summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/CodeGen/TargetLoweringBase.cpp
blob: dc01d160e1033f94b0b159f710e9a03dd5043fe8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLoweringBase class.
//
//===----------------------------------------------------------------------===//

#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cctype>
using namespace llvm;

static cl::opt<bool> JumpIsExpensiveOverride(
    "jump-is-expensive", cl::init(false),
    cl::desc("Do not create extra branches to split comparison logic."),
    cl::Hidden);

// Although this default value is arbitrary, it is not random. It is assumed
// that a condition that evaluates the same way by a higher percentage than this
// is best represented as control flow. Therefore, the default value N should be
// set such that the win from N% correct executions is greater than the loss
// from (100 - N)% mispredicted executions for the majority of intended targets.
static cl::opt<int> MinPercentageForPredictableBranch(
    "min-predictable-branch", cl::init(99),
    cl::desc("Minimum percentage (0-100) that a condition must be either true "
             "or false to assume that the condition is predictable"),
    cl::Hidden);

/// InitLibcallNames - Set default libcall names.
///
static void InitLibcallNames(const char **Names, const Triple &TT) {
  Names[RTLIB::SHL_I16] = "__ashlhi3";
  Names[RTLIB::SHL_I32] = "__ashlsi3";
  Names[RTLIB::SHL_I64] = "__ashldi3";
  Names[RTLIB::SHL_I128] = "__ashlti3";
  Names[RTLIB::SRL_I16] = "__lshrhi3";
  Names[RTLIB::SRL_I32] = "__lshrsi3";
  Names[RTLIB::SRL_I64] = "__lshrdi3";
  Names[RTLIB::SRL_I128] = "__lshrti3";
  Names[RTLIB::SRA_I16] = "__ashrhi3";
  Names[RTLIB::SRA_I32] = "__ashrsi3";
  Names[RTLIB::SRA_I64] = "__ashrdi3";
  Names[RTLIB::SRA_I128] = "__ashrti3";
  Names[RTLIB::MUL_I8] = "__mulqi3";
  Names[RTLIB::MUL_I16] = "__mulhi3";
  Names[RTLIB::MUL_I32] = "__mulsi3";
  Names[RTLIB::MUL_I64] = "__muldi3";
  Names[RTLIB::MUL_I128] = "__multi3";
  Names[RTLIB::MULO_I32] = "__mulosi4";
  Names[RTLIB::MULO_I64] = "__mulodi4";
  Names[RTLIB::MULO_I128] = "__muloti4";
  Names[RTLIB::SDIV_I8] = "__divqi3";
  Names[RTLIB::SDIV_I16] = "__divhi3";
  Names[RTLIB::SDIV_I32] = "__divsi3";
  Names[RTLIB::SDIV_I64] = "__divdi3";
  Names[RTLIB::SDIV_I128] = "__divti3";
  Names[RTLIB::UDIV_I8] = "__udivqi3";
  Names[RTLIB::UDIV_I16] = "__udivhi3";
  Names[RTLIB::UDIV_I32] = "__udivsi3";
  Names[RTLIB::UDIV_I64] = "__udivdi3";
  Names[RTLIB::UDIV_I128] = "__udivti3";
  Names[RTLIB::SREM_I8] = "__modqi3";
  Names[RTLIB::SREM_I16] = "__modhi3";
  Names[RTLIB::SREM_I32] = "__modsi3";
  Names[RTLIB::SREM_I64] = "__moddi3";
  Names[RTLIB::SREM_I128] = "__modti3";
  Names[RTLIB::UREM_I8] = "__umodqi3";
  Names[RTLIB::UREM_I16] = "__umodhi3";
  Names[RTLIB::UREM_I32] = "__umodsi3";
  Names[RTLIB::UREM_I64] = "__umoddi3";
  Names[RTLIB::UREM_I128] = "__umodti3";

  Names[RTLIB::NEG_I32] = "__negsi2";
  Names[RTLIB::NEG_I64] = "__negdi2";
  Names[RTLIB::ADD_F32] = "__addsf3";
  Names[RTLIB::ADD_F64] = "__adddf3";
  Names[RTLIB::ADD_F80] = "__addxf3";
  Names[RTLIB::ADD_F128] = "__addtf3";
  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
  Names[RTLIB::SUB_F32] = "__subsf3";
  Names[RTLIB::SUB_F64] = "__subdf3";
  Names[RTLIB::SUB_F80] = "__subxf3";
  Names[RTLIB::SUB_F128] = "__subtf3";
  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
  Names[RTLIB::MUL_F32] = "__mulsf3";
  Names[RTLIB::MUL_F64] = "__muldf3";
  Names[RTLIB::MUL_F80] = "__mulxf3";
  Names[RTLIB::MUL_F128] = "__multf3";
  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
  Names[RTLIB::DIV_F32] = "__divsf3";
  Names[RTLIB::DIV_F64] = "__divdf3";
  Names[RTLIB::DIV_F80] = "__divxf3";
  Names[RTLIB::DIV_F128] = "__divtf3";
  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
  Names[RTLIB::REM_F32] = "fmodf";
  Names[RTLIB::REM_F64] = "fmod";
  Names[RTLIB::REM_F80] = "fmodl";
  Names[RTLIB::REM_F128] = "fmodl";
  Names[RTLIB::REM_PPCF128] = "fmodl";
  Names[RTLIB::FMA_F32] = "fmaf";
  Names[RTLIB::FMA_F64] = "fma";
  Names[RTLIB::FMA_F80] = "fmal";
  Names[RTLIB::FMA_F128] = "fmal";
  Names[RTLIB::FMA_PPCF128] = "fmal";
  Names[RTLIB::POWI_F32] = "__powisf2";
  Names[RTLIB::POWI_F64] = "__powidf2";
  Names[RTLIB::POWI_F80] = "__powixf2";
  Names[RTLIB::POWI_F128] = "__powitf2";
  Names[RTLIB::POWI_PPCF128] = "__powitf2";
  Names[RTLIB::SQRT_F32] = "sqrtf";
  Names[RTLIB::SQRT_F64] = "sqrt";
  Names[RTLIB::SQRT_F80] = "sqrtl";
  Names[RTLIB::SQRT_F128] = "sqrtl";
  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
  Names[RTLIB::LOG_F32] = "logf";
  Names[RTLIB::LOG_F64] = "log";
  Names[RTLIB::LOG_F80] = "logl";
  Names[RTLIB::LOG_F128] = "logl";
  Names[RTLIB::LOG_PPCF128] = "logl";
  Names[RTLIB::LOG2_F32] = "log2f";
  Names[RTLIB::LOG2_F64] = "log2";
  Names[RTLIB::LOG2_F80] = "log2l";
  Names[RTLIB::LOG2_F128] = "log2l";
  Names[RTLIB::LOG2_PPCF128] = "log2l";
  Names[RTLIB::LOG10_F32] = "log10f";
  Names[RTLIB::LOG10_F64] = "log10";
  Names[RTLIB::LOG10_F80] = "log10l";
  Names[RTLIB::LOG10_F128] = "log10l";
  Names[RTLIB::LOG10_PPCF128] = "log10l";
  Names[RTLIB::EXP_F32] = "expf";
  Names[RTLIB::EXP_F64] = "exp";
  Names[RTLIB::EXP_F80] = "expl";
  Names[RTLIB::EXP_F128] = "expl";
  Names[RTLIB::EXP_PPCF128] = "expl";
  Names[RTLIB::EXP2_F32] = "exp2f";
  Names[RTLIB::EXP2_F64] = "exp2";
  Names[RTLIB::EXP2_F80] = "exp2l";
  Names[RTLIB::EXP2_F128] = "exp2l";
  Names[RTLIB::EXP2_PPCF128] = "exp2l";
  Names[RTLIB::SIN_F32] = "sinf";
  Names[RTLIB::SIN_F64] = "sin";
  Names[RTLIB::SIN_F80] = "sinl";
  Names[RTLIB::SIN_F128] = "sinl";
  Names[RTLIB::SIN_PPCF128] = "sinl";
  Names[RTLIB::COS_F32] = "cosf";
  Names[RTLIB::COS_F64] = "cos";
  Names[RTLIB::COS_F80] = "cosl";
  Names[RTLIB::COS_F128] = "cosl";
  Names[RTLIB::COS_PPCF128] = "cosl";
  Names[RTLIB::POW_F32] = "powf";
  Names[RTLIB::POW_F64] = "pow";
  Names[RTLIB::POW_F80] = "powl";
  Names[RTLIB::POW_F128] = "powl";
  Names[RTLIB::POW_PPCF128] = "powl";
  Names[RTLIB::CEIL_F32] = "ceilf";
  Names[RTLIB::CEIL_F64] = "ceil";
  Names[RTLIB::CEIL_F80] = "ceill";
  Names[RTLIB::CEIL_F128] = "ceill";
  Names[RTLIB::CEIL_PPCF128] = "ceill";
  Names[RTLIB::TRUNC_F32] = "truncf";
  Names[RTLIB::TRUNC_F64] = "trunc";
  Names[RTLIB::TRUNC_F80] = "truncl";
  Names[RTLIB::TRUNC_F128] = "truncl";
  Names[RTLIB::TRUNC_PPCF128] = "truncl";
  Names[RTLIB::RINT_F32] = "rintf";
  Names[RTLIB::RINT_F64] = "rint";
  Names[RTLIB::RINT_F80] = "rintl";
  Names[RTLIB::RINT_F128] = "rintl";
  Names[RTLIB::RINT_PPCF128] = "rintl";
  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
  Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
  Names[RTLIB::ROUND_F32] = "roundf";
  Names[RTLIB::ROUND_F64] = "round";
  Names[RTLIB::ROUND_F80] = "roundl";
  Names[RTLIB::ROUND_F128] = "roundl";
  Names[RTLIB::ROUND_PPCF128] = "roundl";
  Names[RTLIB::FLOOR_F32] = "floorf";
  Names[RTLIB::FLOOR_F64] = "floor";
  Names[RTLIB::FLOOR_F80] = "floorl";
  Names[RTLIB::FLOOR_F128] = "floorl";
  Names[RTLIB::FLOOR_PPCF128] = "floorl";
  Names[RTLIB::FMIN_F32] = "fminf";
  Names[RTLIB::FMIN_F64] = "fmin";
  Names[RTLIB::FMIN_F80] = "fminl";
  Names[RTLIB::FMIN_F128] = "fminl";
  Names[RTLIB::FMIN_PPCF128] = "fminl";
  Names[RTLIB::FMAX_F32] = "fmaxf";
  Names[RTLIB::FMAX_F64] = "fmax";
  Names[RTLIB::FMAX_F80] = "fmaxl";
  Names[RTLIB::FMAX_F128] = "fmaxl";
  Names[RTLIB::FMAX_PPCF128] = "fmaxl";
  Names[RTLIB::ROUND_F32] = "roundf";
  Names[RTLIB::ROUND_F64] = "round";
  Names[RTLIB::ROUND_F80] = "roundl";
  Names[RTLIB::ROUND_F128] = "roundl";
  Names[RTLIB::ROUND_PPCF128] = "roundl";
  Names[RTLIB::COPYSIGN_F32] = "copysignf";
  Names[RTLIB::COPYSIGN_F64] = "copysign";
  Names[RTLIB::COPYSIGN_F80] = "copysignl";
  Names[RTLIB::COPYSIGN_F128] = "copysignl";
  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
  Names[RTLIB::FPEXT_F32_PPCF128] = "__gcc_stoq";
  Names[RTLIB::FPEXT_F64_PPCF128] = "__gcc_dtoq";
  Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
  Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
  if (TT.isOSDarwin()) {
    // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
    // of the gnueabi-style __gnu_*_ieee.
    // FIXME: What about other targets?
    Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
    Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
  } else {
    Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
    Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
  }
  Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
  Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
  Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
  Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
  Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
  Names[RTLIB::FPROUND_PPCF128_F32] = "__gcc_qtos";
  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
  Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
  Names[RTLIB::FPROUND_PPCF128_F64] = "__gcc_qtod";
  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
  Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
  Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
  Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__gcc_qtou";
  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
  Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
  Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
  Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
  Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__gcc_itoq";
  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
  Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
  Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
  Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__gcc_utoq";
  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
  Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
  Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
  Names[RTLIB::OEQ_F32] = "__eqsf2";
  Names[RTLIB::OEQ_F64] = "__eqdf2";
  Names[RTLIB::OEQ_F128] = "__eqtf2";
  Names[RTLIB::OEQ_PPCF128] = "__gcc_qeq";
  Names[RTLIB::UNE_F32] = "__nesf2";
  Names[RTLIB::UNE_F64] = "__nedf2";
  Names[RTLIB::UNE_F128] = "__netf2";
  Names[RTLIB::UNE_PPCF128] = "__gcc_qne";
  Names[RTLIB::OGE_F32] = "__gesf2";
  Names[RTLIB::OGE_F64] = "__gedf2";
  Names[RTLIB::OGE_F128] = "__getf2";
  Names[RTLIB::OGE_PPCF128] = "__gcc_qge";
  Names[RTLIB::OLT_F32] = "__ltsf2";
  Names[RTLIB::OLT_F64] = "__ltdf2";
  Names[RTLIB::OLT_F128] = "__lttf2";
  Names[RTLIB::OLT_PPCF128] = "__gcc_qlt";
  Names[RTLIB::OLE_F32] = "__lesf2";
  Names[RTLIB::OLE_F64] = "__ledf2";
  Names[RTLIB::OLE_F128] = "__letf2";
  Names[RTLIB::OLE_PPCF128] = "__gcc_qle";
  Names[RTLIB::OGT_F32] = "__gtsf2";
  Names[RTLIB::OGT_F64] = "__gtdf2";
  Names[RTLIB::OGT_F128] = "__gttf2";
  Names[RTLIB::OGT_PPCF128] = "__gcc_qgt";
  Names[RTLIB::UO_F32] = "__unordsf2";
  Names[RTLIB::UO_F64] = "__unorddf2";
  Names[RTLIB::UO_F128] = "__unordtf2";
  Names[RTLIB::UO_PPCF128] = "__gcc_qunord";
  Names[RTLIB::O_F32] = "__unordsf2";
  Names[RTLIB::O_F64] = "__unorddf2";
  Names[RTLIB::O_F128] = "__unordtf2";
  Names[RTLIB::O_PPCF128] = "__gcc_qunord";
  Names[RTLIB::MEMCPY] = "memcpy";
  Names[RTLIB::MEMMOVE] = "memmove";
  Names[RTLIB::MEMSET] = "memset";
  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
  Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
  Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
  Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
  Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
  Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
  Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
  Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
  Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
  Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
  Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
  Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
  Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
  Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
  Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
  Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
  Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
  Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
  Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
  Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
  Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
  Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
  Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
  Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
  Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
  Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
  Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";

  Names[RTLIB::ATOMIC_LOAD] = "__atomic_load";
  Names[RTLIB::ATOMIC_LOAD_1] = "__atomic_load_1";
  Names[RTLIB::ATOMIC_LOAD_2] = "__atomic_load_2";
  Names[RTLIB::ATOMIC_LOAD_4] = "__atomic_load_4";
  Names[RTLIB::ATOMIC_LOAD_8] = "__atomic_load_8";
  Names[RTLIB::ATOMIC_LOAD_16] = "__atomic_load_16";

  Names[RTLIB::ATOMIC_STORE] = "__atomic_store";
  Names[RTLIB::ATOMIC_STORE_1] = "__atomic_store_1";
  Names[RTLIB::ATOMIC_STORE_2] = "__atomic_store_2";
  Names[RTLIB::ATOMIC_STORE_4] = "__atomic_store_4";
  Names[RTLIB::ATOMIC_STORE_8] = "__atomic_store_8";
  Names[RTLIB::ATOMIC_STORE_16] = "__atomic_store_16";

  Names[RTLIB::ATOMIC_EXCHANGE] = "__atomic_exchange";
  Names[RTLIB::ATOMIC_EXCHANGE_1] = "__atomic_exchange_1";
  Names[RTLIB::ATOMIC_EXCHANGE_2] = "__atomic_exchange_2";
  Names[RTLIB::ATOMIC_EXCHANGE_4] = "__atomic_exchange_4";
  Names[RTLIB::ATOMIC_EXCHANGE_8] = "__atomic_exchange_8";
  Names[RTLIB::ATOMIC_EXCHANGE_16] = "__atomic_exchange_16";

  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE] = "__atomic_compare_exchange";
  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_1] = "__atomic_compare_exchange_1";
  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_2] = "__atomic_compare_exchange_2";
  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_4] = "__atomic_compare_exchange_4";
  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_8] = "__atomic_compare_exchange_8";
  Names[RTLIB::ATOMIC_COMPARE_EXCHANGE_16] = "__atomic_compare_exchange_16";

  Names[RTLIB::ATOMIC_FETCH_ADD_1] = "__atomic_fetch_add_1";
  Names[RTLIB::ATOMIC_FETCH_ADD_2] = "__atomic_fetch_add_2";
  Names[RTLIB::ATOMIC_FETCH_ADD_4] = "__atomic_fetch_add_4";
  Names[RTLIB::ATOMIC_FETCH_ADD_8] = "__atomic_fetch_add_8";
  Names[RTLIB::ATOMIC_FETCH_ADD_16] = "__atomic_fetch_add_16";
  Names[RTLIB::ATOMIC_FETCH_SUB_1] = "__atomic_fetch_sub_1";
  Names[RTLIB::ATOMIC_FETCH_SUB_2] = "__atomic_fetch_sub_2";
  Names[RTLIB::ATOMIC_FETCH_SUB_4] = "__atomic_fetch_sub_4";
  Names[RTLIB::ATOMIC_FETCH_SUB_8] = "__atomic_fetch_sub_8";
  Names[RTLIB::ATOMIC_FETCH_SUB_16] = "__atomic_fetch_sub_16";
  Names[RTLIB::ATOMIC_FETCH_AND_1] = "__atomic_fetch_and_1";
  Names[RTLIB::ATOMIC_FETCH_AND_2] = "__atomic_fetch_and_2";
  Names[RTLIB::ATOMIC_FETCH_AND_4] = "__atomic_fetch_and_4";
  Names[RTLIB::ATOMIC_FETCH_AND_8] = "__atomic_fetch_and_8";
  Names[RTLIB::ATOMIC_FETCH_AND_16] = "__atomic_fetch_and_16";
  Names[RTLIB::ATOMIC_FETCH_OR_1] = "__atomic_fetch_or_1";
  Names[RTLIB::ATOMIC_FETCH_OR_2] = "__atomic_fetch_or_2";
  Names[RTLIB::ATOMIC_FETCH_OR_4] = "__atomic_fetch_or_4";
  Names[RTLIB::ATOMIC_FETCH_OR_8] = "__atomic_fetch_or_8";
  Names[RTLIB::ATOMIC_FETCH_OR_16] = "__atomic_fetch_or_16";
  Names[RTLIB::ATOMIC_FETCH_XOR_1] = "__atomic_fetch_xor_1";
  Names[RTLIB::ATOMIC_FETCH_XOR_2] = "__atomic_fetch_xor_2";
  Names[RTLIB::ATOMIC_FETCH_XOR_4] = "__atomic_fetch_xor_4";
  Names[RTLIB::ATOMIC_FETCH_XOR_8] = "__atomic_fetch_xor_8";
  Names[RTLIB::ATOMIC_FETCH_XOR_16] = "__atomic_fetch_xor_16";
  Names[RTLIB::ATOMIC_FETCH_NAND_1] = "__atomic_fetch_nand_1";
  Names[RTLIB::ATOMIC_FETCH_NAND_2] = "__atomic_fetch_nand_2";
  Names[RTLIB::ATOMIC_FETCH_NAND_4] = "__atomic_fetch_nand_4";
  Names[RTLIB::ATOMIC_FETCH_NAND_8] = "__atomic_fetch_nand_8";
  Names[RTLIB::ATOMIC_FETCH_NAND_16] = "__atomic_fetch_nand_16";

  if (TT.isGNUEnvironment()) {
    Names[RTLIB::SINCOS_F32] = "sincosf";
    Names[RTLIB::SINCOS_F64] = "sincos";
    Names[RTLIB::SINCOS_F80] = "sincosl";
    Names[RTLIB::SINCOS_F128] = "sincosl";
    Names[RTLIB::SINCOS_PPCF128] = "sincosl";
  }

  if (!TT.isOSOpenBSD()) {
    Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
  }

  Names[RTLIB::DEOPTIMIZE] = "__llvm_deoptimize";
}

/// InitLibcallCallingConvs - Set default libcall CallingConvs.
///
static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
    CCs[i] = CallingConv::C;
  }
}

/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::f16) {
    if (RetVT == MVT::f32)
      return FPEXT_F16_F32;
  } else if (OpVT == MVT::f32) {
    if (RetVT == MVT::f64)
      return FPEXT_F32_F64;
    if (RetVT == MVT::f128)
      return FPEXT_F32_F128;
    if (RetVT == MVT::ppcf128)
      return FPEXT_F32_PPCF128;
  } else if (OpVT == MVT::f64) {
    if (RetVT == MVT::f128)
      return FPEXT_F64_F128;
    else if (RetVT == MVT::ppcf128)
      return FPEXT_F64_PPCF128;
  }

  return UNKNOWN_LIBCALL;
}

/// getFPROUND - Return the FPROUND_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
  if (RetVT == MVT::f16) {
    if (OpVT == MVT::f32)
      return FPROUND_F32_F16;
    if (OpVT == MVT::f64)
      return FPROUND_F64_F16;
    if (OpVT == MVT::f80)
      return FPROUND_F80_F16;
    if (OpVT == MVT::f128)
      return FPROUND_F128_F16;
    if (OpVT == MVT::ppcf128)
      return FPROUND_PPCF128_F16;
  } else if (RetVT == MVT::f32) {
    if (OpVT == MVT::f64)
      return FPROUND_F64_F32;
    if (OpVT == MVT::f80)
      return FPROUND_F80_F32;
    if (OpVT == MVT::f128)
      return FPROUND_F128_F32;
    if (OpVT == MVT::ppcf128)
      return FPROUND_PPCF128_F32;
  } else if (RetVT == MVT::f64) {
    if (OpVT == MVT::f80)
      return FPROUND_F80_F64;
    if (OpVT == MVT::f128)
      return FPROUND_F128_F64;
    if (OpVT == MVT::ppcf128)
      return FPROUND_PPCF128_F64;
  }

  return UNKNOWN_LIBCALL;
}

/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::f32) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F32_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F32_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F32_I128;
  } else if (OpVT == MVT::f64) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F64_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F64_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F64_I128;
  } else if (OpVT == MVT::f80) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F80_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F80_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F80_I128;
  } else if (OpVT == MVT::f128) {
    if (RetVT == MVT::i32)
      return FPTOSINT_F128_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_F128_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_F128_I128;
  } else if (OpVT == MVT::ppcf128) {
    if (RetVT == MVT::i32)
      return FPTOSINT_PPCF128_I32;
    if (RetVT == MVT::i64)
      return FPTOSINT_PPCF128_I64;
    if (RetVT == MVT::i128)
      return FPTOSINT_PPCF128_I128;
  }
  return UNKNOWN_LIBCALL;
}

/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::f32) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F32_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F32_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F32_I128;
  } else if (OpVT == MVT::f64) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F64_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F64_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F64_I128;
  } else if (OpVT == MVT::f80) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F80_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F80_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F80_I128;
  } else if (OpVT == MVT::f128) {
    if (RetVT == MVT::i32)
      return FPTOUINT_F128_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_F128_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_F128_I128;
  } else if (OpVT == MVT::ppcf128) {
    if (RetVT == MVT::i32)
      return FPTOUINT_PPCF128_I32;
    if (RetVT == MVT::i64)
      return FPTOUINT_PPCF128_I64;
    if (RetVT == MVT::i128)
      return FPTOUINT_PPCF128_I128;
  }
  return UNKNOWN_LIBCALL;
}

/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::i32) {
    if (RetVT == MVT::f32)
      return SINTTOFP_I32_F32;
    if (RetVT == MVT::f64)
      return SINTTOFP_I32_F64;
    if (RetVT == MVT::f80)
      return SINTTOFP_I32_F80;
    if (RetVT == MVT::f128)
      return SINTTOFP_I32_F128;
    if (RetVT == MVT::ppcf128)
      return SINTTOFP_I32_PPCF128;
  } else if (OpVT == MVT::i64) {
    if (RetVT == MVT::f32)
      return SINTTOFP_I64_F32;
    if (RetVT == MVT::f64)
      return SINTTOFP_I64_F64;
    if (RetVT == MVT::f80)
      return SINTTOFP_I64_F80;
    if (RetVT == MVT::f128)
      return SINTTOFP_I64_F128;
    if (RetVT == MVT::ppcf128)
      return SINTTOFP_I64_PPCF128;
  } else if (OpVT == MVT::i128) {
    if (RetVT == MVT::f32)
      return SINTTOFP_I128_F32;
    if (RetVT == MVT::f64)
      return SINTTOFP_I128_F64;
    if (RetVT == MVT::f80)
      return SINTTOFP_I128_F80;
    if (RetVT == MVT::f128)
      return SINTTOFP_I128_F128;
    if (RetVT == MVT::ppcf128)
      return SINTTOFP_I128_PPCF128;
  }
  return UNKNOWN_LIBCALL;
}

/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
  if (OpVT == MVT::i32) {
    if (RetVT == MVT::f32)
      return UINTTOFP_I32_F32;
    if (RetVT == MVT::f64)
      return UINTTOFP_I32_F64;
    if (RetVT == MVT::f80)
      return UINTTOFP_I32_F80;
    if (RetVT == MVT::f128)
      return UINTTOFP_I32_F128;
    if (RetVT == MVT::ppcf128)
      return UINTTOFP_I32_PPCF128;
  } else if (OpVT == MVT::i64) {
    if (RetVT == MVT::f32)
      return UINTTOFP_I64_F32;
    if (RetVT == MVT::f64)
      return UINTTOFP_I64_F64;
    if (RetVT == MVT::f80)
      return UINTTOFP_I64_F80;
    if (RetVT == MVT::f128)
      return UINTTOFP_I64_F128;
    if (RetVT == MVT::ppcf128)
      return UINTTOFP_I64_PPCF128;
  } else if (OpVT == MVT::i128) {
    if (RetVT == MVT::f32)
      return UINTTOFP_I128_F32;
    if (RetVT == MVT::f64)
      return UINTTOFP_I128_F64;
    if (RetVT == MVT::f80)
      return UINTTOFP_I128_F80;
    if (RetVT == MVT::f128)
      return UINTTOFP_I128_F128;
    if (RetVT == MVT::ppcf128)
      return UINTTOFP_I128_PPCF128;
  }
  return UNKNOWN_LIBCALL;
}

RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
#define OP_TO_LIBCALL(Name, Enum)                                              \
  case Name:                                                                   \
    switch (VT.SimpleTy) {                                                     \
    default:                                                                   \
      return UNKNOWN_LIBCALL;                                                  \
    case MVT::i8:                                                              \
      return Enum##_1;                                                         \
    case MVT::i16:                                                             \
      return Enum##_2;                                                         \
    case MVT::i32:                                                             \
      return Enum##_4;                                                         \
    case MVT::i64:                                                             \
      return Enum##_8;                                                         \
    case MVT::i128:                                                            \
      return Enum##_16;                                                        \
    }

  switch (Opc) {
    OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
    OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
    OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
  }

#undef OP_TO_LIBCALL

  return UNKNOWN_LIBCALL;
}

/// InitCmpLibcallCCs - Set default comparison libcall CC.
///
static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
  CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
  CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
  CCs[RTLIB::UNE_F32] = ISD::SETNE;
  CCs[RTLIB::UNE_F64] = ISD::SETNE;
  CCs[RTLIB::UNE_F128] = ISD::SETNE;
  CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
  CCs[RTLIB::OGE_F32] = ISD::SETGE;
  CCs[RTLIB::OGE_F64] = ISD::SETGE;
  CCs[RTLIB::OGE_F128] = ISD::SETGE;
  CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
  CCs[RTLIB::OLT_F32] = ISD::SETLT;
  CCs[RTLIB::OLT_F64] = ISD::SETLT;
  CCs[RTLIB::OLT_F128] = ISD::SETLT;
  CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
  CCs[RTLIB::OLE_F32] = ISD::SETLE;
  CCs[RTLIB::OLE_F64] = ISD::SETLE;
  CCs[RTLIB::OLE_F128] = ISD::SETLE;
  CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
  CCs[RTLIB::OGT_F32] = ISD::SETGT;
  CCs[RTLIB::OGT_F64] = ISD::SETGT;
  CCs[RTLIB::OGT_F128] = ISD::SETGT;
  CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
  CCs[RTLIB::UO_F32] = ISD::SETNE;
  CCs[RTLIB::UO_F64] = ISD::SETNE;
  CCs[RTLIB::UO_F128] = ISD::SETNE;
  CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
  CCs[RTLIB::O_F32] = ISD::SETEQ;
  CCs[RTLIB::O_F64] = ISD::SETEQ;
  CCs[RTLIB::O_F128] = ISD::SETEQ;
  CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
}

/// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
  initActions();

  // Perform these initializations only once.
  MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
  MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
    = MaxStoresPerMemmoveOptSize = 4;
  UseUnderscoreSetJmp = false;
  UseUnderscoreLongJmp = false;
  SelectIsExpensive = false;
  HasMultipleConditionRegisters = false;
  HasExtractBitsInsn = false;
  FsqrtIsCheap = false;
  JumpIsExpensive = JumpIsExpensiveOverride;
  PredictableSelectIsExpensive = false;
  MaskAndBranchFoldingIsLegal = false;
  EnableExtLdPromotion = false;
  HasFloatingPointExceptions = true;
  StackPointerRegisterToSaveRestore = 0;
  BooleanContents = UndefinedBooleanContent;
  BooleanFloatContents = UndefinedBooleanContent;
  BooleanVectorContents = UndefinedBooleanContent;
  SchedPreferenceInfo = Sched::ILP;
  JumpBufSize = 0;
  JumpBufAlignment = 0;
  MinFunctionAlignment = 0;
  PrefFunctionAlignment = 0;
  PrefLoopAlignment = 0;
  GatherAllAliasesMaxDepth = 6;
  MinStackArgumentAlignment = 1;
  MinimumJumpTableEntries = 4;
  // TODO: the default will be switched to 0 in the next commit, along
  // with the Target-specific changes necessary.
  MaxAtomicSizeInBitsSupported = 1024;

  MinCmpXchgSizeInBits = 0;

  std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);

  InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
  InitCmpLibcallCCs(CmpLibcallCCs);
  InitLibcallCallingConvs(LibcallCallingConvs);
}

void TargetLoweringBase::initActions() {
  // All operations default to being supported.
  memset(OpActions, 0, sizeof(OpActions));
  memset(LoadExtActions, 0, sizeof(LoadExtActions));
  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
  memset(CondCodeActions, 0, sizeof(CondCodeActions));
  std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
  std::fill(std::begin(TargetDAGCombineArray),
            std::end(TargetDAGCombineArray), 0);

  // Set default actions for various operations.
  for (MVT VT : MVT::all_valuetypes()) {
    // Default all indexed load / store to expand.
    for (unsigned IM = (unsigned)ISD::PRE_INC;
         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
      setIndexedLoadAction(IM, VT, Expand);
      setIndexedStoreAction(IM, VT, Expand);
    }

    // Most backends expect to see the node which just returns the value loaded.
    setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);

    // These operations default to expand.
    setOperationAction(ISD::FGETSIGN, VT, Expand);
    setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
    setOperationAction(ISD::FMINNUM, VT, Expand);
    setOperationAction(ISD::FMAXNUM, VT, Expand);
    setOperationAction(ISD::FMINNAN, VT, Expand);
    setOperationAction(ISD::FMAXNAN, VT, Expand);
    setOperationAction(ISD::FMAD, VT, Expand);
    setOperationAction(ISD::SMIN, VT, Expand);
    setOperationAction(ISD::SMAX, VT, Expand);
    setOperationAction(ISD::UMIN, VT, Expand);
    setOperationAction(ISD::UMAX, VT, Expand);

    // Overflow operations default to expand
    setOperationAction(ISD::SADDO, VT, Expand);
    setOperationAction(ISD::SSUBO, VT, Expand);
    setOperationAction(ISD::UADDO, VT, Expand);
    setOperationAction(ISD::USUBO, VT, Expand);
    setOperationAction(ISD::SMULO, VT, Expand);
    setOperationAction(ISD::UMULO, VT, Expand);

    // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);

    setOperationAction(ISD::BITREVERSE, VT, Expand);
    
    // These library functions default to expand.
    setOperationAction(ISD::FROUND, VT, Expand);

    // These operations default to expand for vector types.
    if (VT.isVector()) {
      setOperationAction(ISD::FCOPYSIGN, VT, Expand);
      setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
      setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
      setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
    }

    // For most targets @llvm.get.dynamic.area.offset just returns 0.
    setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
  }

  // Most targets ignore the @llvm.prefetch intrinsic.
  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);

  // Most targets also ignore the @llvm.readcyclecounter intrinsic.
  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);

  // ConstantFP nodes default to expand.  Targets can either change this to
  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
  // to optimize expansions for certain constants.
  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
  setOperationAction(ISD::ConstantFP, MVT::f128, Expand);

  // These library functions default to expand.
  for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
    setOperationAction(ISD::FLOG ,      VT, Expand);
    setOperationAction(ISD::FLOG2,      VT, Expand);
    setOperationAction(ISD::FLOG10,     VT, Expand);
    setOperationAction(ISD::FEXP ,      VT, Expand);
    setOperationAction(ISD::FEXP2,      VT, Expand);
    setOperationAction(ISD::FFLOOR,     VT, Expand);
    setOperationAction(ISD::FNEARBYINT, VT, Expand);
    setOperationAction(ISD::FCEIL,      VT, Expand);
    setOperationAction(ISD::FRINT,      VT, Expand);
    setOperationAction(ISD::FTRUNC,     VT, Expand);
    setOperationAction(ISD::FROUND,     VT, Expand);
  }

  // Default ISD::TRAP to expand (which turns it into abort).
  setOperationAction(ISD::TRAP, MVT::Other, Expand);

  // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
  // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
  //
  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
}

MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
                                               EVT) const {
  return MVT::getIntegerVT(8 * DL.getPointerSize(0));
}

EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
                                         const DataLayout &DL) const {
  assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
  if (LHSTy.isVector())
    return LHSTy;
  return getScalarShiftAmountTy(DL, LHSTy);
}

/// canOpTrap - Returns true if the operation can trap for the value type.
/// VT must be a legal type.
bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
  assert(isTypeLegal(VT));
  switch (Op) {
  default:
    return false;
  case ISD::FDIV:
  case ISD::FREM:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SREM:
  case ISD::UREM:
    return true;
  }
}

void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
  // If the command-line option was specified, ignore this request.
  if (!JumpIsExpensiveOverride.getNumOccurrences())
    JumpIsExpensive = isExpensive;
}

TargetLoweringBase::LegalizeKind
TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
  // If this is a simple type, use the ComputeRegisterProp mechanism.
  if (VT.isSimple()) {
    MVT SVT = VT.getSimpleVT();
    assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
    MVT NVT = TransformToType[SVT.SimpleTy];
    LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);

    assert((LA == TypeLegal || LA == TypeSoftenFloat ||
            ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
           "Promote may not follow Expand or Promote");

    if (LA == TypeSplitVector)
      return LegalizeKind(LA,
                          EVT::getVectorVT(Context, SVT.getVectorElementType(),
                                           SVT.getVectorNumElements() / 2));
    if (LA == TypeScalarizeVector)
      return LegalizeKind(LA, SVT.getVectorElementType());
    return LegalizeKind(LA, NVT);
  }

  // Handle Extended Scalar Types.
  if (!VT.isVector()) {
    assert(VT.isInteger() && "Float types must be simple");
    unsigned BitSize = VT.getSizeInBits();
    // First promote to a power-of-two size, then expand if necessary.
    if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
      EVT NVT = VT.getRoundIntegerType(Context);
      assert(NVT != VT && "Unable to round integer VT");
      LegalizeKind NextStep = getTypeConversion(Context, NVT);
      // Avoid multi-step promotion.
      if (NextStep.first == TypePromoteInteger)
        return NextStep;
      // Return rounded integer type.
      return LegalizeKind(TypePromoteInteger, NVT);
    }

    return LegalizeKind(TypeExpandInteger,
                        EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
  }

  // Handle vector types.
  unsigned NumElts = VT.getVectorNumElements();
  EVT EltVT = VT.getVectorElementType();

  // Vectors with only one element are always scalarized.
  if (NumElts == 1)
    return LegalizeKind(TypeScalarizeVector, EltVT);

  // Try to widen vector elements until the element type is a power of two and
  // promote it to a legal type later on, for example:
  // <3 x i8> -> <4 x i8> -> <4 x i32>
  if (EltVT.isInteger()) {
    // Vectors with a number of elements that is not a power of two are always
    // widened, for example <3 x i8> -> <4 x i8>.
    if (!VT.isPow2VectorType()) {
      NumElts = (unsigned)NextPowerOf2(NumElts);
      EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
      return LegalizeKind(TypeWidenVector, NVT);
    }

    // Examine the element type.
    LegalizeKind LK = getTypeConversion(Context, EltVT);

    // If type is to be expanded, split the vector.
    //  <4 x i140> -> <2 x i140>
    if (LK.first == TypeExpandInteger)
      return LegalizeKind(TypeSplitVector,
                          EVT::getVectorVT(Context, EltVT, NumElts / 2));

    // Promote the integer element types until a legal vector type is found
    // or until the element integer type is too big. If a legal type was not
    // found, fallback to the usual mechanism of widening/splitting the
    // vector.
    EVT OldEltVT = EltVT;
    while (1) {
      // Increase the bitwidth of the element to the next pow-of-two
      // (which is greater than 8 bits).
      EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
                  .getRoundIntegerType(Context);

      // Stop trying when getting a non-simple element type.
      // Note that vector elements may be greater than legal vector element
      // types. Example: X86 XMM registers hold 64bit element on 32bit
      // systems.
      if (!EltVT.isSimple())
        break;

      // Build a new vector type and check if it is legal.
      MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
      // Found a legal promoted vector type.
      if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
        return LegalizeKind(TypePromoteInteger,
                            EVT::getVectorVT(Context, EltVT, NumElts));
    }

    // Reset the type to the unexpanded type if we did not find a legal vector
    // type with a promoted vector element type.
    EltVT = OldEltVT;
  }

  // Try to widen the vector until a legal type is found.
  // If there is no wider legal type, split the vector.
  while (1) {
    // Round up to the next power of 2.
    NumElts = (unsigned)NextPowerOf2(NumElts);

    // If there is no simple vector type with this many elements then there
    // cannot be a larger legal vector type.  Note that this assumes that
    // there are no skipped intermediate vector types in the simple types.
    if (!EltVT.isSimple())
      break;
    MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
    if (LargerVector == MVT())
      break;

    // If this type is legal then widen the vector.
    if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
      return LegalizeKind(TypeWidenVector, LargerVector);
  }

  // Widen odd vectors to next power of two.
  if (!VT.isPow2VectorType()) {
    EVT NVT = VT.getPow2VectorType(Context);
    return LegalizeKind(TypeWidenVector, NVT);
  }

  // Vectors with illegal element types are expanded.
  EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
  return LegalizeKind(TypeSplitVector, NVT);
}

static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
                                          unsigned &NumIntermediates,
                                          MVT &RegisterVT,
                                          TargetLoweringBase *TLI) {
  // Figure out the right, legal destination reg to copy into.
  unsigned NumElts = VT.getVectorNumElements();
  MVT EltTy = VT.getVectorElementType();

  unsigned NumVectorRegs = 1;

  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
  // could break down into LHS/RHS like LegalizeDAG does.
  if (!isPowerOf2_32(NumElts)) {
    NumVectorRegs = NumElts;
    NumElts = 1;
  }

  // Divide the input until we get to a supported size.  This will always
  // end with a scalar if the target doesn't support vectors.
  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
    NumElts >>= 1;
    NumVectorRegs <<= 1;
  }

  NumIntermediates = NumVectorRegs;

  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
  if (!TLI->isTypeLegal(NewVT))
    NewVT = EltTy;
  IntermediateVT = NewVT;

  unsigned NewVTSize = NewVT.getSizeInBits();

  // Convert sizes such as i33 to i64.
  if (!isPowerOf2_32(NewVTSize))
    NewVTSize = NextPowerOf2(NewVTSize);

  MVT DestVT = TLI->getRegisterType(NewVT);
  RegisterVT = DestVT;
  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());

  // Otherwise, promotion or legal types use the same number of registers as
  // the vector decimated to the appropriate level.
  return NumVectorRegs;
}

/// isLegalRC - Return true if the value types that can be represented by the
/// specified register class are all legal.
bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
       I != E; ++I) {
    if (isTypeLegal(*I))
      return true;
  }
  return false;
}

/// Replace/modify any TargetFrameIndex operands with a targte-dependent
/// sequence of memory operands that is recognized by PrologEpilogInserter.
MachineBasicBlock *
TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
                                   MachineBasicBlock *MBB) const {
  MachineInstr *MI = &InitialMI;
  MachineFunction &MF = *MI->getParent()->getParent();
  MachineFrameInfo &MFI = *MF.getFrameInfo();

  // We're handling multiple types of operands here:
  // PATCHPOINT MetaArgs - live-in, read only, direct
  // STATEPOINT Deopt Spill - live-through, read only, indirect
  // STATEPOINT Deopt Alloca - live-through, read only, direct
  // (We're currently conservative and mark the deopt slots read/write in
  // practice.) 
  // STATEPOINT GC Spill - live-through, read/write, indirect
  // STATEPOINT GC Alloca - live-through, read/write, direct
  // The live-in vs live-through is handled already (the live through ones are
  // all stack slots), but we need to handle the different type of stackmap
  // operands and memory effects here.

  // MI changes inside this loop as we grow operands.
  for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
    MachineOperand &MO = MI->getOperand(OperIdx);
    if (!MO.isFI())
      continue;

    // foldMemoryOperand builds a new MI after replacing a single FI operand
    // with the canonical set of five x86 addressing-mode operands.
    int FI = MO.getIndex();
    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());

    // Copy operands before the frame-index.
    for (unsigned i = 0; i < OperIdx; ++i)
      MIB.addOperand(MI->getOperand(i));
    // Add frame index operands recognized by stackmaps.cpp
    if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
      // indirect-mem-ref tag, size, #FI, offset.
      // Used for spills inserted by StatepointLowering.  This codepath is not
      // used for patchpoints/stackmaps at all, for these spilling is done via
      // foldMemoryOperand callback only.
      assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
      MIB.addImm(StackMaps::IndirectMemRefOp);
      MIB.addImm(MFI.getObjectSize(FI));
      MIB.addOperand(MI->getOperand(OperIdx));
      MIB.addImm(0);
    } else {
      // direct-mem-ref tag, #FI, offset.
      // Used by patchpoint, and direct alloca arguments to statepoints
      MIB.addImm(StackMaps::DirectMemRefOp);
      MIB.addOperand(MI->getOperand(OperIdx));
      MIB.addImm(0);
    }
    // Copy the operands after the frame index.
    for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
      MIB.addOperand(MI->getOperand(i));

    // Inherit previous memory operands.
    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
    assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");

    // Add a new memory operand for this FI.
    assert(MFI.getObjectOffset(FI) != -1);

    auto Flags = MachineMemOperand::MOLoad;
    if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
      Flags |= MachineMemOperand::MOStore;
      Flags |= MachineMemOperand::MOVolatile;
    }
    MachineMemOperand *MMO = MF.getMachineMemOperand(
        MachinePointerInfo::getFixedStack(MF, FI), Flags,
        MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
    MIB->addMemOperand(MF, MMO);

    // Replace the instruction and update the operand index.
    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
    OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
    MI->eraseFromParent();
    MI = MIB;
  }
  return MBB;
}

/// findRepresentativeClass - Return the largest legal super-reg register class
/// of the register class for the specified type and its associated "cost".
// This function is in TargetLowering because it uses RegClassForVT which would
// need to be moved to TargetRegisterInfo and would necessitate moving
// isTypeLegal over as well - a massive change that would just require
// TargetLowering having a TargetRegisterInfo class member that it would use.
std::pair<const TargetRegisterClass *, uint8_t>
TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
                                            MVT VT) const {
  const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
  if (!RC)
    return std::make_pair(RC, 0);

  // Compute the set of all super-register classes.
  BitVector SuperRegRC(TRI->getNumRegClasses());
  for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
    SuperRegRC.setBitsInMask(RCI.getMask());

  // Find the first legal register class with the largest spill size.
  const TargetRegisterClass *BestRC = RC;
  for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
    const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
    // We want the largest possible spill size.
    if (SuperRC->getSize() <= BestRC->getSize())
      continue;
    if (!isLegalRC(SuperRC))
      continue;
    BestRC = SuperRC;
  }
  return std::make_pair(BestRC, 1);
}

/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLoweringBase::computeRegisterProperties(
    const TargetRegisterInfo *TRI) {
  static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
                "Too many value types for ValueTypeActions to hold!");

  // Everything defaults to needing one register.
  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    NumRegistersForVT[i] = 1;
    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
  }
  // ...except isVoid, which doesn't need any registers.
  NumRegistersForVT[MVT::isVoid] = 0;

  // Find the largest integer register class.
  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
  for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");

  // Every integer value type larger than this largest register takes twice as
  // many registers to represent as the previous ValueType.
  for (unsigned ExpandedReg = LargestIntReg + 1;
       ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
    ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
                                   TypeExpandInteger);
  }

  // Inspect all of the ValueType's smaller than the largest integer
  // register to see which ones need promotion.
  unsigned LegalIntReg = LargestIntReg;
  for (unsigned IntReg = LargestIntReg - 1;
       IntReg >= (unsigned)MVT::i1; --IntReg) {
    MVT IVT = (MVT::SimpleValueType)IntReg;
    if (isTypeLegal(IVT)) {
      LegalIntReg = IntReg;
    } else {
      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
        (const MVT::SimpleValueType)LegalIntReg;
      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
    }
  }

  // ppcf128 type is really two f64's.
  if (!isTypeLegal(MVT::ppcf128)) {
    if (isTypeLegal(MVT::f64)) {
      NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
      RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
      TransformToType[MVT::ppcf128] = MVT::f64;
      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
    } else {
      NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
      RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
      TransformToType[MVT::ppcf128] = MVT::i128;
      ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
    }
  }

  // Decide how to handle f128. If the target does not have native f128 support,
  // expand it to i128 and we will be generating soft float library calls.
  if (!isTypeLegal(MVT::f128)) {
    NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
    RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
    TransformToType[MVT::f128] = MVT::i128;
    ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
  }

  // Decide how to handle f64. If the target does not have native f64 support,
  // expand it to i64 and we will be generating soft float library calls.
  if (!isTypeLegal(MVT::f64)) {
    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
    TransformToType[MVT::f64] = MVT::i64;
    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
  }

  // Decide how to handle f32. If the target does not have native f32 support,
  // expand it to i32 and we will be generating soft float library calls.
  if (!isTypeLegal(MVT::f32)) {
    NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
    RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
    TransformToType[MVT::f32] = MVT::i32;
    ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
  }

  // Decide how to handle f16. If the target does not have native f16 support,
  // promote it to f32, because there are no f16 library calls (except for
  // conversions).
  if (!isTypeLegal(MVT::f16)) {
    NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
    RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
    TransformToType[MVT::f16] = MVT::f32;
    ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
  }

  // Loop over all of the vector value types to see which need transformations.
  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
    MVT VT = (MVT::SimpleValueType) i;
    if (isTypeLegal(VT))
      continue;

    MVT EltVT = VT.getVectorElementType();
    unsigned NElts = VT.getVectorNumElements();
    bool IsLegalWiderType = false;
    LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
    switch (PreferredAction) {
    case TypePromoteInteger: {
      // Try to promote the elements of integer vectors. If no legal
      // promotion was found, fall through to the widen-vector method.
      for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
        MVT SVT = (MVT::SimpleValueType) nVT;
        // Promote vectors of integers to vectors with the same number
        // of elements, with a wider element type.
        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() &&
            SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
          TransformToType[i] = SVT;
          RegisterTypeForVT[i] = SVT;
          NumRegistersForVT[i] = 1;
          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
          IsLegalWiderType = true;
          break;
        }
      }
      if (IsLegalWiderType)
        break;
    }
    case TypeWidenVector: {
      // Try to widen the vector.
      for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
        MVT SVT = (MVT::SimpleValueType) nVT;
        if (SVT.getVectorElementType() == EltVT
            && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
          TransformToType[i] = SVT;
          RegisterTypeForVT[i] = SVT;
          NumRegistersForVT[i] = 1;
          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
          IsLegalWiderType = true;
          break;
        }
      }
      if (IsLegalWiderType)
        break;
    }
    case TypeSplitVector:
    case TypeScalarizeVector: {
      MVT IntermediateVT;
      MVT RegisterVT;
      unsigned NumIntermediates;
      NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
          NumIntermediates, RegisterVT, this);
      RegisterTypeForVT[i] = RegisterVT;

      MVT NVT = VT.getPow2VectorType();
      if (NVT == VT) {
        // Type is already a power of 2.  The default action is to split.
        TransformToType[i] = MVT::Other;
        if (PreferredAction == TypeScalarizeVector)
          ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
        else if (PreferredAction == TypeSplitVector)
          ValueTypeActions.setTypeAction(VT, TypeSplitVector);
        else
          // Set type action according to the number of elements.
          ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
                                                        : TypeSplitVector);
      } else {
        TransformToType[i] = NVT;
        ValueTypeActions.setTypeAction(VT, TypeWidenVector);
      }
      break;
    }
    default:
      llvm_unreachable("Unknown vector legalization action!");
    }
  }

  // Determine the 'representative' register class for each value type.
  // An representative register class is the largest (meaning one which is
  // not a sub-register class / subreg register class) legal register class for
  // a group of value types. For example, on i386, i8, i16, and i32
  // representative would be GR32; while on x86_64 it's GR64.
  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
    const TargetRegisterClass* RRC;
    uint8_t Cost;
    std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
    RepRegClassForVT[i] = RRC;
    RepRegClassCostForVT[i] = Cost;
  }
}

EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
                                           EVT VT) const {
  assert(!VT.isVector() && "No default SetCC type for vectors!");
  return getPointerTy(DL).SimpleTy;
}

MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
  return MVT::i32; // return the default value
}

/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register.  It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
///
unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
                                                EVT &IntermediateVT,
                                                unsigned &NumIntermediates,
                                                MVT &RegisterVT) const {
  unsigned NumElts = VT.getVectorNumElements();

  // If there is a wider vector type with the same element type as this one,
  // or a promoted vector type that has the same number of elements which
  // are wider, then we should convert to that legal vector type.
  // This handles things like <2 x float> -> <4 x float> and
  // <4 x i1> -> <4 x i32>.
  LegalizeTypeAction TA = getTypeAction(Context, VT);
  if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
    EVT RegisterEVT = getTypeToTransformTo(Context, VT);
    if (isTypeLegal(RegisterEVT)) {
      IntermediateVT = RegisterEVT;
      RegisterVT = RegisterEVT.getSimpleVT();
      NumIntermediates = 1;
      return 1;
    }
  }

  // Figure out the right, legal destination reg to copy into.
  EVT EltTy = VT.getVectorElementType();

  unsigned NumVectorRegs = 1;

  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
  // could break down into LHS/RHS like LegalizeDAG does.
  if (!isPowerOf2_32(NumElts)) {
    NumVectorRegs = NumElts;
    NumElts = 1;
  }

  // Divide the input until we get to a supported size.  This will always
  // end with a scalar if the target doesn't support vectors.
  while (NumElts > 1 && !isTypeLegal(
                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
    NumElts >>= 1;
    NumVectorRegs <<= 1;
  }

  NumIntermediates = NumVectorRegs;

  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
  if (!isTypeLegal(NewVT))
    NewVT = EltTy;
  IntermediateVT = NewVT;

  MVT DestVT = getRegisterType(Context, NewVT);
  RegisterVT = DestVT;
  unsigned NewVTSize = NewVT.getSizeInBits();

  // Convert sizes such as i33 to i64.
  if (!isPowerOf2_32(NewVTSize))
    NewVTSize = NextPowerOf2(NewVTSize);

  if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());

  // Otherwise, promotion or legal types use the same number of registers as
  // the vector decimated to the appropriate level.
  return NumVectorRegs;
}

/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function.  This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
/// TODO: Move this out of TargetLowering.cpp.
void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
                         SmallVectorImpl<ISD::OutputArg> &Outs,
                         const TargetLowering &TLI, const DataLayout &DL) {
  SmallVector<EVT, 4> ValueVTs;
  ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
  unsigned NumValues = ValueVTs.size();
  if (NumValues == 0) return;

  for (unsigned j = 0, f = NumValues; j != f; ++j) {
    EVT VT = ValueVTs[j];
    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;

    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
      ExtendKind = ISD::SIGN_EXTEND;
    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
      ExtendKind = ISD::ZERO_EXTEND;

    // FIXME: C calling convention requires the return type to be promoted to
    // at least 32-bit. But this is not necessary for non-C calling
    // conventions. The frontend should mark functions whose return values
    // require promoting with signext or zeroext attributes.
    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
      MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
      if (VT.bitsLT(MinVT))
        VT = MinVT;
    }

    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
    MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);

    // 'inreg' on function refers to return value
    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
      Flags.setInReg();

    // Propagate extension type if any
    if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
      Flags.setSExt();
    else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
      Flags.setZExt();

    for (unsigned i = 0; i < NumParts; ++i)
      Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
  }
}

/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area.  This is the actual
/// alignment, not its logarithm.
unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
                                                   const DataLayout &DL) const {
  return DL.getABITypeAlignment(Ty);
}

bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
                                            const DataLayout &DL, EVT VT,
                                            unsigned AddrSpace,
                                            unsigned Alignment,
                                            bool *Fast) const {
  // Check if the specified alignment is sufficient based on the data layout.
  // TODO: While using the data layout works in practice, a better solution
  // would be to implement this check directly (make this a virtual function).
  // For example, the ABI alignment may change based on software platform while
  // this function should only be affected by hardware implementation.
  Type *Ty = VT.getTypeForEVT(Context);
  if (Alignment >= DL.getABITypeAlignment(Ty)) {
    // Assume that an access that meets the ABI-specified alignment is fast.
    if (Fast != nullptr)
      *Fast = true;
    return true;
  }
  
  // This is a misaligned access.
  return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
}

BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
  return BranchProbability(MinPercentageForPredictableBranch, 100);
}

//===----------------------------------------------------------------------===//
//  TargetTransformInfo Helpers
//===----------------------------------------------------------------------===//

int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
  enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/IR/Instruction.def"
  };
  switch (static_cast<InstructionOpcodes>(Opcode)) {
  case Ret:            return 0;
  case Br:             return 0;
  case Switch:         return 0;
  case IndirectBr:     return 0;
  case Invoke:         return 0;
  case Resume:         return 0;
  case Unreachable:    return 0;
  case CleanupRet:     return 0;
  case CatchRet:       return 0;
  case CatchPad:       return 0;
  case CatchSwitch:    return 0;
  case CleanupPad:     return 0;
  case Add:            return ISD::ADD;
  case FAdd:           return ISD::FADD;
  case Sub:            return ISD::SUB;
  case FSub:           return ISD::FSUB;
  case Mul:            return ISD::MUL;
  case FMul:           return ISD::FMUL;
  case UDiv:           return ISD::UDIV;
  case SDiv:           return ISD::SDIV;
  case FDiv:           return ISD::FDIV;
  case URem:           return ISD::UREM;
  case SRem:           return ISD::SREM;
  case FRem:           return ISD::FREM;
  case Shl:            return ISD::SHL;
  case LShr:           return ISD::SRL;
  case AShr:           return ISD::SRA;
  case And:            return ISD::AND;
  case Or:             return ISD::OR;
  case Xor:            return ISD::XOR;
  case Alloca:         return 0;
  case Load:           return ISD::LOAD;
  case Store:          return ISD::STORE;
  case GetElementPtr:  return 0;
  case Fence:          return 0;
  case AtomicCmpXchg:  return 0;
  case AtomicRMW:      return 0;
  case Trunc:          return ISD::TRUNCATE;
  case ZExt:           return ISD::ZERO_EXTEND;
  case SExt:           return ISD::SIGN_EXTEND;
  case FPToUI:         return ISD::FP_TO_UINT;
  case FPToSI:         return ISD::FP_TO_SINT;
  case UIToFP:         return ISD::UINT_TO_FP;
  case SIToFP:         return ISD::SINT_TO_FP;
  case FPTrunc:        return ISD::FP_ROUND;
  case FPExt:          return ISD::FP_EXTEND;
  case PtrToInt:       return ISD::BITCAST;
  case IntToPtr:       return ISD::BITCAST;
  case BitCast:        return ISD::BITCAST;
  case AddrSpaceCast:  return ISD::ADDRSPACECAST;
  case ICmp:           return ISD::SETCC;
  case FCmp:           return ISD::SETCC;
  case PHI:            return 0;
  case Call:           return 0;
  case Select:         return ISD::SELECT;
  case UserOp1:        return 0;
  case UserOp2:        return 0;
  case VAArg:          return 0;
  case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
  case InsertElement:  return ISD::INSERT_VECTOR_ELT;
  case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
  case ExtractValue:   return ISD::MERGE_VALUES;
  case InsertValue:    return ISD::MERGE_VALUES;
  case LandingPad:     return 0;
  }

  llvm_unreachable("Unknown instruction type encountered!");
}

std::pair<int, MVT>
TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
                                            Type *Ty) const {
  LLVMContext &C = Ty->getContext();
  EVT MTy = getValueType(DL, Ty);

  int Cost = 1;
  // We keep legalizing the type until we find a legal kind. We assume that
  // the only operation that costs anything is the split. After splitting
  // we need to handle two types.
  while (true) {
    LegalizeKind LK = getTypeConversion(C, MTy);

    if (LK.first == TypeLegal)
      return std::make_pair(Cost, MTy.getSimpleVT());

    if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
      Cost *= 2;

    // Do not loop with f128 type.
    if (MTy == LK.second)
      return std::make_pair(Cost, MTy.getSimpleVT());

    // Keep legalizing the type.
    MTy = LK.second;
  }
}

Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
  if (!TM.getTargetTriple().isAndroid())
    return nullptr;

  // Android provides a libc function to retrieve the address of the current
  // thread's unsafe stack pointer.
  Module *M = IRB.GetInsertBlock()->getParent()->getParent();
  Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
  Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
                                     StackPtrTy->getPointerTo(0), nullptr);
  return IRB.CreateCall(Fn);
}

//===----------------------------------------------------------------------===//
//  Loop Strength Reduction hooks
//===----------------------------------------------------------------------===//

/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
                                               const AddrMode &AM, Type *Ty,
                                               unsigned AS) const {
  // The default implementation of this implements a conservative RISCy, r+r and
  // r+i addr mode.

  // Allows a sign-extended 16-bit immediate field.
  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
    return false;

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  // Only support r+r,
  switch (AM.Scale) {
  case 0:  // "r+i" or just "i", depending on HasBaseReg.
    break;
  case 1:
    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
      return false;
    // Otherwise we have r+r or r+i.
    break;
  case 2:
    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
      return false;
    // Allow 2*r as r+r.
    break;
  default: // Don't allow n * r
    return false;
  }

  return true;
}

//===----------------------------------------------------------------------===//
//  Stack Protector
//===----------------------------------------------------------------------===//

// For OpenBSD return its special guard variable. Otherwise return nullptr,
// so that SelectionDAG handle SSP.
Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
  if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
    Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
    PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
    Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
    if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
      G->setVisibility(GlobalValue::HiddenVisibility);
    return C;
  }
  return nullptr;
}

// Currently only support "standard" __stack_chk_guard.
// TODO: add LOAD_STACK_GUARD support.
void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
  M.getOrInsertGlobal("__stack_chk_guard", Type::getInt8PtrTy(M.getContext()));
}

// Currently only support "standard" __stack_chk_guard.
// TODO: add LOAD_STACK_GUARD support.
Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
  return M.getGlobalVariable("__stack_chk_guard", true);
}

Value *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
  return nullptr;
}