summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/Target/X86/X86EvexToVex.cpp
blob: bdd1ab537bb2e977a45a703d516857dd0d1c3ad3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
//===----------------------- X86EvexToVex.cpp ----------------------------===//
// Compress EVEX instructions to VEX encoding when possible to reduce code size
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===---------------------------------------------------------------------===//
/// \file
/// This file defines the pass that goes over all AVX-512 instructions which
/// are encoded using the EVEX prefix and if possible replaces them by their
/// corresponding VEX encoding which is usually shorter by 2 bytes.
/// EVEX instructions may be encoded via the VEX prefix when the AVX-512
/// instruction has a corresponding AVX/AVX2 opcode and when it does not
/// use the xmm or the mask registers or xmm/ymm registers wuith indexes
/// higher than 15.
/// The pass applies code reduction on the generated code for AVX-512 instrs.
///
//===---------------------------------------------------------------------===//

#include "InstPrinter/X86InstComments.h"
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86InstrTablesInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"

using namespace llvm;

#define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible"
#define EVEX2VEX_NAME "x86-evex-to-vex-compress"

#define DEBUG_TYPE EVEX2VEX_NAME

namespace {

class EvexToVexInstPass : public MachineFunctionPass {

  /// X86EvexToVexCompressTable - Evex to Vex encoding opcode map.
  typedef DenseMap<unsigned, uint16_t> EvexToVexTableType;
  EvexToVexTableType EvexToVex128Table;
  EvexToVexTableType EvexToVex256Table;

  /// For EVEX instructions that can be encoded using VEX encoding, replace
  /// them by the VEX encoding in order to reduce size.
  bool CompressEvexToVexImpl(MachineInstr &MI) const;

  /// For initializing the hash map tables of all AVX-512 EVEX
  /// corresponding to AVX/AVX2 opcodes.
  void AddTableEntry(EvexToVexTableType &EvexToVexTable, uint16_t EvexOp,
                     uint16_t VexOp);

public:
  static char ID;

  StringRef getPassName() const override { return EVEX2VEX_DESC; }

  EvexToVexInstPass() : MachineFunctionPass(ID) {
    initializeEvexToVexInstPassPass(*PassRegistry::getPassRegistry());

    // Initialize the EVEX to VEX 128 table map.
    for (X86EvexToVexCompressTableEntry Entry : X86EvexToVex128CompressTable) {
      AddTableEntry(EvexToVex128Table, Entry.EvexOpcode, Entry.VexOpcode);
    }

    // Initialize the EVEX to VEX 256 table map.
    for (X86EvexToVexCompressTableEntry Entry : X86EvexToVex256CompressTable) {
      AddTableEntry(EvexToVex256Table, Entry.EvexOpcode, Entry.VexOpcode);
    }
  }

  /// Loop over all of the basic blocks, replacing EVEX instructions
  /// by equivalent VEX instructions when possible for reducing code size.
  bool runOnMachineFunction(MachineFunction &MF) override;

  // This pass runs after regalloc and doesn't support VReg operands.
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  /// Machine instruction info used throughout the class.
  const X86InstrInfo *TII;
};

char EvexToVexInstPass::ID = 0;
}

INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false)

FunctionPass *llvm::createX86EvexToVexInsts() {
  return new EvexToVexInstPass();
}

bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) {
  TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();

  const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
  if (!ST.hasAVX512())
    return false;

  bool Changed = false;

  /// Go over all basic blocks in function and replace
  /// EVEX encoded instrs by VEX encoding when possible.
  for (MachineBasicBlock &MBB : MF) {

    // Traverse the basic block. 
    for (MachineInstr &MI : MBB)      
      Changed |= CompressEvexToVexImpl(MI);
  }

  return Changed;
}

void EvexToVexInstPass::AddTableEntry(EvexToVexTableType &EvexToVexTable,
                                      uint16_t EvexOp, uint16_t VexOp) {
  EvexToVexTable[EvexOp] = VexOp;
}

// For EVEX instructions that can be encoded using VEX encoding
// replace them by the VEX encoding in order to reduce size.
bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const {

  // VEX format.
  // # of bytes: 0,2,3  1      1      0,1   0,1,2,4  0,1
  //  [Prefixes] [VEX]  OPCODE ModR/M [SIB] [DISP]  [IMM]
  //
  // EVEX format.
  //  # of bytes: 4    1      1      1      4       / 1         1
  //  [Prefixes]  EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate]

  const MCInstrDesc &Desc = MI.getDesc();

  // Check for EVEX instructions only.
  if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX)
    return false;
 
  // Check for EVEX instructions with mask or broadcast as in these cases 
  // the EVEX prefix is needed in order to carry this information 
  // thus preventing the transformation to VEX encoding.
  if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B))
    return false;
 
  // Check for non EVEX_V512 instrs only.
  // EVEX_V512 instr: bit EVEX_L2 = 1; bit VEX_L = 0.
  if ((Desc.TSFlags & X86II::EVEX_L2) && !(Desc.TSFlags & X86II::VEX_L))
    return false;  
        
  // EVEX_V128 instr: bit EVEX_L2 = 0, bit VEX_L = 0.
  bool IsEVEX_V128 =
      (!(Desc.TSFlags & X86II::EVEX_L2) && !(Desc.TSFlags & X86II::VEX_L));

  // EVEX_V256 instr: bit EVEX_L2 = 0, bit VEX_L = 1.
  bool IsEVEX_V256 =
      (!(Desc.TSFlags & X86II::EVEX_L2) && (Desc.TSFlags & X86II::VEX_L));

  unsigned NewOpc = 0;

  // Check for EVEX_V256 instructions.
  if (IsEVEX_V256) {
    // Search for opcode in the EvexToVex256 table.
    auto It = EvexToVex256Table.find(MI.getOpcode());
    if (It != EvexToVex256Table.end())
      NewOpc = It->second;
  }

  // Check for EVEX_V128 or Scalar instructions.
  else if (IsEVEX_V128) {
    // Search for opcode in the EvexToVex128 table.
    auto It = EvexToVex128Table.find(MI.getOpcode());
    if (It != EvexToVex128Table.end())
      NewOpc = It->second;
  }

  if (!NewOpc)
    return false;

  auto isHiRegIdx = [](unsigned Reg) {
    // Check for XMM register with indexes between 16 - 31.
    if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
      return true;

    // Check for YMM register with indexes between 16 - 31.
    if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
      return true;

    return false;
  };

  // Check that operands are not ZMM regs or
  // XMM/YMM regs with hi indexes between 16 - 31.
  for (const MachineOperand &MO : MI.explicit_operands()) {
    if (!MO.isReg())
      continue;

    unsigned Reg = MO.getReg();

    assert (!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31));

    if (isHiRegIdx(Reg))
      return false;
  }
 
  const MCInstrDesc &MCID = TII->get(NewOpc);
  MI.setDesc(MCID);
  MI.setAsmPrinterFlag(AC_EVEX_2_VEX);
  return true; 
}