summaryrefslogtreecommitdiff
path: root/gnu/llvm/lib/Target/X86/X86InterleavedAccess.cpp
blob: d9edf4676faf8b02265983749fbda23db373032b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//===--------- X86InterleavedAccess.cpp ----------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===--------------------------------------------------------------------===//
///
/// \file
/// This file contains the X86 implementation of the interleaved accesses
/// optimization generating X86-specific instructions/intrinsics for
/// interleaved access groups.
///
//===--------------------------------------------------------------------===//

#include "X86ISelLowering.h"
#include "X86TargetMachine.h"

using namespace llvm;

/// \brief This class holds necessary information to represent an interleaved
/// access group and supports utilities to lower the group into
/// X86-specific instructions/intrinsics.
///  E.g. A group of interleaving access loads (Factor = 2; accessing every
///       other element)
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>

class X86InterleavedAccessGroup {
  /// \brief Reference to the wide-load instruction of an interleaved access
  /// group.
  Instruction *const Inst;

  /// \brief Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
  ArrayRef<ShuffleVectorInst *> Shuffles;

  /// \brief Reference to the starting index of each user-shuffle.
  ArrayRef<unsigned> Indices;

  /// \brief Reference to the interleaving stride in terms of elements.
  const unsigned Factor;

  /// \brief Reference to the underlying target.
  const X86Subtarget &Subtarget;

  const DataLayout &DL;

  IRBuilder<> &Builder;

  /// \brief Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
  /// sub vectors of type \p T. Returns true and the sub-vectors in
  /// \p DecomposedVectors if it decomposes the Inst, returns false otherwise.
  bool decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
                 SmallVectorImpl<Instruction *> &DecomposedVectors);

  /// \brief Performs matrix transposition on a 4x4 matrix \p InputVectors and
  /// returns the transposed-vectors in \p TransposedVectors.
  /// E.g.
  /// InputVectors:
  ///   In-V0 = p1, p2, p3, p4
  ///   In-V1 = q1, q2, q3, q4
  ///   In-V2 = r1, r2, r3, r4
  ///   In-V3 = s1, s2, s3, s4
  /// OutputVectors:
  ///   Out-V0 = p1, q1, r1, s1
  ///   Out-V1 = p2, q2, r2, s2
  ///   Out-V2 = p3, q3, r3, s3
  ///   Out-V3 = P4, q4, r4, s4
  void transpose_4x4(ArrayRef<Instruction *> InputVectors,
                     SmallVectorImpl<Value *> &TrasposedVectors);

public:
  /// In order to form an interleaved access group X86InterleavedAccessGroup
  /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
  /// \p Shuffs, reference to the first indices of each interleaved-vector
  /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
  /// X86-specific instructions/intrinsics it also requires the underlying
  /// target information \p STarget.
  explicit X86InterleavedAccessGroup(Instruction *I,
                                     ArrayRef<ShuffleVectorInst *> Shuffs,
                                     ArrayRef<unsigned> Ind,
                                     const unsigned F,
                                     const X86Subtarget &STarget,
                                     IRBuilder<> &B)
      : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
        DL(Inst->getModule()->getDataLayout()), Builder(B) {}

  /// \brief Returns true if this interleaved access group can be lowered into
  /// x86-specific instructions/intrinsics, false otherwise.
  bool isSupported() const;

  /// \brief Lowers this interleaved access group into X86-specific
  /// instructions/intrinsics.
  bool lowerIntoOptimizedSequence();
};

bool X86InterleavedAccessGroup::isSupported() const {
  VectorType *ShuffleVecTy = Shuffles[0]->getType();
  uint64_t ShuffleVecSize = DL.getTypeSizeInBits(ShuffleVecTy);
  Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();

  if (DL.getTypeSizeInBits(Inst->getType()) < Factor * ShuffleVecSize)
    return false;

  // Currently, lowering is supported for 64 bits on AVX.
  if (!Subtarget.hasAVX() || ShuffleVecSize != 256 ||
      DL.getTypeSizeInBits(ShuffleEltTy) != 64 || Factor != 4)
    return false;

  return true;
}

bool X86InterleavedAccessGroup::decompose(
    Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
    SmallVectorImpl<Instruction *> &DecomposedVectors) {
  Type *VecTy = VecInst->getType();
  (void)VecTy;
  assert(VecTy->isVectorTy() &&
         DL.getTypeSizeInBits(VecTy) >=
             DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
         "Invalid Inst-size!!!");
  assert(VecTy->getVectorElementType() == SubVecTy->getVectorElementType() &&
         "Element type mismatched!!!");

  if (!isa<LoadInst>(VecInst))
    return false;

  LoadInst *LI = cast<LoadInst>(VecInst);
  Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());

  Value *VecBasePtr =
      Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);

  // Generate N loads of T type
  for (unsigned i = 0; i < NumSubVectors; i++) {
    // TODO: Support inbounds GEP
    Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
    Instruction *NewLoad =
        Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
    DecomposedVectors.push_back(NewLoad);
  }

  return true;
}

void X86InterleavedAccessGroup::transpose_4x4(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {
  assert(Matrix.size() == 4 && "Invalid matrix size");
  TransposedMatrix.resize(4);

  // dst = src1[0,1],src2[0,1]
  uint32_t IntMask1[] = {0, 1, 4, 5};
  ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
  Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[2,3],src2[2,3]
  uint32_t IntMask2[] = {2, 3, 6, 7};
  Mask = makeArrayRef(IntMask2, 4);
  Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[0],src2[0],src1[2],src2[2]
  uint32_t IntMask3[] = {0, 4, 2, 6};
  Mask = makeArrayRef(IntMask3, 4);
  TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);

  // dst = src1[1],src2[1],src1[3],src2[3]
  uint32_t IntMask4[] = {1, 5, 3, 7};
  Mask = makeArrayRef(IntMask4, 4);
  TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
}

// Lowers this interleaved access group into X86-specific
// instructions/intrinsics.
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
  SmallVector<Instruction *, 4> DecomposedVectors;
  VectorType *VecTy = Shuffles[0]->getType();
  // Try to generate target-sized register(/instruction).
  if (!decompose(Inst, Factor, VecTy, DecomposedVectors))
    return false;

  SmallVector<Value *, 4> TransposedVectors;
  // Perform matrix-transposition in order to compute interleaved
  // results by generating some sort of (optimized) target-specific
  // instructions.
  transpose_4x4(DecomposedVectors, TransposedVectors);

  // Now replace the unoptimized-interleaved-vectors with the
  // transposed-interleaved vectors.
  for (unsigned i = 0; i < Shuffles.size(); i++)
    Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);

  return true;
}

// Lower interleaved load(s) into target specific instructions/
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
// number of shuffles and ISA.
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
bool X86TargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  // Create an interleaved access group.
  IRBuilder<> Builder(LI);
  X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}