintf (dump, "\n;;   ==================== scheduling visualization for block %d %s \n", b, s);

  /* Print names of units */
  fprintf (dump, ";;   %-8s", "clock");
  for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
    if (function_units[unit].bitmask & target_units)
      for (i = 0; i < function_units[unit].multiplicity; i++)
	fprintf (dump, "  %-33s", function_units[unit].name);
  fprintf (dump, "  %-8s\n", "no-unit");

  fprintf (dump, ";;   %-8s", "=====");
  for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
    if (function_units[unit].bitmask & target_units)
      for (i = 0; i < function_units[unit].multiplicity; i++)
	fprintf (dump, "  %-33s", "==============================");
  fprintf (dump, "  %-8s\n", "=======");

  /* Print insns in each cycle */
  fprintf (dump, "%s\n", visual_tbl);
}

/* Print insns in the 'no_unit' column of visualization */

static void
visualize_no_unit (insn)
     rtx insn;
{
  vis_no_unit[n_vis_no_unit] = insn;
  n_vis_no_unit++;
}

/* Print insns scheduled in clock, for visualization.  */

static void
visualize_scheduled_insns (b, clock)
     int b, clock;
{
  int i, unit;

  /* if no more room, split table into two */
  if (n_visual_lines >= MAX_VISUAL_LINES)
    {
      print_block_visualization (b, "(incomplete)");
      init_block_visualization ();
    }

  n_visual_lines++;

  sprintf (visual_tbl + strlen (visual_tbl), ";;   %-8d", clock);
  for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
    if (function_units[unit].bitmask & target_units)
      for (i = 0; i < function_units[unit].multiplicity; i++)
	{
	  int instance = unit + i * FUNCTION_UNITS_SIZE;
	  rtx insn = unit_last_insn[instance];

	  /* print insns that still keep the unit busy */
	  if (insn &&
	      actual_hazard_this_instance (unit, instance, insn, clock, 0))
	    {
	      char str[BUF_LEN];
	      print_insn (str, insn, 0);
	      str[INSN_LEN] = '\0';
	      sprintf (visual_tbl + strlen (visual_tbl), "  %-33s", str);
	    }
	  else
	    sprintf (visual_tbl + strlen (visual_tbl), "  %-33s", "------------------------------");
	}

  /* print insns that are not assigned to any unit */
  for (i = 0; i < n_vis_no_unit; i++)
    sprintf (visual_tbl + strlen (visual_tbl), "  %-8d",
	     INSN_UID (vis_no_unit[i]));
  n_vis_no_unit = 0;

  sprintf (visual_tbl + strlen (visual_tbl), "\n");
}

/* Print stalled cycles */

static void
visualize_stall_cycles (b, stalls)
     int b, stalls;
{
  int i;

  /* if no more room, split table into two */
  if (n_visual_lines >= MAX_VISUAL_LINES)
    {
      print_block_visualization (b, "(incomplete)");
      init_block_visualization ();
    }

  n_visual_lines++;

  sprintf (visual_tbl + strlen (visual_tbl), ";;       ");
  for (i = 0; i < stalls; i++)
    sprintf (visual_tbl + strlen (visual_tbl), ".");
  sprintf (visual_tbl + strlen (visual_tbl), "\n");
}

/* move_insn1: Remove INSN from insn chain, and link it after LAST insn */

static rtx
move_insn1 (insn, last)
     rtx insn, last;
{
  NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
  PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);

  NEXT_INSN (insn) = NEXT_INSN (last);
  PREV_INSN (NEXT_INSN (last)) = insn;

  NEXT_INSN (last) = insn;
  PREV_INSN (insn) = last;

  return insn;
}

/* Search INSN for fake REG_DEAD note pairs for NOTE_INSN_SETJMP,
   NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
   NOTEs.  The REG_DEAD note following first one is contains the saved
   value for NOTE_BLOCK_NUMBER which is useful for
   NOTE_INSN_EH_REGION_{BEG,END} NOTEs.  LAST is the last instruction
   output by the instruction scheduler.  Return the new value of LAST.  */

static rtx
reemit_notes (insn, last)
     rtx insn;
     rtx last;
{
  rtx note, retval;

  retval = last;
  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    {
      if (REG_NOTE_KIND (note) == REG_DEAD
	  && GET_CODE (XEXP (note, 0)) == CONST_INT)
	{
	  int note_type = INTVAL (XEXP (note, 0));
	  if (note_type == NOTE_INSN_SETJMP)
	    {
	      retval = emit_note_after (NOTE_INSN_SETJMP, insn);
	      CONST_CALL_P (retval) = CONST_CALL_P (note);
	      remove_note (insn, note);
	      note = XEXP (note, 1);
	    }
	  else if (note_type == NOTE_INSN_RANGE_START
                   || note_type == NOTE_INSN_RANGE_END)
	    {
	      last = emit_note_before (note_type, last);
	      remove_note (insn, note);
	      note = XEXP (note, 1);
	      NOTE_RANGE_INFO (last) = XEXP (note, 0);
	    }
	  else
	    {
	      last = emit_note_before (INTVAL (XEXP (note, 0)), last);
	      remove_note (insn, note);
	      note = XEXP (note, 1);
	      NOTE_BLOCK_NUMBER (last) = INTVAL (XEXP (note, 0));
	    }
	  remove_note (insn, note);
	}
    }
  return retval;
}

/* Move INSN, and all insns which should be issued before it,
   due to SCHED_GROUP_P flag.  Reemit notes if needed.

   Return the last insn emitted by the scheduler, which is the
   return value from the first call to reemit_notes.  */

static rtx
move_insn (insn, last)
     rtx insn, last;
{
  rtx retval = NULL;

  /* If INSN has SCHED_GROUP_P set, then issue it and any other
     insns with SCHED_GROUP_P set first.  */
  while (SCHED_GROUP_P (insn))
    {
      rtx prev = PREV_INSN (insn);

      /* Move a SCHED_GROUP_P insn.  */
      move_insn1 (insn, last);
      /* If this is the first call to reemit_notes, then record
	 its return value.  */
      if (retval == NULL_RTX)
	retval = reemit_notes (insn, insn);
      else
	reemit_notes (insn, insn);
      insn = prev;
    }

  /* Now move the first non SCHED_GROUP_P insn.  */
  move_insn1 (insn, last);

  /* If this is the first call to reemit_notes, then record
     its return value.  */
  if (retval == NULL_RTX)
    retval = reemit_notes (insn, insn);
  else
    reemit_notes (insn, insn);

  return retval;
}

/* Return an insn which represents a SCHED_GROUP, which is
   the last insn in the group.  */

static rtx
group_leader (insn)
     rtx insn;
{
  rtx prev;

  do
    {
      prev = insn;
      insn = next_nonnote_insn (insn);
    }
  while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));

  return prev;
}

/* Use forward list scheduling to rearrange insns of block BB in region RGN,
   possibly bringing insns from subsequent blocks in the same region.
   Return number of insns scheduled.  */

static int
schedule_block (bb, rgn_n_insns)
     int bb;
     int rgn_n_insns;
{
  /* Local variables.  */
  rtx insn, last;
  rtx *ready;
  int i;
  int n_ready = 0;
  int can_issue_more;

  /* flow block of this bb */
  int b = BB_TO_BLOCK (bb);

  /* target_n_insns == number of insns in b before scheduling starts.
     sched_target_n_insns == how many of b's insns were scheduled.
     sched_n_insns == how many insns were scheduled in b */
  int target_n_insns = 0;
  int sched_target_n_insns = 0;
  int sched_n_insns = 0;

#define NEED_NOTHING	0
#define NEED_HEAD	1
#define NEED_TAIL	2
  int new_needs;

  /* head/tail info for this block */
  rtx prev_head;
  rtx next_tail;
  rtx head;
  rtx tail;
  int bb_src;

  /* We used to have code to avoid getting parameters moved from hard
     argument registers into pseudos.

     However, it was removed when it proved to be of marginal benefit
     and caused problems because schedule_block and compute_forward_dependences
     had different notions of what the "head" insn was.  */
  get_block_head_tail (bb, &head, &tail);

  /* Interblock scheduling could have moved the original head insn from this
     block into a proceeding block.  This may also cause schedule_block and
     compute_forward_dependences to have different notions of what the
     "head" insn was.

     If the interblock movement happened to make this block start with
     some notes (LOOP, EH or SETJMP) before the first real insn, then
     HEAD will have various special notes attached to it which must be
     removed so that we don't end up with extra copies of the notes.  */
  if (GET_RTX_CLASS (GET_CODE (head)) == 'i')
    {
      rtx note;

      for (note = REG_NOTES (head); note; note = XEXP (note, 1))
	if (REG_NOTE_KIND (note) == REG_DEAD
	    && GET_CODE (XEXP (note, 0)) == CONST_INT)
	  remove_note (head, note);
    }

  next_tail = NEXT_INSN (tail);
  prev_head = PREV_INSN (head);

  /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
     to schedule this block.  */
  if (head == tail
      && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
    return (sched_n_insns);

  /* debug info */
  if (sched_verbose)
    {
      fprintf (dump, ";;   ======================================================\n");
      fprintf (dump,
	       ";;   -- basic block %d from %d to %d -- %s reload\n",
	       b, INSN_UID (BLOCK_HEAD (b)), INSN_UID (BLOCK_END (b)),
	       (reload_completed ? "after" : "before"));
      fprintf (dump, ";;   ======================================================\n");
      fprintf (dump, "\n");

      visual_tbl = (char *) alloca (get_visual_tbl_length ());
      init_block_visualization ();
    }

  /* remove remaining note insns from the block, save them in
     note_list.  These notes are restored at the end of
     schedule_block ().  */
  note_list = 0;
  rm_other_notes (head, tail);

  target_bb = bb;

  /* prepare current target block info */
  if (current_nr_blocks > 1)
    {
      candidate_table = (candidate *) alloca (current_nr_blocks * sizeof (candidate));

      bblst_last = 0;
      /* ??? It is not clear why bblst_size is computed this way.  The original
	 number was clearly too small as it resulted in compiler failures.
	 Multiplying by the original number by 2 (to account for update_bbs
	 members) seems to be a reasonable solution.  */
      /* ??? Or perhaps there is a bug somewhere else in this file?  */
      bblst_size = (current_nr_blocks - bb) * rgn_nr_edges * 2;
      bblst_table = (int *) alloca (bblst_size * sizeof (int));

      bitlst_table_last = 0;
      bitlst_table_size = rgn_nr_edges;
      bitlst_table = (int *) alloca (rgn_nr_edges * sizeof (int));

      compute_trg_info (bb);
    }

  clear_units ();

  /* Allocate the ready list */
  ready = (rtx *) alloca ((rgn_n_insns + 1) * sizeof (rtx));

  /* Print debugging information.  */
  if (sched_verbose >= 5)
    debug_dependencies ();


  /* Initialize ready list with all 'ready' insns in target block.
     Count number of insns in the target block being scheduled.  */
  n_ready = 0;
  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx next;

      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;
      next = NEXT_INSN (insn);

      if (INSN_DEP_COUNT (insn) == 0
	  && (SCHED_GROUP_P (next) == 0 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
	ready[n_ready++] = insn;
      if (!(SCHED_GROUP_P (insn)))
	target_n_insns++;
    }

  /* Add to ready list all 'ready' insns in valid source blocks.
     For speculative insns, check-live, exception-free, and
     issue-delay.  */
  for (bb_src = bb + 1; bb_src < current_nr_blocks; bb_src++)
    if (IS_VALID (bb_src))
      {
	rtx src_head;
	rtx src_next_tail;
	rtx tail, head;

	get_block_head_tail (bb_src, &head, &tail);
	src_next_tail = NEXT_INSN (tail);
	src_head = head;

	if (head == tail
	    && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
	  continue;

	for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
	  {
	    if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	      continue;

	    if (!CANT_MOVE (insn)
		&& (!IS_SPECULATIVE_INSN (insn)
		    || (insn_issue_delay (insn) <= 3
			&& check_live (insn, bb_src)
			&& is_exception_free (insn, bb_src, target_bb))))

	      {
		rtx next;

		next = NEXT_INSN (insn);
		if (INSN_DEP_COUNT (insn) == 0
		    && (SCHED_GROUP_P (next) == 0
			|| GET_RTX_CLASS (GET_CODE (next)) != 'i'))
		  ready[n_ready++] = insn;
	      }
	  }
      }

#ifdef MD_SCHED_INIT
  MD_SCHED_INIT (dump, sched_verbose);
#endif

  /* no insns scheduled in this block yet */
  last_scheduled_insn = 0;

  /* Sort the ready list */
  SCHED_SORT (ready, n_ready);
#ifdef MD_SCHED_REORDER
  MD_SCHED_REORDER (dump, sched_verbose, ready, n_ready);
#endif

  if (sched_verbose >= 2)
    {
      fprintf (dump, ";;\t\tReady list initially:             ");
      debug_ready_list (ready, n_ready);
    }

  /* Q_SIZE is the total number of insns in the queue.  */
  q_ptr = 0;
  q_size = 0;
  clock_var = 0;
  last_clock_var = 0;
  bzero ((char *) insn_queue, sizeof (insn_queue));

  /* We start inserting insns after PREV_HEAD.  */
  last = prev_head;

  /* Initialize INSN_QUEUE, LIST and NEW_NEEDS.  */
  new_needs = (NEXT_INSN (prev_head) == BLOCK_HEAD (b)
	       ? NEED_HEAD : NEED_NOTHING);
  if (PREV_INSN (next_tail) == BLOCK_END (b))
    new_needs |= NEED_TAIL;

  /* loop until all the insns in BB are scheduled.  */
  while (sched_target_n_insns < target_n_insns)
    {
      int b1;

      clock_var++;

      /* Add to the ready list all pending insns that can be issued now.
         If there are no ready insns, increment clock until one
         is ready and add all pending insns at that point to the ready
         list.  */
      n_ready = queue_to_ready (ready, n_ready);

      if (n_ready == 0)
	abort ();

      if (sched_verbose >= 2)
	{
	  fprintf (dump, ";;\t\tReady list after queue_to_ready:  ");
	  debug_ready_list (ready, n_ready);
	}

      /* Sort the ready list.  */
      SCHED_SORT (ready, n_ready);
#ifdef MD_SCHED_REORDER
      MD_SCHED_REORDER (dump, sched_verbose, ready, n_ready);
#endif

      if (sched_verbose)
	{
	  fprintf (dump, "\n;;\tReady list (t =%3d):  ", clock_var);
	  debug_ready_list (ready, n_ready);
	}

      /* Issue insns from ready list.
         It is important to count down from n_ready, because n_ready may change
         as insns are issued.  */
      can_issue_more = issue_rate;
      for (i = n_ready - 1; i >= 0 && can_issue_more; i--)
	{
	  rtx insn = ready[i];
	  int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);

	  if (cost > 1)
	    {
	      queue_insn (insn, cost);
	      ready[i] = ready[--n_ready];	/* remove insn from ready list */
	    }
	  else if (cost == 0)
	    {
	      /* an interblock motion? */
	      if (INSN_BB (insn) != target_bb)
		{
		  rtx temp;

		  if (IS_SPECULATIVE_INSN (insn))
		    {

		      if (!check_live (insn, INSN_BB (insn)))
			{
			  /* speculative motion, live check failed, remove
			     insn from ready list */
			  ready[i] = ready[--n_ready];
			  continue;
			}
		      update_live (insn, INSN_BB (insn));

		      /* for speculative load, mark insns fed by it.  */
		      if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
			set_spec_fed (insn);

		      nr_spec++;
		    }
		  nr_inter++;

		  temp = insn;
		  while (SCHED_GROUP_P (temp))
		    temp = PREV_INSN (temp);

		  /* Update source block boundaries.   */
		  b1 = INSN_BLOCK (temp);
		  if (temp == BLOCK_HEAD (b1)
		      && insn == BLOCK_END (b1))
		    {
		      /* We moved all the insns in the basic block.
			 Emit a note after the last insn and update the
			 begin/end boundaries to point to the note.  */
		      emit_note_after (NOTE_INSN_DELETED, insn);
		      BLOCK_END (b1) = NEXT_INSN (insn);
		      BLOCK_HEAD (b1) = NEXT_INSN (insn);
		    }
		  else if (insn == BLOCK_END (b1))
		    {
		      /* We took insns from the end of the basic block,
			 so update the end of block boundary so that it
			 points to the first insn we did not move.  */
		      BLOCK_END (b1) = PREV_INSN (temp);
		    }
		  else if (temp == BLOCK_HEAD (b1))
		    {
		      /* We took insns from the start of the basic block,
			 so update the start of block boundary so that
			 it points to the first insn we did not move.  */
		      BLOCK_HEAD (b1) = NEXT_INSN (insn);
		    }
		}
	      else
		{
		  /* in block motion */
		  sched_target_n_insns++;
		}

	      last_scheduled_insn = insn;
	      last = move_insn (insn, last);
	      sched_n_insns++;

#ifdef MD_SCHED_VARIABLE_ISSUE
	      MD_SCHED_VARIABLE_ISSUE (dump, sched_verbose, insn, can_issue_more);
#else
	      can_issue_more--;
#endif

	      n_ready = schedule_insn (insn, ready, n_ready, clock_var);

	      /* remove insn from ready list */
	      ready[i] = ready[--n_ready];

	      /* close this block after scheduling its jump */
	      if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
		break;
	    }
	}

      /* debug info */
      if (sched_verbose)
	{
	  visualize_scheduled_insns (b, clock_var);
	}
    }

  /* debug info */
  if (sched_verbose)
    {
      fprintf (dump, ";;\tReady list (final):  ");
      debug_ready_list (ready, n_ready);
      print_block_visualization (b, "");
    }

  /* Sanity check -- queue must be empty now.  Meaningless if region has
     multiple bbs.  */
  if (current_nr_blocks > 1)
    if (!flag_schedule_interblock && q_size != 0)
      abort ();

  /* update head/tail boundaries.  */
  head = NEXT_INSN (prev_head);
  tail = last;

  /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
     previously found among the insns.  Insert them at the beginning
     of the insns.  */
  if (note_list != 0)
    {
      rtx note_head = note_list;

      while (PREV_INSN (note_head))
	{
	  note_head = PREV_INSN (note_head);
	}

      PREV_INSN (note_head) = PREV_INSN (head);
      NEXT_INSN (PREV_INSN (head)) = note_head;
      PREV_INSN (head) = note_list;
      NEXT_INSN (note_list) = head;
      head = note_head;
    }

  /* update target block boundaries.  */
  if (new_needs & NEED_HEAD)
    BLOCK_HEAD (b) = head;

  if (new_needs & NEED_TAIL)
    BLOCK_END (b) = tail;

  /* debugging */
  if (sched_verbose)
    {
      fprintf (dump, ";;   total time = %d\n;;   new basic block head = %d\n",
	       clock_var, INSN_UID (BLOCK_HEAD (b)));
      fprintf (dump, ";;   new basic block end = %d\n\n",
	       INSN_UID (BLOCK_END (b)));
    }

  return (sched_n_insns);
}				/* schedule_block () */


/* print the bit-set of registers, S.  callable from debugger */

extern void
debug_reg_vector (s)
     regset s;
{
  int regno;

  EXECUTE_IF_SET_IN_REG_SET (s, 0, regno,
			     {
			       fprintf (dump, " %d", regno);
			     });

  fprintf (dump, "\n");
}

/* Use the backward dependences from LOG_LINKS to build
   forward dependences in INSN_DEPEND.  */

static void
compute_block_forward_dependences (bb)
     int bb;
{
  rtx insn, link;
  rtx tail, head;
  rtx next_tail;
  enum reg_note dep_type;

  get_block_head_tail (bb, &head, &tail);
  next_tail = NEXT_INSN (tail);
  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;

      insn = group_leader (insn);

      for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
	{
	  rtx x = group_leader (XEXP (link, 0));
	  rtx new_link;

	  if (x != XEXP (link, 0))
	    continue;

	  /* Ignore dependences upon deleted insn */
	  if (GET_CODE (x) == NOTE || INSN_DELETED_P (x))
	    continue;
	  if (find_insn_list (insn, INSN_DEPEND (x)))
	    continue;

	  new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));

	  dep_type = REG_NOTE_KIND (link);
	  PUT_REG_NOTE_KIND (new_link, dep_type);

	  INSN_DEPEND (x) = new_link;
	  INSN_DEP_COUNT (insn) += 1;
	}
    }
}

/* Initialize variables for region data dependence analysis.
   n_bbs is the number of region blocks */

__inline static void
init_rgn_data_dependences (n_bbs)
     int n_bbs;
{
  int bb;

  /* variables for which one copy exists for each block */
  bzero ((char *) bb_pending_read_insns, n_bbs * sizeof (rtx));
  bzero ((char *) bb_pending_read_mems, n_bbs * sizeof (rtx));
  bzero ((char *) bb_pending_write_insns, n_bbs * sizeof (rtx));
  bzero ((char *) bb_pending_write_mems, n_bbs * sizeof (rtx));
  bzero ((char *) bb_pending_lists_length, n_bbs * sizeof (rtx));
  bzero ((char *) bb_last_pending_memory_flush, n_bbs * sizeof (rtx));
  bzero ((char *) bb_last_function_call, n_bbs * sizeof (rtx));
  bzero ((char *) bb_sched_before_next_call, n_bbs * sizeof (rtx));

  /* Create an insn here so that we can hang dependencies off of it later.  */
  for (bb = 0; bb < n_bbs; bb++)
    {
      bb_sched_before_next_call[bb] =
	gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
		      NULL_RTX, 0, NULL_RTX, NULL_RTX);
      LOG_LINKS (bb_sched_before_next_call[bb]) = 0;
    }
}

/* Add dependences so that branches are scheduled to run last in their block */

static void
add_branch_dependences (head, tail)
     rtx head, tail;
{

  rtx insn, last;

  /* For all branches, calls, uses, and cc0 setters, force them to remain
     in order at the end of the block by adding dependencies and giving
     the last a high priority.  There may be notes present, and prev_head
     may also be a note.

     Branches must obviously remain at the end.  Calls should remain at the
     end since moving them results in worse register allocation.  Uses remain
     at the end to ensure proper register allocation.  cc0 setters remaim
     at the end because they can't be moved away from their cc0 user.  */
  insn = tail;
  last = 0;
  while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
	 || (GET_CODE (insn) == INSN
	     && (GET_CODE (PATTERN (insn)) == USE
#ifdef HAVE_cc0
		 || sets_cc0_p (PATTERN (insn))
#endif
	     ))
	 || GET_CODE (insn) == NOTE)
    {
      if (GET_CODE (insn) != NOTE)
	{
	  if (last != 0
	      && !find_insn_list (insn, LOG_LINKS (last)))
	    {
	      add_dependence (last, insn, REG_DEP_ANTI);
	      INSN_REF_COUNT (insn)++;
	    }

	  CANT_MOVE (insn) = 1;

	  last = insn;
	  /* Skip over insns that are part of a group.
	     Make each insn explicitly depend on the previous insn.
	     This ensures that only the group header will ever enter
	     the ready queue (and, when scheduled, will automatically
	     schedule the SCHED_GROUP_P block).  */
	  while (SCHED_GROUP_P (insn))
	    {
	      rtx temp = prev_nonnote_insn (insn);
	      add_dependence (insn, temp, REG_DEP_ANTI);
	      insn = temp;
	    }
	}

      /* Don't overrun the bounds of the basic block.  */
      if (insn == head)
	break;

      insn = PREV_INSN (insn);
    }

  /* make sure these insns are scheduled last in their block */
  insn = last;
  if (insn != 0)
    while (insn != head)
      {
	insn = prev_nonnote_insn (insn);

	if (INSN_REF_COUNT (insn) != 0)
	  continue;

	if (!find_insn_list (last, LOG_LINKS (insn)))
	  add_dependence (last, insn, REG_DEP_ANTI);
	INSN_REF_COUNT (insn) = 1;

	/* Skip over insns that are part of a group.  */
	while (SCHED_GROUP_P (insn))
	  insn = prev_nonnote_insn (insn);
      }
}

/* Compute bacward dependences inside BB.  In a multiple blocks region:
   (1) a bb is analyzed after its predecessors, and (2) the lists in
   effect at the end of bb (after analyzing for bb) are inherited by
   bb's successrs.

   Specifically for reg-reg data dependences, the block insns are
   scanned by sched_analyze () top-to-bottom.  Two lists are
   naintained by sched_analyze (): reg_last_defs[] for register DEFs,
   and reg_last_uses[] for register USEs.

   When analysis is completed for bb, we update for its successors:
   ;  - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
   ;  - USES[succ] = Union (USES [succ], DEFS [bb])

   The mechanism for computing mem-mem data dependence is very
   similar, and the result is interblock dependences in the region.  */

static void
compute_block_backward_dependences (bb)
     int bb;
{
  int b;
  rtx x;
  rtx head, tail;
  int max_reg = max_reg_num ();

  b = BB_TO_BLOCK (bb);

  if (current_nr_blocks == 1)
    {
      reg_last_uses = (rtx *) alloca (max_reg * sizeof (rtx));
      reg_last_sets = (rtx *) alloca (max_reg * sizeof (rtx));
      reg_last_clobbers = (rtx *) alloca (max_reg * sizeof (rtx));

      bzero ((char *) reg_last_uses, max_reg * sizeof (rtx));
      bzero ((char *) reg_last_sets, max_reg * sizeof (rtx));
      bzero ((char *) reg_last_clobbers, max_reg * sizeof (rtx));

      pending_read_insns = 0;
      pending_read_mems = 0;
      pending_write_insns = 0;
      pending_write_mems = 0;
      pending_lists_length = 0;
      last_function_call = 0;
      last_pending_memory_flush = 0;
      sched_before_next_call
	= gen_rtx_INSN (VOIDmode, 0, NULL_RTX, NULL_RTX,
			NULL_RTX, 0, NULL_RTX, NULL_RTX);
      LOG_LINKS (sched_before_next_call) = 0;
    }
  else
    {
      reg_last_uses = bb_reg_last_uses[bb];
      reg_last_sets = bb_reg_last_sets[bb];
      reg_last_clobbers = bb_reg_last_clobbers[bb];

      pending_read_insns = bb_pending_read_insns[bb];
      pending_read_mems = bb_pending_read_mems[bb];
      pending_write_insns = bb_pending_write_insns[bb];
      pending_write_mems = bb_pending_write_mems[bb];
      pending_lists_length = bb_pending_lists_length[bb];
      last_function_call = bb_last_function_call[bb];
      last_pending_memory_flush = bb_last_pending_memory_flush[bb];

      sched_before_next_call = bb_sched_before_next_call[bb];
    }

  /* do the analysis for this block */
  get_block_head_tail (bb, &head, &tail);
  sched_analyze (head, tail);
  add_branch_dependences (head, tail);

  if (current_nr_blocks > 1)
    {
      int e, first_edge;
      int b_succ, bb_succ;
      int reg;
      rtx link_insn, link_mem;
      rtx u;

      /* these lists should point to the right place, for correct freeing later.  */
      bb_pending_read_insns[bb] = pending_read_insns;
      bb_pending_read_mems[bb] = pending_read_mems;
      bb_pending_write_insns[bb] = pending_write_insns;
      bb_pending_write_mems[bb] = pending_write_mems;

      /* bb's structures are inherited by it's successors */
      first_edge = e = OUT_EDGES (b);
      if (e > 0)
	do
	  {
	    b_succ = TO_BLOCK (e);
	    bb_succ = BLOCK_TO_BB (b_succ);

	    /* only bbs "below" bb, in the same region, are interesting */
	    if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
		|| bb_succ <= bb)
	      {
		e = NEXT_OUT (e);
		continue;
	      }

	    for (reg = 0; reg < max_reg; reg++)
	      {

		/* reg-last-uses lists are inherited by bb_succ */
		for (u = reg_last_uses[reg]; u; u = XEXP (u, 1))
		  {
		    if (find_insn_list (XEXP (u, 0), (bb_reg_last_uses[bb_succ])[reg]))
		      continue;

		    (bb_reg_last_uses[bb_succ])[reg]
		      = alloc_INSN_LIST (XEXP (u, 0),
					 (bb_reg_last_uses[bb_succ])[reg]);
		  }

		/* reg-last-defs lists are inherited by bb_succ */
		for (u = reg_last_sets[reg]; u; u = XEXP (u, 1))
		  {
		    if (find_insn_list (XEXP (u, 0), (bb_reg_last_sets[bb_succ])[reg]))
		      continue;

		    (bb_reg_last_sets[bb_succ])[reg]
		      = alloc_INSN_LIST (XEXP (u, 0),
					 (bb_reg_last_sets[bb_succ])[reg]);
		  }

		for (u = reg_last_clobbers[reg]; u; u = XEXP (u, 1))
		  {
		    if (find_insn_list (XEXP (u, 0), (bb_reg_last_clobbers[bb_succ])[reg]))
		      continue;

		    (bb_reg_last_clobbers[bb_succ])[reg]
		      = alloc_INSN_LIST (XEXP (u, 0),
					 (bb_reg_last_clobbers[bb_succ])[reg]);
		  }
	      }

	    /* mem read/write lists are inherited by bb_succ */
	    link_insn = pending_read_insns;
	    link_mem = pending_read_mems;
	    while (link_insn)
	      {
		if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
					  bb_pending_read_insns[bb_succ],
					  bb_pending_read_mems[bb_succ])))
		  add_insn_mem_dependence (&bb_pending_read_insns[bb_succ],
					   &bb_pending_read_mems[bb_succ],
				   XEXP (link_insn, 0), XEXP (link_mem, 0));
		link_insn = XEXP (link_insn, 1);
		link_mem = XEXP (link_mem, 1);
	      }

	    link_insn = pending_write_insns;
	    link_mem = pending_write_mems;
	    while (link_insn)
	      {
		if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
					  bb_pending_write_insns[bb_succ],
					  bb_pending_write_mems[bb_succ])))
		  add_insn_mem_dependence (&bb_pending_write_insns[bb_succ],
					   &bb_pending_write_mems[bb_succ],
				   XEXP (link_insn, 0), XEXP (link_mem, 0));

		link_insn = XEXP (link_insn, 1);
		link_mem = XEXP (link_mem, 1);
	      }

	    /* last_function_call is inherited by bb_succ */
	    for (u = last_function_call; u; u = XEXP (u, 1))
	      {
		if (find_insn_list (XEXP (u, 0), bb_last_function_call[bb_succ]))
		  continue;

		bb_last_function_call[bb_succ]
		  = alloc_INSN_LIST (XEXP (u, 0),
				     bb_last_function_call[bb_succ]);
	      }

	    /* last_pending_memory_flush is inherited by bb_succ */
	    for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
	      {
		if (find_insn_list (XEXP (u, 0), bb_last_pending_memory_flush[bb_succ]))
		  continue;

		bb_last_pending_memory_flush[bb_succ]
		  = alloc_INSN_LIST (XEXP (u, 0),
				     bb_last_pending_memory_flush[bb_succ]);
	      }

	    /* sched_before_next_call is inherited by bb_succ */
	    x = LOG_LINKS (sched_before_next_call);
	    for (; x; x = XEXP (x, 1))
	      add_dependence (bb_sched_before_next_call[bb_succ],
			      XEXP (x, 0), REG_DEP_ANTI);

	    e = NEXT_OUT (e);
	  }
	while (e != first_edge);
    }

  /* Free up the INSN_LISTs 

     Note this loop is executed max_reg * nr_regions times.  It's first 
     implementation accounted for over 90% of the calls to free_list.
     The list was empty for the vast majority of those calls.  On the PA,
     not calling free_list in those cases improves -O2 compile times by
     3-5% on average.  */
  for (b = 0; b < max_reg; ++b)
    {
      if (reg_last_clobbers[b])
	free_list (&reg_last_clobbers[b], &unused_insn_list);
      if (reg_last_sets[b])
	free_list (&reg_last_sets[b], &unused_insn_list);
      if (reg_last_uses[b])
	free_list (&reg_last_uses[b], &unused_insn_list);
    }

  /* Assert that we won't need bb_reg_last_* for this block anymore.  */
  if (current_nr_blocks > 1)
    {
      bb_reg_last_uses[bb] = (rtx *) NULL_RTX;
      bb_reg_last_sets[bb] = (rtx *) NULL_RTX;
      bb_reg_last_clobbers[bb] = (rtx *) NULL_RTX;
    }
}

/* Print dependences for debugging, callable from debugger */

void
debug_dependencies ()
{
  int bb;

  fprintf (dump, ";;   --------------- forward dependences: ------------ \n");
  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      if (1)
	{
	  rtx head, tail;
	  rtx next_tail;
	  rtx insn;

	  get_block_head_tail (bb, &head, &tail);
	  next_tail = NEXT_INSN (tail);
	  fprintf (dump, "\n;;   --- Region Dependences --- b %d bb %d \n",
		   BB_TO_BLOCK (bb), bb);

	  fprintf (dump, ";;   %7s%6s%6s%6s%6s%6s%11s%6s\n",
	  "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
	  fprintf (dump, ";;   %7s%6s%6s%6s%6s%6s%11s%6s\n",
	  "----", "----", "--", "---", "----", "----", "--------", "-----");
	  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
	    {
	      rtx link;
	      int unit, range;

	      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
		{
		  int n;
		  fprintf (dump, ";;   %6d ", INSN_UID (insn));
		  if (GET_CODE (insn) == NOTE)
		    {
		      n = NOTE_LINE_NUMBER (insn);
		      if (n < 0)
			fprintf (dump, "%s\n", GET_NOTE_INSN_NAME (n));
		      else
			fprintf (dump, "line %d, file %s\n", n,
				 NOTE_SOURCE_FILE (insn));
		    }
		  else
		    fprintf (dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
		  continue;
		}

	      unit = insn_unit (insn);
	      range = (unit < 0
		 || function_units[unit].blockage_range_function == 0) ? 0 :
		function_units[unit].blockage_range_function (insn);
	      fprintf (dump,
		       ";;   %s%5d%6d%6d%6d%6d%6d  %3d -%3d   ",
		       (SCHED_GROUP_P (insn) ? "+" : " "),
		       INSN_UID (insn),
		       INSN_CODE (insn),
		       INSN_BB (insn),
		       INSN_DEP_COUNT (insn),
		       INSN_PRIORITY (insn),
		       insn_cost (insn, 0, 0),
		       (int) MIN_BLOCKAGE_COST (range),
		       (int) MAX_BLOCKAGE_COST (range));
	      insn_print_units (insn);
	      fprintf (dump, "\t: ");
	      for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
		fprintf (dump, "%d ", INSN_UID (XEXP (link, 0)));
	      fprintf (dump, "\n");
	    }
	}
    }
  fprintf (dump, "\n");
}

/* Set_priorities: compute priority of each insn in the block */

static int
set_priorities (bb)
     int bb;
{
  rtx insn;
  int n_insn;

  rtx tail;
  rtx prev_head;
  rtx head;

  get_block_head_tail (bb, &head, &tail);
  prev_head = PREV_INSN (head);

  if (head == tail
      && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
    return 0;

  n_insn = 0;
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
    {

      if (GET_CODE (insn) == NOTE)
	continue;

      if (!(SCHED_GROUP_P (insn)))
	n_insn++;
      (void) priority (insn);
    }

  return n_insn;
}

/* Make each element of VECTOR point at an rtx-vector,
   taking the space for all those rtx-vectors from SPACE.
   SPACE is of type (rtx *), but it is really as long as NELTS rtx-vectors.
   BYTES_PER_ELT is the number of bytes in one rtx-vector.
   (this is the same as init_regset_vector () in flow.c) */

static void
init_rtx_vector (vector, space, nelts, bytes_per_elt)
     rtx **vector;
     rtx *space;
     int nelts;
     int bytes_per_elt;
{
  register int i;
  register rtx *p = space;

  for (i = 0; i < nelts; i++)
    {
      vector[i] = p;
      p += bytes_per_elt / sizeof (*p);
    }
}

/* Schedule a region.  A region is either an inner loop, a loop-free
   subroutine, or a single basic block.  Each bb in the region is
   scheduled after its flow predecessors.  */

static void
schedule_region (rgn)
     int rgn;
{
  int bb;
  int rgn_n_insns = 0;
  int sched_rgn_n_insns = 0;

  /* set variables for the current region */
  current_nr_blocks = RGN_NR_BLOCKS (rgn);
  current_blocks = RGN_BLOCKS (rgn);

  reg_pending_sets = ALLOCA_REG_SET ();
  reg_pending_clobbers = ALLOCA_REG_SET ();
  reg_pending_sets_all = 0;

  /* initializations for region data dependence analyisis */
  if (current_nr_blocks > 1)
    {
      rtx *space;
      int maxreg = max_reg_num ();

      bb_reg_last_uses = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
      space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
      bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
      init_rtx_vector (bb_reg_last_uses, space, current_nr_blocks,
		       maxreg * sizeof (rtx *));

      bb_reg_last_sets = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
      space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
      bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
      init_rtx_vector (bb_reg_last_sets, space, current_nr_blocks,
		       maxreg * sizeof (rtx *));

      bb_reg_last_clobbers =
	(rtx **) alloca (current_nr_blocks * sizeof (rtx *));
      space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
      bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
      init_rtx_vector (bb_reg_last_clobbers, space, current_nr_blocks,
		       maxreg * sizeof (rtx *));

      bb_pending_read_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
      bb_pending_read_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
      bb_pending_write_insns =
	(rtx *) alloca (current_nr_blocks * sizeof (rtx));
      bb_pending_write_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
      bb_pending_lists_length =
	(int *) alloca (current_nr_blocks * sizeof (int));
      bb_last_pending_memory_flush =
	(rtx *) alloca (current_nr_blocks * sizeof (rtx));
      bb_last_function_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
      bb_sched_before_next_call =
	(rtx *) alloca (current_nr_blocks * sizeof (rtx));

      init_rgn_data_dependences (current_nr_blocks);
    }

  /* compute LOG_LINKS */
  for (bb = 0; bb < current_nr_blocks; bb++)
    compute_block_backward_dependences (bb);

  /* compute INSN_DEPEND */
  for (bb = current_nr_blocks - 1; bb >= 0; bb--)
    compute_block_forward_dependences (bb);

  /* Delete line notes, compute live-regs at block end, and set priorities.  */
  dead_notes = 0;
  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      if (reload_completed == 0)
	find_pre_sched_live (bb);

      if (write_symbols != NO_DEBUG)
	{
	  save_line_notes (bb);
	  rm_line_notes (bb);
	}

      rgn_n_insns += set_priorities (bb);
    }

  /* compute interblock info: probabilities, split-edges, dominators, etc.  */
  if (current_nr_blocks > 1)
    {
      int i;

      prob = (float *) alloca ((current_nr_blocks) * sizeof (float));

      bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
      dom = (bbset *) alloca (current_nr_blocks * sizeof (bbset));
      for (i = 0; i < current_nr_blocks; i++)
	{
	  dom[i] = (bbset) alloca (bbset_size * sizeof (HOST_WIDE_INT));
	  bzero ((char *) dom[i], bbset_size * sizeof (HOST_WIDE_INT));
	}

      /* edge to bit */
      rgn_nr_edges = 0;
      edge_to_bit = (int *) alloca (nr_edges * sizeof (int));
      for (i = 1; i < nr_edges; i++)
	if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
	  EDGE_TO_BIT (i) = rgn_nr_edges++;
      rgn_edges = (int *) alloca (rgn_nr_edges * sizeof (int));

      rgn_nr_edges = 0;
      for (i = 1; i < nr_edges; i++)
	if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
	  rgn_edges[rgn_nr_edges++] = i;

      /* split edges */
      edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
      pot_split = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
      ancestor_edges = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
      for (i = 0; i < current_nr_blocks; i++)
	{
	  pot_split[i] =
	    (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
	  bzero ((char *) pot_split[i],
		 edgeset_size * sizeof (HOST_WIDE_INT));
	  ancestor_edges[i] =
	    (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
	  bzero ((char *) ancestor_edges[i],
		 edgeset_size * sizeof (HOST_WIDE_INT));
	}

      /* compute probabilities, dominators, split_edges */
      for (bb = 0; bb < current_nr_blocks; bb++)
	compute_dom_prob_ps (bb);
    }

  /* now we can schedule all blocks */
  for (bb = 0; bb < current_nr_blocks; bb++)
    {
      sched_rgn_n_insns += schedule_block (bb, rgn_n_insns);

#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  /* sanity check: verify that all region insns were scheduled */
  if (sched_rgn_n_insns != rgn_n_insns)
    abort ();

  /* update register life and usage information */
  if (reload_completed == 0)
    {
      for (bb = current_nr_blocks - 1; bb >= 0; bb--)
	find_post_sched_live (bb);

      if (current_nr_blocks <= 1)
	/* Sanity check.  There should be no REG_DEAD notes leftover at the end.
	   In practice, this can occur as the result of bugs in flow, combine.c,
	   and/or sched.c.  The values of the REG_DEAD notes remaining are
	   meaningless, because dead_notes is just used as a free list.  */
	if (dead_notes != 0)
	  abort ();
    }

  /* restore line notes.  */
  if (write_symbols != NO_DEBUG)
    {
      for (bb = 0; bb < current_nr_blocks; bb++)
	restore_line_notes (bb);
    }

  /* Done with this region */
  free_pending_lists ();

  FREE_REG_SET (reg_pending_sets);
  FREE_REG_SET (reg_pending_clobbers);
}

/* Subroutine of update_flow_info.  Determines whether any new REG_NOTEs are
   needed for the hard register mentioned in the note.  This can happen
   if the reference to the hard register in the original insn was split into
   several smaller hard register references in the split insns.  */

static void
split_hard_reg_notes (note, first, last)
     rtx note, first, last;
{
  rtx reg, temp, link;
  int n_regs, i, new_reg;
  rtx insn;

  /* Assume that this is a REG_DEAD note.  */
  if (REG_NOTE_KIND (note) != REG_DEAD)
    abort ();

  reg = XEXP (note, 0);

  n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));

  for (i = 0; i < n_regs; i++)
    {
      new_reg = REGNO (reg) + i;

      /* Check for references to new_reg in the split insns.  */
      for (insn = last;; insn = PREV_INSN (insn))
	{
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	      && (temp = regno_use_in (new_reg, PATTERN (insn))))
	    {
	      /* Create a new reg dead note ere.  */
	      link = alloc_EXPR_LIST (REG_DEAD, temp, REG_NOTES (insn));
	      REG_NOTES (insn) = link;

	      /* If killed multiple registers here, then add in the excess.  */
	      i += HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) - 1;

	      break;
	    }
	  /* It isn't mentioned anywhere, so no new reg note is needed for
	     this register.  */
	  if (insn == first)
	    break;
	}
    }
}

/* Subroutine of update_flow_info.  Determines whether a SET or CLOBBER in an
   insn created by splitting needs a REG_DEAD or REG_UNUSED note added.  */

static void
new_insn_dead_notes (pat, insn, last, orig_insn)
     rtx pat, insn, last, orig_insn;
{
  rtx dest, tem, set;

  /* PAT is either a CLOBBER or a SET here.  */
  dest = XEXP (pat, 0);

  while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == STRICT_LOW_PART
	 || GET_CODE (dest) == SIGN_EXTRACT)
    dest = XEXP (dest, 0);

  if (GET_CODE (dest) == REG)
    {
      /* If the original insn already used this register, we may not add new
         notes for it.  One example for a split that needs this test is
	 when a multi-word memory access with register-indirect addressing
	 is split into multiple memory accesses with auto-increment and
	 one adjusting add instruction for the address register.  */
      if (reg_referenced_p (dest, PATTERN (orig_insn)))
	return;
      for (tem = last; tem != insn; tem = PREV_INSN (tem))
	{
	  if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
	      && reg_overlap_mentioned_p (dest, PATTERN (tem))
	      && (set = single_set (tem)))
	    {
	      rtx tem_dest = SET_DEST (set);

	      while (GET_CODE (tem_dest) == ZERO_EXTRACT
		     || GET_CODE (tem_dest) == SUBREG
		     || GET_CODE (tem_dest) == STRICT_LOW_PART
		     || GET_CODE (tem_dest) == SIGN_EXTRACT)
		tem_dest = XEXP (tem_dest, 0);

	      if (!rtx_equal_p (tem_dest, dest))
		{
		  /* Use the same scheme as combine.c, don't put both REG_DEAD
		     and REG_UNUSED notes on the same insn.  */
		  if (!find_regno_note (tem, REG_UNUSED, REGNO (dest))
		      && !find_regno_note (tem, REG_DEAD, REGNO (dest)))
		    {
		      rtx note = alloc_EXPR_LIST (REG_DEAD, dest,
						  REG_NOTES (tem));
		      REG_NOTES (tem) = note;
		    }
		  /* The reg only dies in one insn, the last one that uses
		     it.  */
		  break;
		}
	      else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
		/* We found an instruction that both uses the register,
		   and sets it, so no new REG_NOTE is needed for this set.  */
		break;
	    }
	}
      /* If this is a set, it must die somewhere, unless it is the dest of
         the original insn, and hence is live after the original insn.  Abort
         if it isn't supposed to be live after the original insn.

         If this is a clobber, then just add a REG_UNUSED note.  */
      if (tem == insn)
	{
	  int live_after_orig_insn = 0;
	  rtx pattern = PATTERN (orig_insn);
	  int i;

	  if (GET_CODE (pat) == CLOBBER)
	    {
	      rtx note = alloc_EXPR_LIST (REG_UNUSED, dest, REG_NOTES (insn));
	      REG_NOTES (insn) = note;
	      return;
	    }

	  /* The original insn could have multiple sets, so search the
	     insn for all sets.  */
	  if (GET_CODE (pattern) == SET)
	    {
	      if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
		live_after_orig_insn = 1;
	    }
	  else if (GET_CODE (pattern) == PARALLEL)
	    {
	      for (i = 0; i < XVECLEN (pattern, 0); i++)
		if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
		    && reg_overlap_mentioned_p (dest,
						SET_DEST (XVECEXP (pattern,
								   0, i))))
		  live_after_orig_insn = 1;
	    }

	  if (!live_after_orig_insn)
	    abort ();
	}
    }
}

/* Subroutine of update_flow_info.  Update the value of reg_n_sets for all
   registers modified by X.  INC is -1 if the containing insn is being deleted,
   and is 1 if the containing insn is a newly generated insn.  */

static void
update_n_sets (x, inc)
     rtx x;
     int inc;
{
  rtx dest = SET_DEST (x);

  while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
      || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
    dest = SUBREG_REG (dest);

  if (GET_CODE (dest) == REG)
    {
      int regno = REGNO (dest);

      if (regno < FIRST_PSEUDO_REGISTER)
	{
	  register int i;
	  int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));

	  for (i = regno; i < endregno; i++)
	    REG_N_SETS (i) += inc;
	}
      else
	REG_N_SETS (regno) += inc;
    }
}

/* Updates all flow-analysis related quantities (including REG_NOTES) for
   the insns from FIRST to LAST inclusive that were created by splitting
   ORIG_INSN.  NOTES are the original REG_NOTES.  */

void
update_flow_info (notes, first, last, orig_insn)
     rtx notes;
     rtx first, last;
     rtx orig_insn;
{
  rtx insn, note;
  rtx next;
  rtx orig_dest, temp;
  rtx set;

  /* Get and save the destination set by the original insn.  */

  orig_dest = single_set (orig_insn);
  if (orig_dest)
    orig_dest = SET_DEST (orig_dest);

  /* Move REG_NOTES from the original insn to where they now belong.  */

  for (note = notes; note; note = next)
    {
      next = XEXP (note, 1);
      switch (REG_NOTE_KIND (note))
	{
	case REG_DEAD:
	case REG_UNUSED:
	  /* Move these notes from the original insn to the last new insn where
	     the register is now set.  */

	  for (insn = last;; insn = PREV_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
		{
		  /* If this note refers to a multiple word hard register, it
		     may have been split into several smaller hard register
		     references, so handle it specially.  */
		  temp = XEXP (note, 0);
		  if (REG_NOTE_KIND (note) == REG_DEAD
		      && GET_CODE (temp) == REG
		      && REGNO (temp) < FIRST_PSEUDO_REGISTER
		      && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) > 1)
		    split_hard_reg_notes (note, first, last);
		  else
		    {
		      XEXP (note, 1) = REG_NOTES (insn);
		      REG_NOTES (insn) = note;
		    }

		  /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
		     notes.  */
		  /* ??? This won't handle multiple word registers correctly,
		     but should be good enough for now.  */
		  if (REG_NOTE_KIND (note) == REG_UNUSED
		      && GET_CODE (XEXP (note, 0)) != SCRATCH
		      && !dead_or_set_p (insn, XEXP (note, 0)))
		    PUT_REG_NOTE_KIND (note, REG_DEAD);

		  /* The reg only dies in one insn, the last one that uses
		     it.  */
		  break;
		}
	      /* It must die somewhere, fail it we couldn't find where it died.

	         If this is a REG_UNUSED note, then it must be a temporary
	         register that was not needed by this instantiation of the
	         pattern, so we can safely ignore it.  */
	      if (insn == first)
		{			
		  if (REG_NOTE_KIND (note) != REG_UNUSED)
		    abort ();

		  break;
		}
	    }
	  break;

	case REG_WAS_0:
	  /* If the insn that set the register to 0 was deleted, this
	     note cannot be relied on any longer.  The destination might
	     even have been moved to memory.
             This was observed for SH4 with execute/920501-6.c compilation,
	     -O2 -fomit-frame-pointer -finline-functions .  */
	  if (GET_CODE (XEXP (note, 0)) == NOTE
	      || INSN_DELETED_P (XEXP (note, 0)))
	    break;
	  /* This note applies to the dest of the original insn.  Find the
	     first new insn that now has the same dest, and move the note
	     there.  */

	  if (!orig_dest)
	    abort ();

	  for (insn = first;; insn = NEXT_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && (temp = single_set (insn))
		  && rtx_equal_p (SET_DEST (temp), orig_dest))
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;
		  /* The reg is only zero before one insn, the first that
		     uses it.  */
		  break;
		}
	      /* If this note refers to a multiple word hard
		 register, it may have been split into several smaller
		 hard register references.  We could split the notes,
		 but simply dropping them is good enough.  */
	      if (GET_CODE (orig_dest) == REG
		  && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
		  && HARD_REGNO_NREGS (REGNO (orig_dest),
				       GET_MODE (orig_dest)) > 1)
		    break;
	      /* It must be set somewhere, fail if we couldn't find where it
	         was set.  */
	      if (insn == last)
		abort ();
	    }
	  break;

	case REG_EQUAL:
	case REG_EQUIV:
	  /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
	     set is meaningless.  Just drop the note.  */
	  if (!orig_dest)
	    break;

	case REG_NO_CONFLICT:
	  /* These notes apply to the dest of the original insn.  Find the last
	     new insn that now has the same dest, and move the note there.  */

	  if (!orig_dest)
	    abort ();

	  for (insn = last;; insn = PREV_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && (temp = single_set (insn))
		  && rtx_equal_p (SET_DEST (temp), orig_dest))
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;
		  /* Only put this note on one of the new insns.  */
		  break;
		}

	      /* The original dest must still be set someplace.  Abort if we
	         couldn't find it.  */
	      if (insn == first)
		{
		  /* However, if this note refers to a multiple word hard
		     register, it may have been split into several smaller
		     hard register references.  We could split the notes,
		     but simply dropping them is good enough.  */
		  if (GET_CODE (orig_dest) == REG
		      && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
		      && HARD_REGNO_NREGS (REGNO (orig_dest),
					   GET_MODE (orig_dest)) > 1)
		    break;
		  /* Likewise for multi-word memory references.  */
		  if (GET_CODE (orig_dest) == MEM
		      && SIZE_FOR_MODE (orig_dest) > UNITS_PER_WORD)
		    break;
		  abort ();
		}
	    }
	  break;

	case REG_LIBCALL:
	  /* Move a REG_LIBCALL note to the first insn created, and update
	     the corresponding REG_RETVAL note.  */
	  XEXP (note, 1) = REG_NOTES (first);
	  REG_NOTES (first) = note;

	  insn = XEXP (note, 0);
	  note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
	  if (note)
	    XEXP (note, 0) = first;
	  break;

	case REG_EXEC_COUNT:
	  /* Move a REG_EXEC_COUNT note to the first insn created.  */
	  XEXP (note, 1) = REG_NOTES (first);
	  REG_NOTES (first) = note;
	  break;

	case REG_RETVAL:
	  /* Move a REG_RETVAL note to the last insn created, and update
	     the corresponding REG_LIBCALL note.  */
	  XEXP (note, 1) = REG_NOTES (last);
	  REG_NOTES (last) = note;

	  insn = XEXP (note, 0);
	  note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
	  if (note)
	    XEXP (note, 0) = last;
	  break;

	case REG_NONNEG:
	case REG_BR_PROB:
	  /* This should be moved to whichever instruction is a JUMP_INSN.  */

	  for (insn = last;; insn = PREV_INSN (insn))
	    {
	      if (GET_CODE (insn) == JUMP_INSN)
		{
		  XEXP (note, 1) = REG_NOTES (insn);
		  REG_NOTES (insn) = note;
		  /* Only put this note on one of the new insns.  */
		  break;
		}
	      /* Fail if we couldn't find a JUMP_INSN.  */
	      if (insn == first)
		abort ();
	    }
	  break;

	case REG_INC:
	  /* reload sometimes leaves obsolete REG_INC notes around.  */
	  if (reload_completed)
	    break;
	  /* This should be moved to whichever instruction now has the
	     increment operation.  */
	  abort ();

	case REG_LABEL:
	  /* Should be moved to the new insn(s) which use the label.  */
	  for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
	    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		&& reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
	      {
	        REG_NOTES (insn) = alloc_EXPR_LIST (REG_LABEL,
						    XEXP (note, 0),
						    REG_NOTES (insn));
	      }
	  break;

	case REG_CC_SETTER:
	case REG_CC_USER:
	  /* These two notes will never appear until after reorg, so we don't
	     have to handle them here.  */
	default:
	  abort ();
	}
    }

  /* Each new insn created, except the last, has a new set.  If the destination
     is a register, then this reg is now live across several insns, whereas
     previously the dest reg was born and died within the same insn.  To
     reflect this, we now need a REG_DEAD note on the insn where this
     dest reg dies.

     Similarly, the new insns may have clobbers that need REG_UNUSED notes.  */

  for (insn = first; insn != last; insn = NEXT_INSN (insn))
    {
      rtx pat;
      int i;

      pat = PATTERN (insn);
      if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
	new_insn_dead_notes (pat, insn, last, orig_insn);
      else if (GET_CODE (pat) == PARALLEL)
	{
	  for (i = 0; i < XVECLEN (pat, 0); i++)
	    if (GET_CODE (XVECEXP (pat, 0, i)) == SET
		|| GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
	      new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
	}
    }

  /* If any insn, except the last, uses the register set by the last insn,
     then we need a new REG_DEAD note on that insn.  In this case, there
     would not have been a REG_DEAD note for this register in the original
     insn because it was used and set within one insn.  */

  set = single_set (last);
  if (set)
    {
      rtx dest = SET_DEST (set);

      while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == REG
	  /* Global registers are always live, so the code below does not
	     apply to them.  */
	  && (REGNO (dest) >= FIRST_PSEUDO_REGISTER
	      || ! global_regs[REGNO (dest)]))
	{
	  rtx stop_insn = PREV_INSN (first);

	  /* If the last insn uses the register that it is setting, then
	     we don't want to put a REG_DEAD note there.  Search backwards
	     to find the first insn that sets but does not use DEST.  */

	  insn = last;
	  if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
	    {
	      for (insn = PREV_INSN (insn); insn != first;
		   insn = PREV_INSN (insn))
		{
		  if ((set = single_set (insn))
		      && reg_mentioned_p (dest, SET_DEST (set))
		      && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
		    break;
		}
	    }

	  /* Now find the first insn that uses but does not set DEST.  */

	  for (insn = PREV_INSN (insn); insn != stop_insn;
	       insn = PREV_INSN (insn))
	    {
	      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		  && reg_mentioned_p (dest, PATTERN (insn))
		  && (set = single_set (insn)))
		{
		  rtx insn_dest = SET_DEST (set);

		  while (GET_CODE (insn_dest) == ZERO_EXTRACT
			 || GET_CODE (insn_dest) == SUBREG
			 || GET_CODE (insn_dest) == STRICT_LOW_PART
			 || GET_CODE (insn_dest) == SIGN_EXTRACT)
		    insn_dest = XEXP (insn_dest, 0);

		  if (insn_dest != dest)
		    {
		      note = alloc_EXPR_LIST (REG_DEAD, dest, REG_NOTES (insn));
		      REG_NOTES (insn) = note;
		      /* The reg only dies in one insn, the last one
			 that uses it.  */
		      break;
		    }
		}
	    }
	}
    }

  /* If the original dest is modifying a multiple register target, and the
     original instruction was split such that the original dest is now set
     by two or more SUBREG sets, then the split insns no longer kill the
     destination of the original insn.

     In this case, if there exists an instruction in the same basic block,
     before the split insn, which uses the original dest, and this use is
     killed by the original insn, then we must remove the REG_DEAD note on
     this insn, because it is now superfluous.

     This does not apply when a hard register gets split, because the code
     knows how to handle overlapping hard registers properly.  */
  if (orig_dest && GET_CODE (orig_dest) == REG)
    {
      int found_orig_dest = 0;
      int found_split_dest = 0;

      for (insn = first;; insn = NEXT_INSN (insn))
	{
	  rtx pat;
	  int i;

	  /* I'm not sure if this can happen, but let's be safe.  */
	  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	    continue;

	  pat = PATTERN (insn);
	  i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
	  set = pat;

	  for (;;)
	    {
	      if (GET_CODE (set) == SET)
		{
		  if (GET_CODE (SET_DEST (set)) == REG
		      && REGNO (SET_DEST (set)) == REGNO (orig_dest))
		    {
		      found_orig_dest = 1;
		      break;
		    }
		  else if (GET_CODE (SET_DEST (set)) == SUBREG
			   && SUBREG_REG (SET_DEST (set)) == orig_dest)
		    {
		      found_split_dest = 1;
		      break;
		    }
		}
	      if (--i < 0)
		break;
	      set = XVECEXP (pat, 0, i);
	    }

	  if (insn == last)
	    break;
	}

      if (found_split_dest)
	{
	  /* Search backwards from FIRST, looking for the first insn that uses
	     the original dest.  Stop if we pass a CODE_LABEL or a JUMP_INSN.
	     If we find an insn, and it has a REG_DEAD note, then delete the
	     note.  */

	  for (insn = first; insn; insn = PREV_INSN (insn))
	    {
	      if (GET_CODE (insn) == CODE_LABEL
		  || GET_CODE (insn) == JUMP_INSN)
		break;
	      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		       && reg_mentioned_p (orig_dest, insn))
		{
		  note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
		  if (note)
		    remove_note (insn, note);
		}
	    }
	}
      else if (!found_orig_dest)
	{
	  int i, regno;

	  /* Should never reach here for a pseudo reg.  */
	  if (REGNO (orig_dest) >= FIRST_PSEUDO_REGISTER)
	    abort ();

	  /* This can happen for a hard register, if the splitter
	     does not bother to emit instructions which would be no-ops.
	     We try to verify that this is the case by checking to see if
	     the original instruction uses all of the registers that it
	     set.  This case is OK, because deleting a no-op can not affect
	     REG_DEAD notes on other insns.  If this is not the case, then
	     abort.  */
	  
	  regno = REGNO (orig_dest);
	  for (i = HARD_REGNO_NREGS (regno, GET_MODE (orig_dest)) - 1;
	       i >= 0; i--)
	    if (! refers_to_regno_p (regno + i, regno + i + 1, orig_insn,
				     NULL_PTR))
	      break;
	  if (i >= 0)
	    abort ();
	}
    }

  /* Update reg_n_sets.  This is necessary to prevent local alloc from
     converting REG_EQUAL notes to REG_EQUIV when splitting has modified
     a reg from set once to set multiple times.  */

  {
    rtx x = PATTERN (orig_insn);
    RTX_CODE code = GET_CODE (x);

    if (code == SET || code == CLOBBER)
      update_n_sets (x, -1);
    else if (code == PARALLEL)
      {
	int i;
	for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	  {
	    code = GET_CODE (XVECEXP (x, 0, i));
	    if (code == SET || code == CLOBBER)
	      update_n_sets (XVECEXP (x, 0, i), -1);
	  }
      }

    for (insn = first;; insn = NEXT_INSN (insn))
      {
	x = PATTERN (insn);
	code = GET_CODE (x);

	if (code == SET || code == CLOBBER)
	  update_n_sets (x, 1);
	else if (code == PARALLEL)
	  {
	    int i;
	    for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	      {
		code = GET_CODE (XVECEXP (x, 0, i));
		if (code == SET || code == CLOBBER)
		  update_n_sets (XVECEXP (x, 0, i), 1);
	      }
	  }

	if (insn == last)
	  break;
      }
  }
}

/* The one entry point in this file.  DUMP_FILE is the dump file for
   this pass.  */

void
schedule_insns (dump_file)
     FILE *dump_file;
{

  int max_uid;
  int b;
  rtx insn;
  int rgn;

  int luid;

  /* disable speculative loads in their presence if cc0 defined */
#ifdef HAVE_cc0
  flag_schedule_speculative_load = 0;
#endif

  /* Taking care of this degenerate case makes the rest of
     this code simpler.  */
  if (n_basic_blocks == 0)
    return;

  /* set dump and sched_verbose for the desired debugging output.  If no
     dump-file was specified, but -fsched-verbose-N (any N), print to stderr.
     For -fsched-verbose-N, N>=10, print everything to stderr.  */
  sched_verbose = sched_verbose_param;
  if (sched_verbose_param == 0 && dump_file)
    sched_verbose = 1;
  dump = ((sched_verbose_param >= 10 || !dump_file) ? stderr : dump_file);

  nr_inter = 0;
  nr_spec = 0;

  /* Initialize the unused_*_lists.  We can't use the ones left over from
     the previous function, because gcc has freed that memory.  We can use
     the ones left over from the first sched pass in the second pass however,
     so only clear them on the first sched pass.  The first pass is before
     reload if flag_schedule_insns is set, otherwise it is afterwards.  */

  if (reload_completed == 0 || !flag_schedule_insns)
    {
      unused_insn_list = 0;
      unused_expr_list = 0;
    }

  /* initialize issue_rate */
  issue_rate = ISSUE_RATE;

  /* do the splitting first for all blocks */
  for (b = 0; b < n_basic_blocks; b++)
    split_block_insns (b, 1);

  max_uid = (get_max_uid () + 1);

  cant_move = (char *) xmalloc (max_uid * sizeof (char));
  bzero ((char *) cant_move, max_uid * sizeof (char));

  fed_by_spec_load = (char *) xmalloc (max_uid * sizeof (char));
  bzero ((char *) fed_by_spec_load, max_uid * sizeof (char));

  is_load_insn = (char *) xmalloc (max_uid * sizeof (char));
  bzero ((char *) is_load_insn, max_uid * sizeof (char));

  insn_orig_block = (int *) xmalloc (max_uid * sizeof (int));
  insn_luid = (int *) xmalloc (max_uid * sizeof (int));

  luid = 0;
  for (b = 0; b < n_basic_blocks; b++)
    for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
      {
	INSN_BLOCK (insn) = b;
	INSN_LUID (insn) = luid++;

	if (insn == BLOCK_END (b))
	  break;
      }

  /* after reload, remove inter-blocks dependences computed before reload.  */
  if (reload_completed)
    {
      int b;
      rtx insn;

      for (b = 0; b < n_basic_blocks; b++)
	for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
	  {
	    rtx link, prev;

	    if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	      {
		prev = NULL_RTX;
		link = LOG_LINKS (insn);
		while (link)
		  {
		    rtx x = XEXP (link, 0);

		    if (INSN_BLOCK (x) != b)
		      {
		        remove_dependence (insn, x);
			link = prev ? XEXP (prev, 1) : LOG_LINKS (insn);
		      }
		    else
		      prev = link, link = XEXP (prev, 1);
		  }
	      }

	    if (insn == BLOCK_END (b))
	      break;
	  }
    }

  nr_regions = 0;
  rgn_table = (region *) alloca ((n_basic_blocks) * sizeof (region));
  rgn_bb_table = (int *) alloca ((n_basic_blocks) * sizeof (int));
  block_to_bb = (int *) alloca ((n_basic_blocks) * sizeof (int));
  containing_rgn = (int *) alloca ((n_basic_blocks) * sizeof (int));

  /* compute regions for scheduling */
  if (reload_completed
      || n_basic_blocks == 1
      || !flag_schedule_interblock)
    {
      find_single_block_region ();
    }
  else
    {
      /* verify that a 'good' control flow graph can be built */
      if (is_cfg_nonregular ())
	{
	  find_single_block_region ();
	}
      else
	{
	  int_list_ptr *s_preds, *s_succs;
	  int *num_preds, *num_succs;
	  sbitmap *dom, *pdom;

	  s_preds = (int_list_ptr *) alloca (n_basic_blocks
					     * sizeof (int_list_ptr));
	  s_succs = (int_list_ptr *) alloca (n_basic_blocks
					     * sizeof (int_list_ptr));
	  num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
	  num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
	  dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
	  pdom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);

	  /* The scheduler runs after flow; therefore, we can't blindly call
	     back into find_basic_blocks since doing so could invalidate the
	     info in global_live_at_start.

	     Consider a block consisting entirely of dead stores; after life
	     analysis it would be a block of NOTE_INSN_DELETED notes.  If
	     we call find_basic_blocks again, then the block would be removed
	     entirely and invalidate our the register live information.

	     We could (should?) recompute register live information.  Doing
	     so may even be beneficial.  */

	  compute_preds_succs (s_preds, s_succs, num_preds, num_succs);

	  /* Compute the dominators and post dominators.  We don't currently use
	     post dominators, but we should for speculative motion analysis.  */
	  compute_dominators (dom, pdom, s_preds, s_succs);

	  /* build_control_flow will return nonzero if it detects unreachable
	     blocks or any other irregularity with the cfg which prevents
	     cross block scheduling.  */
	  if (build_control_flow (s_preds, s_succs, num_preds, num_succs) != 0)
	    find_single_block_region ();
	  else
	    find_rgns (s_preds, s_succs, num_preds, num_succs, dom);

	  if (sched_verbose >= 3)
	    debug_regions ();

	  /* For now.  This will move as more and more of haifa is converted
	     to using the cfg code in flow.c  */
	  free_bb_mem ();
	  free (dom);
	  free (pdom);
	}
    }

  /* Allocate data for this pass.  See comments, above,
     for what these vectors do.

     We use xmalloc instead of alloca, because max_uid can be very large
     when there is a lot of function inlining.  If we used alloca, we could
     exceed stack limits on some hosts for some inputs.  */
  insn_priority = (int *) xmalloc (max_uid * sizeof (int));
  insn_reg_weight = (int *) xmalloc (max_uid * sizeof (int));
  insn_tick = (int *) xmalloc (max_uid * sizeof (int));
  insn_costs = (short *) xmalloc (max_uid * sizeof (short));
  insn_units = (short *) xmalloc (max_uid * sizeof (short));
  insn_blockage = (unsigned int *) xmalloc (max_uid * sizeof (unsigned int));
  insn_ref_count = (int *) xmalloc (max_uid * sizeof (int));

  /* Allocate for forward dependencies */
  insn_dep_count = (int *) xmalloc (max_uid * sizeof (int));
  insn_depend = (rtx *) xmalloc (max_uid * sizeof (rtx));

  if (reload_completed == 0)
    {
      int i;

      sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
      sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
      sched_reg_basic_block = (int *) alloca (max_regno * sizeof (int));
      bb_live_regs = ALLOCA_REG_SET ();
      bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
      bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));

      for (i = 0; i < max_regno; i++)
	sched_reg_basic_block[i] = REG_BLOCK_UNKNOWN;
    }
  else
    {
      sched_reg_n_calls_crossed = 0;
      sched_reg_live_length = 0;
      bb_live_regs = 0;
    }
  init_alias_analysis ();

  if (write_symbols != NO_DEBUG)
    {
      rtx line;

      line_note = (rtx *) xmalloc (max_uid * sizeof (rtx));
      bzero ((char *) line_note, max_uid * sizeof (rtx));
      line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
      bzero ((char *) line_note_head, n_basic_blocks * sizeof (rtx));

      /* Save-line-note-head:
         Determine the line-number at the start of each basic block.
         This must be computed and saved now, because after a basic block's
         predecessor has been scheduled, it is impossible to accurately
         determine the correct line number for the first insn of the block.  */

      for (b = 0; b < n_basic_blocks; b++)
	for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
	  if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
	    {
	      line_note_head[b] = line;
	      break;
	    }
    }

  bzero ((char *) insn_priority, max_uid * sizeof (int));
  bzero ((char *) insn_reg_weight, max_uid * sizeof (int));
  bzero ((char *) insn_tick, max_uid * sizeof (int));
  bzero ((char *) insn_costs, max_uid * sizeof (short));
  bzero ((char *) insn_units, max_uid * sizeof (short));
  bzero ((char *) insn_blockage, max_uid * sizeof (unsigned int));
  bzero ((char *) insn_ref_count, max_uid * sizeof (int));

  /* Initialize for forward dependencies */
  bzero ((char *) insn_depend, max_uid * sizeof (rtx));
  bzero ((char *) insn_dep_count, max_uid * sizeof (int));

  /* Find units used in this fuction, for visualization */
  if (sched_verbose)
    init_target_units ();

  /* ??? Add a NOTE after the last insn of the last basic block.  It is not
     known why this is done.  */

  insn = BLOCK_END (n_basic_blocks - 1);
  if (NEXT_INSN (insn) == 0
      || (GET_CODE (insn) != NOTE
	  && GET_CODE (insn) != CODE_LABEL
	  /* Don't emit a NOTE if it would end up between an unconditional
	     jump and a BARRIER.  */
	  && !(GET_CODE (insn) == JUMP_INSN
	       && GET_CODE (NEXT_INSN (insn)) == BARRIER)))
    emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));

  /* Schedule every region in the subroutine */
  for (rgn = 0; rgn < nr_regions; rgn++)
    {
      schedule_region (rgn);

#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  /* Reposition the prologue and epilogue notes in case we moved the
     prologue/epilogue insns.  */
  if (reload_completed)
    reposition_prologue_and_epilogue_notes (get_insns ());

  /* delete redundant line notes.  */
  if (write_symbols != NO_DEBUG)
    rm_redundant_line_notes ();

  /* Update information about uses of registers in the subroutine.  */
  if (reload_completed == 0)
    update_reg_usage ();

  if (sched_verbose)
    {
      if (reload_completed == 0 && flag_schedule_interblock)
	{
	  fprintf (dump, "\n;; Procedure interblock/speculative motions == %d/%d \n",
		   nr_inter, nr_spec);
	}
      else
	{
	  if (nr_inter > 0)
	    abort ();
	}
      fprintf (dump, "\n\n");
    }

  free (cant_move);
  free (fed_by_spec_load);
  free (is_load_insn);
  free (insn_orig_block);
  free (insn_luid);

  free (insn_priority);
  free (insn_reg_weight);
  free (insn_tick);
  free (insn_costs);
  free (insn_units);
  free (insn_blockage);
  free (insn_ref_count);

  free (insn_dep_count);
  free (insn_depend);

  if (write_symbols != NO_DEBUG)
    free (line_note);

  if (bb_live_regs)
    FREE_REG_SET (bb_live_regs);

  if (edge_table)
    {
      free (edge_table);
      edge_table = NULL;
    }

  if (in_edges)
    {
      free (in_edges);
      in_edges = NULL;
    }
  if (out_edges)
    {
      free (out_edges);
      out_edges = NULL;
    }
}
#endif /* INSN_SCHEDULING */