summaryrefslogtreecommitdiff
path: root/gnu/egcs/gcc/lcm.c
blob: 01367e36d5c24e9e33db3587d16540b77b5b0988 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
/* Generic partial redundancy elimination with lazy code motion
   support.
   Copyright (C) 1998 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* These routines are meant to be used by various optimization
   passes which can be modeled as lazy code motion problems. 
   Including, but not limited to:

	* Traditional partial redundancy elimination.

	* Placement of caller/caller register save/restores.

	* Load/store motion.

	* Copy motion.

	* Conversion of flat register files to a stacked register
	model.

	* Dead load/store elimination.

  These routines accept as input:

	* Basic block information (number of blocks, lists of
	predecessors and successors).  Note the granularity
	does not need to be basic block, they could be statements
	or functions.

	* Bitmaps of local properties (computed, transparent and
	anticipatable expressions).

  The output of these routines is bitmap of redundant computations
  and a bitmap of optimal placement points.  */


#include "config.h"
#include "system.h"

#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"

static void compute_antinout 	PROTO ((int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *, sbitmap *));
static void compute_earlyinout	PROTO ((int, int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *, sbitmap *));
static void compute_delayinout  PROTO ((int, int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *,
					sbitmap *, sbitmap *));
static void compute_latein	PROTO ((int, int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *));
static void compute_isoinout	PROTO ((int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *, sbitmap *));
static void compute_optimal	PROTO ((int, sbitmap *,
					sbitmap *, sbitmap *));
static void compute_redundant	PROTO ((int, int, sbitmap *,
					sbitmap *, sbitmap *, sbitmap *));

/* Similarly, but for the reversed flowgraph.  */
static void compute_avinout 	PROTO ((int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *, sbitmap *));
static void compute_fartherinout	PROTO ((int, int, int_list_ptr *,
						sbitmap *, sbitmap *,
						sbitmap *, sbitmap *));
static void compute_earlierinout  PROTO ((int, int, int_list_ptr *, sbitmap *,
					  sbitmap *, sbitmap *,
					  sbitmap *, sbitmap *));
static void compute_firstout	PROTO ((int, int, int_list_ptr *, sbitmap *,
					sbitmap *, sbitmap *));
static void compute_rev_isoinout PROTO ((int, int_list_ptr *, sbitmap *,
					 sbitmap *, sbitmap *, sbitmap *));

/* Given local properties TRANSP, ANTLOC, return the redundant and optimal
   computation points for expressions.

   To reduce overall memory consumption, we allocate memory immediately
   before its needed and deallocate it as soon as possible.  */
void
pre_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
	 antloc, redundant, optimal)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     sbitmap *transp;
     sbitmap *antloc;
     sbitmap *redundant;
     sbitmap *optimal;
{
  sbitmap *antin, *antout, *earlyin, *earlyout, *delayin, *delayout;
  sbitmap *latein, *isoin, *isoout;

  /* Compute global anticipatability.  ANTOUT is not needed except to
     compute ANTIN, so free its memory as soon as we return from
     compute_antinout.  */
  antin = sbitmap_vector_alloc (n_blocks, n_exprs);
  antout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_antinout (n_blocks, s_succs, antloc,
		    transp, antin, antout);
  free (antout);
  antout = NULL;

  /* Compute earliestness.  EARLYOUT is not needed except to compute
     EARLYIN, so free its memory as soon as we return from
     compute_earlyinout.  */
  earlyin = sbitmap_vector_alloc (n_blocks, n_exprs);
  earlyout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
		      earlyin, earlyout);
  free (earlyout);
  earlyout = NULL;

  /* Compute delayedness.  DELAYOUT is not needed except to compute
     DELAYIN, so free its memory as soon as we return from
     compute_delayinout.  We also no longer need ANTIN and EARLYIN.  */
  delayin = sbitmap_vector_alloc (n_blocks, n_exprs);
  delayout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
		      antin, earlyin, delayin, delayout);
  free (delayout);
  delayout = NULL;
  free (antin);
  antin = NULL;
  free (earlyin);
  earlyin = NULL;

  /* Compute latestness.  We no longer need DELAYIN after we compute
     LATEIN.  */
  latein = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein);
  free (delayin);
  delayin = NULL;

  /* Compute isolatedness.  ISOIN is not needed except to compute
     ISOOUT, so free its memory as soon as we return from
     compute_isoinout.  */
  isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
  isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout);
  free (isoin);
  isoin = NULL;

  /* Now compute optimal placement points and the redundant expressions.  */
  compute_optimal (n_blocks, latein, isoout, optimal);
  compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant);
  free (latein);
  latein = NULL;
  free (isoout);
  isoout = NULL;
}

/* Given local properties TRANSP, AVLOC, return the redundant and optimal
   computation points for expressions on the reverse flowgraph.

   To reduce overall memory consumption, we allocate memory immediately
   before its needed and deallocate it as soon as possible.  */

void
pre_rev_lcm (n_blocks, n_exprs, s_preds, s_succs, transp,
	     avloc, redundant, optimal)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_preds;
     int_list_ptr *s_succs;
     sbitmap *transp;
     sbitmap *avloc;
     sbitmap *redundant;
     sbitmap *optimal;
{
  sbitmap *avin, *avout, *fartherin, *fartherout, *earlierin, *earlierout;
  sbitmap *firstout, *rev_isoin, *rev_isoout;

  /* Compute global availability.  AVIN is not needed except to
     compute AVOUT, so free its memory as soon as we return from
     compute_avinout.  */
  avin = sbitmap_vector_alloc (n_blocks, n_exprs);
  avout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout);
  free (avin);
  avin = NULL;

  /* Compute fartherness.  FARTHERIN is not needed except to compute
     FARTHEROUT, so free its memory as soon as we return from
     compute_earlyinout.  */
  fartherin = sbitmap_vector_alloc (n_blocks, n_exprs);
  fartherout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_fartherinout (n_blocks, n_exprs, s_succs, transp,
			avout, fartherin, fartherout);
  free (fartherin);
  fartherin = NULL;

  /* Compute earlierness.  EARLIERIN is not needed except to compute
     EARLIEROUT, so free its memory as soon as we return from
     compute_delayinout.  We also no longer need AVOUT and FARTHEROUT.  */
  earlierin = sbitmap_vector_alloc (n_blocks, n_exprs);
  earlierout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
		        avout, fartherout, earlierin, earlierout);
  free (earlierin);
  earlierin = NULL;
  free (avout);
  avout = NULL;
  free (fartherout);
  fartherout = NULL;

  /* Compute firstness.  We no longer need EARLIEROUT after we compute
     FIRSTOUT.  */
  firstout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout);
  free (earlierout);
  earlierout = NULL;

  /* Compute rev_isolatedness.  ISOIN is not needed except to compute
     ISOOUT, so free its memory as soon as we return from
     compute_isoinout.  */
  rev_isoin = sbitmap_vector_alloc (n_blocks, n_exprs);
  rev_isoout = sbitmap_vector_alloc (n_blocks, n_exprs);
  compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
			rev_isoin, rev_isoout);
  free (rev_isoout);
  rev_isoout = NULL;

  /* Now compute optimal placement points and the redundant expressions.  */
  compute_optimal (n_blocks, firstout, rev_isoin, optimal);
  compute_redundant (n_blocks, n_exprs, avloc, firstout, rev_isoin, redundant);
  free (firstout);
  firstout = NULL;
  free (rev_isoin);
  rev_isoin = NULL;
}

/* Compute expression anticipatability at entrance and exit of each block.  */

static void
compute_antinout (n_blocks, s_succs, antloc, transp, antin, antout)
     int n_blocks;
     int_list_ptr *s_succs;
     sbitmap *antloc;
     sbitmap *transp;
     sbitmap *antin;
     sbitmap *antout;
{
  int bb, changed, passes;
  sbitmap old_changed, new_changed;

  sbitmap_zero (antout[n_blocks - 1]);
  sbitmap_vector_ones (antin, n_blocks);

  old_changed = sbitmap_alloc (n_blocks);
  new_changed = sbitmap_alloc (n_blocks);
  sbitmap_ones (old_changed);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      sbitmap_zero (new_changed);
      /* We scan the blocks in the reverse order to speed up
	 the convergence.  */
      for (bb = n_blocks - 1; bb >= 0; bb--)
	{
	  int_list_ptr ps;

	  /* If none of the successors of this block have changed,
	     then this block is not going to change.  */
	  for (ps = s_succs[bb] ; ps; ps = ps->next)
	    {
	      if (INT_LIST_VAL (ps) == EXIT_BLOCK
		  || INT_LIST_VAL (ps) == ENTRY_BLOCK)
		break;

	      if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
		  || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
		break;
	    }

	  if (!ps)
	    continue;

	  if (bb != n_blocks - 1)
	    sbitmap_intersect_of_successors (antout[bb], antin,
					     bb, s_succs);
 	  if (sbitmap_a_or_b_and_c (antin[bb], antloc[bb],
				    transp[bb], antout[bb]))
	    {
	      changed = 1;
	      SET_BIT (new_changed, bb);
	    }
	}
      sbitmap_copy (old_changed, new_changed);
      passes++;
    }
  free (old_changed);
  free (new_changed);
}

/* Compute expression earliestness at entrance and exit of each block.

   From Advanced Compiler Design and Implementation pp411.

   An expression is earliest at the entrance to basic block BB if no
   block from entry to block BB both evaluates the expression and
   produces the same value as evaluating it at the entry to block BB
   does.  Similarly for earlistness at basic block BB exit.  */

static void
compute_earlyinout (n_blocks, n_exprs, s_preds, transp, antin,
		    earlyin, earlyout)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_preds;
     sbitmap *transp;
     sbitmap *antin;
     sbitmap *earlyin;
     sbitmap *earlyout;
{
  int bb, changed, passes;
  sbitmap temp_bitmap;
  sbitmap old_changed, new_changed;

  temp_bitmap = sbitmap_alloc (n_exprs);

  sbitmap_vector_zero (earlyout, n_blocks);
  sbitmap_ones (earlyin[0]);

  old_changed = sbitmap_alloc (n_blocks);
  new_changed = sbitmap_alloc (n_blocks);
  sbitmap_ones (old_changed);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      sbitmap_zero (new_changed);
      for (bb = 0; bb < n_blocks; bb++)
	{
	  int_list_ptr ps;

	  /* If none of the predecessors of this block have changed,
	     then this block is not going to change.  */
	  for (ps = s_preds[bb] ; ps; ps = ps->next)
	    {
	      if (INT_LIST_VAL (ps) == EXIT_BLOCK
		  || INT_LIST_VAL (ps) == ENTRY_BLOCK)
		break;

	      if (TEST_BIT (old_changed, INT_LIST_VAL (ps))
		  || TEST_BIT (new_changed, INT_LIST_VAL (ps)))
		break;
	    }

	  if (!ps)
	    continue;

	  if (bb != 0)
	    sbitmap_union_of_predecessors (earlyin[bb], earlyout,
					   bb, s_preds);
	  sbitmap_not (temp_bitmap, transp[bb]);
	  if (sbitmap_union_of_diff (earlyout[bb], temp_bitmap,
				     earlyin[bb], antin[bb]))
	    {
	      changed = 1;
	      SET_BIT (new_changed, bb);
	    }
	}
      sbitmap_copy (old_changed, new_changed);
      passes++;
    }
  free (old_changed);
  free (new_changed);
  free (temp_bitmap);
}

/* Compute expression delayedness at entrance and exit of each block.

   From Advanced Compiler Design and Implementation pp411.

   An expression is delayed at the entrance to BB if it is anticipatable
   and earliest at that point and if all subsequent computations of
   the expression are in block BB.   */

static void
compute_delayinout (n_blocks, n_exprs, s_preds, antloc,
		    antin, earlyin, delayin, delayout)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_preds;
     sbitmap *antloc;
     sbitmap *antin;
     sbitmap *earlyin;
     sbitmap *delayin;
     sbitmap *delayout;
{
  int bb, changed, passes;
  sbitmap *anti_and_early;
  sbitmap temp_bitmap;

  temp_bitmap = sbitmap_alloc (n_exprs);

  /* This is constant throughout the flow equations below, so compute
     it once to save time.  */
  anti_and_early = sbitmap_vector_alloc (n_blocks, n_exprs);
  for (bb = 0; bb < n_blocks; bb++)
    sbitmap_a_and_b (anti_and_early[bb], antin[bb], earlyin[bb]);
  
  sbitmap_vector_zero (delayout, n_blocks);
  sbitmap_copy (delayin[0], anti_and_early[0]);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 0; bb < n_blocks; bb++)
	{
	  if (bb != 0)
	    {
	      sbitmap_intersect_of_predecessors (temp_bitmap, delayout,
						 bb, s_preds);
	      changed |= sbitmap_a_or_b (delayin[bb],
					 anti_and_early[bb],
					 temp_bitmap);
	    }
	  sbitmap_not (temp_bitmap, antloc[bb]);
	  changed |= sbitmap_a_and_b (delayout[bb],
				      temp_bitmap,
				      delayin[bb]);
	}
      passes++;
    }

  /* We're done with this, so go ahead and free it's memory now instead
     of waiting until the end of pre.  */
  free (anti_and_early);
  free (temp_bitmap);
}

/* Compute latestness.

   From Advanced Compiler Design and Implementation pp412.

   An expression is latest at the entrance to block BB if that is an optimal
   point for computing the expression and if on every path from block BB's
   entrance to the exit block, any optimal computation point for the 
   expression occurs after one of the points at which the expression was
   computed in the original flowgraph.  */

static void
compute_latein (n_blocks, n_exprs, s_succs, antloc, delayin, latein)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_succs;
     sbitmap *antloc;
     sbitmap *delayin;
     sbitmap *latein;
{
  int bb;
  sbitmap temp_bitmap;

  temp_bitmap = sbitmap_alloc (n_exprs);

  for (bb = 0; bb < n_blocks; bb++)
    {
      /* The last block is succeeded only by the exit block; therefore,
	 temp_bitmap will not be set by the following call!  */
      if (bb == n_blocks - 1)
	{
          sbitmap_intersect_of_successors (temp_bitmap, delayin,
				           bb, s_succs);
	  sbitmap_not (temp_bitmap, temp_bitmap);
	}
      else
	sbitmap_ones (temp_bitmap);
      sbitmap_a_and_b_or_c (latein[bb], delayin[bb],
			    antloc[bb], temp_bitmap);
    }
  free (temp_bitmap);
}

/* Compute isolated.

   From Advanced Compiler Design and Implementation pp413.

   A computationally optimal placement for the evaluation of an expression
   is defined to be isolated if and only if on every path from a successor
   of the block in which it is computed to the exit block, every original
   computation of the expression is preceded by the optimal placement point.  */

static void
compute_isoinout (n_blocks, s_succs, antloc, latein, isoin, isoout)
     int n_blocks;
     int_list_ptr *s_succs;
     sbitmap *antloc;
     sbitmap *latein;
     sbitmap *isoin;
     sbitmap *isoout;
{
  int bb, changed, passes;

  sbitmap_vector_zero (isoin, n_blocks);
  sbitmap_zero (isoout[n_blocks - 1]);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = n_blocks - 1; bb >= 0; bb--)
	{
	  if (bb != n_blocks - 1)
	    sbitmap_intersect_of_successors (isoout[bb], isoin,
					     bb, s_succs);
	  changed |= sbitmap_union_of_diff (isoin[bb], latein[bb],
					    isoout[bb], antloc[bb]);
	}
      passes++;
    }
}

/* Compute the set of expressions which have optimal computational points
   in each basic block.  This is the set of expressions that are latest, but
   that are not isolated in the block.  */

static void
compute_optimal (n_blocks, latein, isoout, optimal)
     int n_blocks;
     sbitmap *latein;
     sbitmap *isoout;
     sbitmap *optimal;
{
  int bb;

  for (bb = 0; bb < n_blocks; bb++)
    sbitmap_difference (optimal[bb], latein[bb], isoout[bb]);
}

/* Compute the set of expressions that are redundant in a block.  They are
   the expressions that are used in the block and that are neither isolated
   or latest.  */

static void
compute_redundant (n_blocks, n_exprs, antloc, latein, isoout, redundant)
     int n_blocks;
     int n_exprs;
     sbitmap *antloc;
     sbitmap *latein;
     sbitmap *isoout;
     sbitmap *redundant;
{
  int bb;
  sbitmap temp_bitmap;

  temp_bitmap = sbitmap_alloc (n_exprs);

  for (bb = 0; bb < n_blocks; bb++)
    {
      sbitmap_a_or_b (temp_bitmap, latein[bb], isoout[bb]);
      sbitmap_difference (redundant[bb], antloc[bb], temp_bitmap);
    }
  free (temp_bitmap);
}

/* Compute expression availability at entrance and exit of each block.  */

static void
compute_avinout (n_blocks, s_preds, avloc, transp, avin, avout)
     int n_blocks;
     int_list_ptr *s_preds;
     sbitmap *avloc;
     sbitmap *transp;
     sbitmap *avin;
     sbitmap *avout;
{
  int bb, changed, passes;

  sbitmap_zero (avin[0]);
  sbitmap_vector_ones (avout, n_blocks);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 0; bb < n_blocks; bb++)
	{
	  if (bb != 0)
	    sbitmap_intersect_of_predecessors (avin[bb], avout,
					       bb, s_preds);
	  changed |= sbitmap_a_or_b_and_c (avout[bb], avloc[bb],
					   transp[bb], avin[bb]);
	}
      passes++;
    }
}

/* Compute expression latestness.

   This is effectively the same as earliestness computed on the reverse
   flow graph.  */

static void
compute_fartherinout (n_blocks, n_exprs, s_succs,
		      transp, avout, fartherin, fartherout)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_succs;
     sbitmap *transp;
     sbitmap *avout;
     sbitmap *fartherin;
     sbitmap *fartherout;
{
  int bb, changed, passes;
  sbitmap temp_bitmap;

  temp_bitmap = sbitmap_alloc (n_exprs);

  sbitmap_vector_zero (fartherin, n_blocks);
  sbitmap_ones (fartherout[n_blocks - 1]);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = n_blocks - 1; bb >= 0; bb--)
	{
	  if (bb != n_blocks - 1)
	    sbitmap_union_of_successors (fartherout[bb], fartherin,
					 bb, s_succs);
	  sbitmap_not (temp_bitmap, transp[bb]);
	  changed |= sbitmap_union_of_diff (fartherin[bb], temp_bitmap,
					    fartherout[bb], avout[bb]);
	}
      passes++;
    }

  free (temp_bitmap);
}

/* Compute expression earlierness at entrance and exit of each block.

   This is effectively the same as delayedness computed on the reverse
   flow graph.  */

static void
compute_earlierinout (n_blocks, n_exprs, s_succs, avloc,
		      avout, fartherout, earlierin, earlierout)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_succs;
     sbitmap *avloc;
     sbitmap *avout;
     sbitmap *fartherout;
     sbitmap *earlierin;
     sbitmap *earlierout;
{
  int bb, changed, passes;
  sbitmap *av_and_farther;
  sbitmap temp_bitmap;

  temp_bitmap = sbitmap_alloc (n_exprs);

  /* This is constant throughout the flow equations below, so compute
     it once to save time.  */
  av_and_farther = sbitmap_vector_alloc (n_blocks, n_exprs);
  for (bb = 0; bb < n_blocks; bb++)
    sbitmap_a_and_b (av_and_farther[bb], avout[bb], fartherout[bb]);
  
  sbitmap_vector_zero (earlierin, n_blocks);
  sbitmap_copy (earlierout[n_blocks - 1], av_and_farther[n_blocks - 1]);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = n_blocks - 1; bb >= 0; bb--)
	{
	  if (bb != n_blocks - 1)
	    {
	      sbitmap_intersect_of_successors (temp_bitmap, earlierin,
					       bb, s_succs);
	      changed |= sbitmap_a_or_b (earlierout[bb],
					 av_and_farther[bb],
					 temp_bitmap);
	    }
	  sbitmap_not (temp_bitmap, avloc[bb]);
	  changed |= sbitmap_a_and_b (earlierin[bb],
				      temp_bitmap,
				      earlierout[bb]);
	}
      passes++;
    }

  /* We're done with this, so go ahead and free it's memory now instead
     of waiting until the end of pre.  */
  free (av_and_farther);
  free (temp_bitmap);
}

/* Compute firstness. 

   This is effectively the same as latestness computed on the reverse
   flow graph.  */

static void
compute_firstout (n_blocks, n_exprs, s_preds, avloc, earlierout, firstout)
     int n_blocks;
     int n_exprs;
     int_list_ptr *s_preds;
     sbitmap *avloc;
     sbitmap *earlierout;
     sbitmap *firstout;
{
  int bb;
  sbitmap temp_bitmap;

  temp_bitmap = sbitmap_alloc (n_exprs);

  for (bb = 0; bb < n_blocks; bb++)
    {
      /* The first block is preceded only by the entry block; therefore,
	 temp_bitmap will not be set by the following call!  */
      if (bb != 0)
	{
	  sbitmap_intersect_of_predecessors (temp_bitmap, earlierout,
					     bb, s_preds);
	  sbitmap_not (temp_bitmap, temp_bitmap);
	}
      else
	{
	  sbitmap_ones (temp_bitmap);
	}
      sbitmap_a_and_b_or_c (firstout[bb], earlierout[bb],
			    avloc[bb], temp_bitmap);
    }
  free (temp_bitmap);
}

/* Compute reverse isolated.

   This is effectively the same as isolatedness computed on the reverse
   flow graph.  */

static void
compute_rev_isoinout (n_blocks, s_preds, avloc, firstout,
		      rev_isoin, rev_isoout)
     int n_blocks;
     int_list_ptr *s_preds;
     sbitmap *avloc;
     sbitmap *firstout;
     sbitmap *rev_isoin;
     sbitmap *rev_isoout;
{
  int bb, changed, passes;

  sbitmap_vector_zero (rev_isoout, n_blocks);
  sbitmap_zero (rev_isoin[0]);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 0; bb < n_blocks; bb++)
	{
	  if (bb != 0)
	    sbitmap_intersect_of_predecessors (rev_isoin[bb], rev_isoout,
					       bb, s_preds);
	  changed |= sbitmap_union_of_diff (rev_isoout[bb], firstout[bb],
					    rev_isoin[bb], avloc[bb]);
	}
      passes++;
    }
}