summaryrefslogtreecommitdiff
path: root/gnu/llvm/tools/llvm-objcopy/Object.cpp
blob: 9e82448187eafc9e784203dcef5bff3b2ad3a271 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
//===- Object.cpp ---------------------------------------------------------===//
//
//                      The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Object.h"
#include "llvm-objcopy.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;
using namespace object;
using namespace ELF;

template <class ELFT> void Segment::writeHeader(FileOutputBuffer &Out) const {
  using Elf_Ehdr = typename ELFT::Ehdr;
  using Elf_Phdr = typename ELFT::Phdr;

  uint8_t *Buf = Out.getBufferStart();
  Buf += sizeof(Elf_Ehdr) + Index * sizeof(Elf_Phdr);
  Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(Buf);
  Phdr.p_type = Type;
  Phdr.p_flags = Flags;
  Phdr.p_offset = Offset;
  Phdr.p_vaddr = VAddr;
  Phdr.p_paddr = PAddr;
  Phdr.p_filesz = FileSize;
  Phdr.p_memsz = MemSize;
  Phdr.p_align = Align;
}

void Segment::writeSegment(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart() + Offset;
  // We want to maintain segments' interstitial data and contents exactly.
  // This lets us just copy segments directly.
  std::copy(std::begin(Contents), std::end(Contents), Buf);
}

void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
void SectionBase::initialize(SectionTableRef SecTable) {}
void SectionBase::finalize() {}

template <class ELFT>
void SectionBase::writeHeader(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart();
  Buf += HeaderOffset;
  typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(Buf);
  Shdr.sh_name = NameIndex;
  Shdr.sh_type = Type;
  Shdr.sh_flags = Flags;
  Shdr.sh_addr = Addr;
  Shdr.sh_offset = Offset;
  Shdr.sh_size = Size;
  Shdr.sh_link = Link;
  Shdr.sh_info = Info;
  Shdr.sh_addralign = Align;
  Shdr.sh_entsize = EntrySize;
}

void Section::writeSection(FileOutputBuffer &Out) const {
  if (Type == SHT_NOBITS)
    return;
  uint8_t *Buf = Out.getBufferStart() + Offset;
  std::copy(std::begin(Contents), std::end(Contents), Buf);
}

void OwnedDataSection::writeSection(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart() + Offset;
  std::copy(std::begin(Data), std::end(Data), Buf);
}

void StringTableSection::addString(StringRef Name) {
  StrTabBuilder.add(Name);
  Size = StrTabBuilder.getSize();
}

uint32_t StringTableSection::findIndex(StringRef Name) const {
  return StrTabBuilder.getOffset(Name);
}

void StringTableSection::finalize() { StrTabBuilder.finalize(); }

void StringTableSection::writeSection(FileOutputBuffer &Out) const {
  StrTabBuilder.write(Out.getBufferStart() + Offset);
}

static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
  switch (Index) {
  case SHN_ABS:
  case SHN_COMMON:
    return true;
  }
  if (Machine == EM_HEXAGON) {
    switch (Index) {
    case SHN_HEXAGON_SCOMMON:
    case SHN_HEXAGON_SCOMMON_2:
    case SHN_HEXAGON_SCOMMON_4:
    case SHN_HEXAGON_SCOMMON_8:
      return true;
    }
  }
  return false;
}

uint16_t Symbol::getShndx() const {
  if (DefinedIn != nullptr) {
    return DefinedIn->Index;
  }
  switch (ShndxType) {
  // This means that we don't have a defined section but we do need to
  // output a legitimate section index.
  case SYMBOL_SIMPLE_INDEX:
    return SHN_UNDEF;
  case SYMBOL_ABS:
  case SYMBOL_COMMON:
  case SYMBOL_HEXAGON_SCOMMON:
  case SYMBOL_HEXAGON_SCOMMON_2:
  case SYMBOL_HEXAGON_SCOMMON_4:
  case SYMBOL_HEXAGON_SCOMMON_8:
    return static_cast<uint16_t>(ShndxType);
  }
  llvm_unreachable("Symbol with invalid ShndxType encountered");
}

void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
                                   SectionBase *DefinedIn, uint64_t Value,
                                   uint8_t Visibility, uint16_t Shndx,
                                   uint64_t Sz) {
  Symbol Sym;
  Sym.Name = Name;
  Sym.Binding = Bind;
  Sym.Type = Type;
  Sym.DefinedIn = DefinedIn;
  if (DefinedIn == nullptr) {
    if (Shndx >= SHN_LORESERVE)
      Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
    else
      Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
  }
  Sym.Value = Value;
  Sym.Visibility = Visibility;
  Sym.Size = Sz;
  Sym.Index = Symbols.size();
  Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
  Size += this->EntrySize;
}

void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
  if (SymbolNames == Sec) {
    error("String table " + SymbolNames->Name +
          " cannot be removed because it is referenced by the symbol table " +
          this->Name);
  }
  auto Iter =
      std::remove_if(std::begin(Symbols), std::end(Symbols),
                     [=](const SymPtr &Sym) { return Sym->DefinedIn == Sec; });
  Size -= (std::end(Symbols) - Iter) * this->EntrySize;
  Symbols.erase(Iter, std::end(Symbols));
}

void SymbolTableSection::initialize(SectionTableRef SecTable) {
  Size = 0;
  setStrTab(SecTable.getSectionOfType<StringTableSection>(
      Link,
      "Symbol table has link index of " + Twine(Link) +
          " which is not a valid index",
      "Symbol table has link index of " + Twine(Link) +
          " which is not a string table"));
}

void SymbolTableSection::finalize() {
  // Make sure SymbolNames is finalized before getting name indexes.
  SymbolNames->finalize();

  uint32_t MaxLocalIndex = 0;
  for (auto &Sym : Symbols) {
    Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
    if (Sym->Binding == STB_LOCAL)
      MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
  }
  // Now we need to set the Link and Info fields.
  Link = SymbolNames->Index;
  Info = MaxLocalIndex + 1;
}

void SymbolTableSection::addSymbolNames() {
  // Add all of our strings to SymbolNames so that SymbolNames has the right
  // size before layout is decided.
  for (auto &Sym : Symbols)
    SymbolNames->addString(Sym->Name);
}

const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
  if (Symbols.size() <= Index)
    error("Invalid symbol index: " + Twine(Index));
  return Symbols[Index].get();
}

template <class ELFT>
void SymbolTableSectionImpl<ELFT>::writeSection(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart();
  Buf += Offset;
  typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
  // Loop though symbols setting each entry of the symbol table.
  for (auto &Symbol : Symbols) {
    Sym->st_name = Symbol->NameIndex;
    Sym->st_value = Symbol->Value;
    Sym->st_size = Symbol->Size;
    Sym->st_other = Symbol->Visibility;
    Sym->setBinding(Symbol->Binding);
    Sym->setType(Symbol->Type);
    Sym->st_shndx = Symbol->getShndx();
    ++Sym;
  }
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
    const SectionBase *Sec) {
  if (Symbols == Sec) {
    error("Symbol table " + Symbols->Name + " cannot be removed because it is "
                                            "referenced by the relocation "
                                            "section " +
          this->Name);
  }
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::initialize(
    SectionTableRef SecTable) {
  setSymTab(SecTable.getSectionOfType<SymTabType>(
      Link,
      "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
      "Link field value " + Twine(Link) + " in section " + Name +
          " is not a symbol table"));

  if (Info != SHN_UNDEF)
    setSection(SecTable.getSection(Info,
                                   "Info field value " + Twine(Info) +
                                       " in section " + Name + " is invalid"));
  else
    setSection(nullptr);
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
  this->Link = Symbols->Index;
  if (SecToApplyRel != nullptr)
    this->Info = SecToApplyRel->Index;
}

template <class ELFT>
void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}

template <class ELFT>
void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
  Rela.r_addend = Addend;
}

template <class ELFT>
template <class T>
void RelocationSection<ELFT>::writeRel(T *Buf) const {
  for (const auto &Reloc : Relocations) {
    Buf->r_offset = Reloc.Offset;
    setAddend(*Buf, Reloc.Addend);
    Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
    ++Buf;
  }
}

template <class ELFT>
void RelocationSection<ELFT>::writeSection(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart() + Offset;
  if (Type == SHT_REL)
    writeRel(reinterpret_cast<Elf_Rel *>(Buf));
  else
    writeRel(reinterpret_cast<Elf_Rela *>(Buf));
}

void DynamicRelocationSection::writeSection(FileOutputBuffer &Out) const {
  std::copy(std::begin(Contents), std::end(Contents),
            Out.getBufferStart() + Offset);
}

void SectionWithStrTab::removeSectionReferences(const SectionBase *Sec) {
  if (StrTab == Sec) {
    error("String table " + StrTab->Name + " cannot be removed because it is "
                                           "referenced by the section " +
          this->Name);
  }
}

bool SectionWithStrTab::classof(const SectionBase *S) {
  return isa<DynamicSymbolTableSection>(S) || isa<DynamicSection>(S);
}

void SectionWithStrTab::initialize(SectionTableRef SecTable) {
  auto StrTab = SecTable.getSection(Link,
                                    "Link field value " + Twine(Link) +
                                        " in section " + Name + " is invalid");
  if (StrTab->Type != SHT_STRTAB) {
    error("Link field value " + Twine(Link) + " in section " + Name +
          " is not a string table");
  }
  setStrTab(StrTab);
}

void SectionWithStrTab::finalize() { this->Link = StrTab->Index; }

// Returns true IFF a section is wholly inside the range of a segment
static bool sectionWithinSegment(const SectionBase &Section,
                                 const Segment &Segment) {
  // If a section is empty it should be treated like it has a size of 1. This is
  // to clarify the case when an empty section lies on a boundary between two
  // segments and ensures that the section "belongs" to the second segment and
  // not the first.
  uint64_t SecSize = Section.Size ? Section.Size : 1;
  return Segment.Offset <= Section.OriginalOffset &&
         Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
}

// Returns true IFF a segment's original offset is inside of another segment's
// range.
static bool segmentOverlapsSegment(const Segment &Child,
                                   const Segment &Parent) {

  return Parent.OriginalOffset <= Child.OriginalOffset &&
         Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
}

static bool compareSegments(const Segment *A, const Segment *B) {
  // Any segment without a parent segment should come before a segment
  // that has a parent segment.
  if (A->OriginalOffset < B->OriginalOffset)
    return true;
  if (A->OriginalOffset > B->OriginalOffset)
    return false;
  return A->Index < B->Index;
}

template <class ELFT>
void Object<ELFT>::readProgramHeaders(const ELFFile<ELFT> &ElfFile) {
  uint32_t Index = 0;
  for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
    ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
                           (size_t)Phdr.p_filesz};
    Segments.emplace_back(llvm::make_unique<Segment>(Data));
    Segment &Seg = *Segments.back();
    Seg.Type = Phdr.p_type;
    Seg.Flags = Phdr.p_flags;
    Seg.OriginalOffset = Phdr.p_offset;
    Seg.Offset = Phdr.p_offset;
    Seg.VAddr = Phdr.p_vaddr;
    Seg.PAddr = Phdr.p_paddr;
    Seg.FileSize = Phdr.p_filesz;
    Seg.MemSize = Phdr.p_memsz;
    Seg.Align = Phdr.p_align;
    Seg.Index = Index++;
    for (auto &Section : Sections) {
      if (sectionWithinSegment(*Section, Seg)) {
        Seg.addSection(&*Section);
        if (!Section->ParentSegment ||
            Section->ParentSegment->Offset > Seg.Offset) {
          Section->ParentSegment = &Seg;
        }
      }
    }
  }
  // Now we do an O(n^2) loop through the segments in order to match up
  // segments.
  for (auto &Child : Segments) {
    for (auto &Parent : Segments) {
      // Every segment will overlap with itself but we don't want a segment to
      // be it's own parent so we avoid that situation.
      if (&Child != &Parent && segmentOverlapsSegment(*Child, *Parent)) {
        // We want a canonical "most parental" segment but this requires
        // inspecting the ParentSegment.
        if (compareSegments(Parent.get(), Child.get()))
          if (Child->ParentSegment == nullptr ||
              compareSegments(Parent.get(), Child->ParentSegment)) {
            Child->ParentSegment = Parent.get();
          }
      }
    }
  }
}

template <class ELFT>
void Object<ELFT>::initSymbolTable(const object::ELFFile<ELFT> &ElfFile,
                                   SymbolTableSection *SymTab,
                                   SectionTableRef SecTable) {
  const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
  StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));

  for (const auto &Sym : unwrapOrError(ElfFile.symbols(&Shdr))) {
    SectionBase *DefSection = nullptr;
    StringRef Name = unwrapOrError(Sym.getName(StrTabData));

    if (Sym.st_shndx >= SHN_LORESERVE) {
      if (!isValidReservedSectionIndex(Sym.st_shndx, Machine)) {
        error(
            "Symbol '" + Name +
            "' has unsupported value greater than or equal to SHN_LORESERVE: " +
            Twine(Sym.st_shndx));
      }
    } else if (Sym.st_shndx != SHN_UNDEF) {
      DefSection = SecTable.getSection(
          Sym.st_shndx,
          "Symbol '" + Name + "' is defined in invalid section with index " +
              Twine(Sym.st_shndx));
    }

    SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
                      Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
  }
}

template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}

template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
  ToSet = Rela.r_addend;
}

template <class ELFT, class T>
void initRelocations(RelocationSection<ELFT> *Relocs,
                     SymbolTableSection *SymbolTable, T RelRange) {
  for (const auto &Rel : RelRange) {
    Relocation ToAdd;
    ToAdd.Offset = Rel.r_offset;
    getAddend(ToAdd.Addend, Rel);
    ToAdd.Type = Rel.getType(false);
    ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
    Relocs->addRelocation(ToAdd);
  }
}

SectionBase *SectionTableRef::getSection(uint16_t Index, Twine ErrMsg) {
  if (Index == SHN_UNDEF || Index > Sections.size())
    error(ErrMsg);
  return Sections[Index - 1].get();
}

template <class T>
T *SectionTableRef::getSectionOfType(uint16_t Index, Twine IndexErrMsg,
                                     Twine TypeErrMsg) {
  if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
    return Sec;
  error(TypeErrMsg);
}

template <class ELFT>
std::unique_ptr<SectionBase>
Object<ELFT>::makeSection(const object::ELFFile<ELFT> &ElfFile,
                          const Elf_Shdr &Shdr) {
  ArrayRef<uint8_t> Data;
  switch (Shdr.sh_type) {
  case SHT_REL:
  case SHT_RELA:
    if (Shdr.sh_flags & SHF_ALLOC) {
      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
      return llvm::make_unique<DynamicRelocationSection>(Data);
    }
    return llvm::make_unique<RelocationSection<ELFT>>();
  case SHT_STRTAB:
    // If a string table is allocated we don't want to mess with it. That would
    // mean altering the memory image. There are no special link types or
    // anything so we can just use a Section.
    if (Shdr.sh_flags & SHF_ALLOC) {
      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
      return llvm::make_unique<Section>(Data);
    }
    return llvm::make_unique<StringTableSection>();
  case SHT_HASH:
  case SHT_GNU_HASH:
    // Hash tables should refer to SHT_DYNSYM which we're not going to change.
    // Because of this we don't need to mess with the hash tables either.
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return llvm::make_unique<Section>(Data);
  case SHT_DYNSYM:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return llvm::make_unique<DynamicSymbolTableSection>(Data);
  case SHT_DYNAMIC:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return llvm::make_unique<DynamicSection>(Data);
  case SHT_SYMTAB: {
    auto SymTab = llvm::make_unique<SymbolTableSectionImpl<ELFT>>();
    SymbolTable = SymTab.get();
    return std::move(SymTab);
  }
  case SHT_NOBITS:
    return llvm::make_unique<Section>(Data);
  default:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return llvm::make_unique<Section>(Data);
  }
}

template <class ELFT>
SectionTableRef Object<ELFT>::readSectionHeaders(const ELFFile<ELFT> &ElfFile) {
  uint32_t Index = 0;
  for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
    if (Index == 0) {
      ++Index;
      continue;
    }
    SecPtr Sec = makeSection(ElfFile, Shdr);
    Sec->Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
    Sec->Type = Shdr.sh_type;
    Sec->Flags = Shdr.sh_flags;
    Sec->Addr = Shdr.sh_addr;
    Sec->Offset = Shdr.sh_offset;
    Sec->OriginalOffset = Shdr.sh_offset;
    Sec->Size = Shdr.sh_size;
    Sec->Link = Shdr.sh_link;
    Sec->Info = Shdr.sh_info;
    Sec->Align = Shdr.sh_addralign;
    Sec->EntrySize = Shdr.sh_entsize;
    Sec->Index = Index++;
    Sections.push_back(std::move(Sec));
  }

  SectionTableRef SecTable(Sections);

  // Now that all of the sections have been added we can fill out some extra
  // details about symbol tables. We need the symbol table filled out before
  // any relocations.
  if (SymbolTable) {
    SymbolTable->initialize(SecTable);
    initSymbolTable(ElfFile, SymbolTable, SecTable);
  }

  // Now that all sections and symbols have been added we can add
  // relocations that reference symbols and set the link and info fields for
  // relocation sections.
  for (auto &Section : Sections) {
    if (Section.get() == SymbolTable)
      continue;
    Section->initialize(SecTable);
    if (auto RelSec = dyn_cast<RelocationSection<ELFT>>(Section.get())) {
      auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
      if (RelSec->Type == SHT_REL)
        initRelocations(RelSec, SymbolTable, unwrapOrError(ElfFile.rels(Shdr)));
      else
        initRelocations(RelSec, SymbolTable,
                        unwrapOrError(ElfFile.relas(Shdr)));
    }
  }

  return SecTable;
}

template <class ELFT> Object<ELFT>::Object(const ELFObjectFile<ELFT> &Obj) {
  const auto &ElfFile = *Obj.getELFFile();
  const auto &Ehdr = *ElfFile.getHeader();

  std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Ident);
  Type = Ehdr.e_type;
  Machine = Ehdr.e_machine;
  Version = Ehdr.e_version;
  Entry = Ehdr.e_entry;
  Flags = Ehdr.e_flags;

  SectionTableRef SecTable = readSectionHeaders(ElfFile);
  readProgramHeaders(ElfFile);

  SectionNames = SecTable.getSectionOfType<StringTableSection>(
      Ehdr.e_shstrndx,
      "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
          " is invalid",
      "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) + " in elf header " +
          " is not a string table");
}

template <class ELFT>
void Object<ELFT>::writeHeader(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart();
  Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf);
  std::copy(Ident, Ident + 16, Ehdr.e_ident);
  Ehdr.e_type = Type;
  Ehdr.e_machine = Machine;
  Ehdr.e_version = Version;
  Ehdr.e_entry = Entry;
  Ehdr.e_phoff = sizeof(Elf_Ehdr);
  Ehdr.e_flags = Flags;
  Ehdr.e_ehsize = sizeof(Elf_Ehdr);
  Ehdr.e_phentsize = sizeof(Elf_Phdr);
  Ehdr.e_phnum = Segments.size();
  Ehdr.e_shentsize = sizeof(Elf_Shdr);
  if (WriteSectionHeaders) {
    Ehdr.e_shoff = SHOffset;
    Ehdr.e_shnum = Sections.size() + 1;
    Ehdr.e_shstrndx = SectionNames->Index;
  } else {
    Ehdr.e_shoff = 0;
    Ehdr.e_shnum = 0;
    Ehdr.e_shstrndx = 0;
  }
}

template <class ELFT>
void Object<ELFT>::writeProgramHeaders(FileOutputBuffer &Out) const {
  for (auto &Phdr : Segments)
    Phdr->template writeHeader<ELFT>(Out);
}

template <class ELFT>
void Object<ELFT>::writeSectionHeaders(FileOutputBuffer &Out) const {
  uint8_t *Buf = Out.getBufferStart() + SHOffset;
  // This reference serves to write the dummy section header at the begining
  // of the file. It is not used for anything else
  Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(Buf);
  Shdr.sh_name = 0;
  Shdr.sh_type = SHT_NULL;
  Shdr.sh_flags = 0;
  Shdr.sh_addr = 0;
  Shdr.sh_offset = 0;
  Shdr.sh_size = 0;
  Shdr.sh_link = 0;
  Shdr.sh_info = 0;
  Shdr.sh_addralign = 0;
  Shdr.sh_entsize = 0;

  for (auto &Section : Sections)
    Section->template writeHeader<ELFT>(Out);
}

template <class ELFT>
void Object<ELFT>::writeSectionData(FileOutputBuffer &Out) const {
  for (auto &Section : Sections)
    Section->writeSection(Out);
}

template <class ELFT>
void Object<ELFT>::removeSections(
    std::function<bool(const SectionBase &)> ToRemove) {

  auto Iter = std::stable_partition(
      std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
        if (ToRemove(*Sec))
          return false;
        if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
          if (auto ToRelSec = RelSec->getSection())
            return !ToRemove(*ToRelSec);
        }
        return true;
      });
  if (SymbolTable != nullptr && ToRemove(*SymbolTable))
    SymbolTable = nullptr;
  if (ToRemove(*SectionNames)) {
    if (WriteSectionHeaders)
      error("Cannot remove " + SectionNames->Name +
            " because it is the section header string table.");
    SectionNames = nullptr;
  }
  // Now make sure there are no remaining references to the sections that will
  // be removed. Sometimes it is impossible to remove a reference so we emit
  // an error here instead.
  for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
    for (auto &Segment : Segments)
      Segment->removeSection(RemoveSec.get());
    for (auto &KeepSec : make_range(std::begin(Sections), Iter))
      KeepSec->removeSectionReferences(RemoveSec.get());
  }
  // Now finally get rid of them all togethor.
  Sections.erase(Iter, std::end(Sections));
}

template <class ELFT>
void Object<ELFT>::addSection(StringRef SecName, ArrayRef<uint8_t> Data) {
  auto Sec = llvm::make_unique<OwnedDataSection>(SecName, Data);
  Sec->OriginalOffset = ~0ULL;
  Sections.push_back(std::move(Sec));
}

template <class ELFT> void ELFObject<ELFT>::sortSections() {
  // Put all sections in offset order. Maintain the ordering as closely as
  // possible while meeting that demand however.
  auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
    return A->OriginalOffset < B->OriginalOffset;
  };
  std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
                   CompareSections);
}

static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
  // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
  if (Align == 0)
    Align = 1;
  auto Diff =
      static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
  // We only want to add to Offset, however, so if Diff < 0 we can add Align and
  // (Offset + Diff) & -Align == Addr & -Align will still hold.
  if (Diff < 0)
    Diff += Align;
  return Offset + Diff;
}

// Orders segments such that if x = y->ParentSegment then y comes before x.
static void OrderSegments(std::vector<Segment *> &Segments) {
  std::stable_sort(std::begin(Segments), std::end(Segments), compareSegments);
}

// This function finds a consistent layout for a list of segments starting from
// an Offset. It assumes that Segments have been sorted by OrderSegments and
// returns an Offset one past the end of the last segment.
static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
                               uint64_t Offset) {
  assert(std::is_sorted(std::begin(Segments), std::end(Segments),
                        compareSegments));
  // The only way a segment should move is if a section was between two
  // segments and that section was removed. If that section isn't in a segment
  // then it's acceptable, but not ideal, to simply move it to after the
  // segments. So we can simply layout segments one after the other accounting
  // for alignment.
  for (auto &Segment : Segments) {
    // We assume that segments have been ordered by OriginalOffset and Index
    // such that a parent segment will always come before a child segment in
    // OrderedSegments. This means that the Offset of the ParentSegment should
    // already be set and we can set our offset relative to it.
    if (Segment->ParentSegment != nullptr) {
      auto Parent = Segment->ParentSegment;
      Segment->Offset =
          Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
    } else {
      Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
      Segment->Offset = Offset;
    }
    Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
  }
  return Offset;
}

// This function finds a consistent layout for a list of sections. It assumes
// that the ->ParentSegment of each section has already been laid out. The
// supplied starting Offset is used for the starting offset of any section that
// does not have a ParentSegment. It returns either the offset given if all
// sections had a ParentSegment or an offset one past the last section if there
// was a section that didn't have a ParentSegment.
template <class SecPtr>
static uint64_t LayoutSections(std::vector<SecPtr> &Sections, uint64_t Offset) {
  // Now the offset of every segment has been set we can assign the offsets
  // of each section. For sections that are covered by a segment we should use
  // the segment's original offset and the section's original offset to compute
  // the offset from the start of the segment. Using the offset from the start
  // of the segment we can assign a new offset to the section. For sections not
  // covered by segments we can just bump Offset to the next valid location.
  uint32_t Index = 1;
  for (auto &Section : Sections) {
    Section->Index = Index++;
    if (Section->ParentSegment != nullptr) {
      auto Segment = Section->ParentSegment;
      Section->Offset =
          Segment->Offset + (Section->OriginalOffset - Segment->OriginalOffset);
    } else {
      Offset = alignTo(Offset, Section->Align == 0 ? 1 : Section->Align);
      Section->Offset = Offset;
      if (Section->Type != SHT_NOBITS)
        Offset += Section->Size;
    }
  }
  return Offset;
}

template <class ELFT> void ELFObject<ELFT>::assignOffsets() {
  // We need a temporary list of segments that has a special order to it
  // so that we know that anytime ->ParentSegment is set that segment has
  // already had its offset properly set.
  std::vector<Segment *> OrderedSegments;
  for (auto &Segment : this->Segments)
    OrderedSegments.push_back(Segment.get());
  OrderSegments(OrderedSegments);
  // The size of ELF + program headers will not change so it is ok to assume
  // that the first offset of the first segment is a good place to start
  // outputting sections. This covers both the standard case and the PT_PHDR
  // case.
  uint64_t Offset;
  if (!OrderedSegments.empty()) {
    Offset = OrderedSegments[0]->Offset;
  } else {
    Offset = sizeof(Elf_Ehdr);
  }
  Offset = LayoutSegments(OrderedSegments, Offset);
  Offset = LayoutSections(this->Sections, Offset);
  // If we need to write the section header table out then we need to align the
  // Offset so that SHOffset is valid.
  if (this->WriteSectionHeaders)
    Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
  this->SHOffset = Offset;
}

template <class ELFT> size_t ELFObject<ELFT>::totalSize() const {
  // We already have the section header offset so we can calculate the total
  // size by just adding up the size of each section header.
  auto NullSectionSize = this->WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
  return this->SHOffset + this->Sections.size() * sizeof(Elf_Shdr) +
         NullSectionSize;
}

template <class ELFT> void ELFObject<ELFT>::write(FileOutputBuffer &Out) const {
  this->writeHeader(Out);
  this->writeProgramHeaders(Out);
  this->writeSectionData(Out);
  if (this->WriteSectionHeaders)
    this->writeSectionHeaders(Out);
}

template <class ELFT> void ELFObject<ELFT>::finalize() {
  // Make sure we add the names of all the sections.
  if (this->SectionNames != nullptr)
    for (const auto &Section : this->Sections) {
      this->SectionNames->addString(Section->Name);
    }
  // Make sure we add the names of all the symbols.
  if (this->SymbolTable != nullptr)
    this->SymbolTable->addSymbolNames();

  sortSections();
  assignOffsets();

  // Finalize SectionNames first so that we can assign name indexes.
  if (this->SectionNames != nullptr)
    this->SectionNames->finalize();
  // Finally now that all offsets and indexes have been set we can finalize any
  // remaining issues.
  uint64_t Offset = this->SHOffset + sizeof(Elf_Shdr);
  for (auto &Section : this->Sections) {
    Section->HeaderOffset = Offset;
    Offset += sizeof(Elf_Shdr);
    if (this->WriteSectionHeaders)
      Section->NameIndex = this->SectionNames->findIndex(Section->Name);
    Section->finalize();
  }
}

template <class ELFT> size_t BinaryObject<ELFT>::totalSize() const {
  return TotalSize;
}

template <class ELFT>
void BinaryObject<ELFT>::write(FileOutputBuffer &Out) const {
  for (auto &Section : this->Sections) {
    if ((Section->Flags & SHF_ALLOC) == 0)
      continue;
    Section->writeSection(Out);
  }
}

template <class ELFT> void BinaryObject<ELFT>::finalize() {
  // TODO: Create a filter range to construct OrderedSegments from so that this
  // code can be deduped with assignOffsets above. This should also solve the
  // todo below for LayoutSections.
  // We need a temporary list of segments that has a special order to it
  // so that we know that anytime ->ParentSegment is set that segment has
  // already had it's offset properly set. We only want to consider the segments
  // that will affect layout of allocated sections so we only add those.
  std::vector<Segment *> OrderedSegments;
  for (auto &Section : this->Sections) {
    if ((Section->Flags & SHF_ALLOC) != 0 &&
        Section->ParentSegment != nullptr) {
      OrderedSegments.push_back(Section->ParentSegment);
    }
  }
  OrderSegments(OrderedSegments);
  // Because we add a ParentSegment for each section we might have duplicate
  // segments in OrderedSegments. If there were duplicates then LayoutSegments
  // would do very strange things.
  auto End =
      std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
  OrderedSegments.erase(End, std::end(OrderedSegments));

  // Modify the first segment so that there is no gap at the start. This allows
  // our layout algorithm to proceed as expected while not out writing out the
  // gap at the start.
  if (!OrderedSegments.empty()) {
    auto Seg = OrderedSegments[0];
    auto Sec = Seg->firstSection();
    auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
    Seg->OriginalOffset += Diff;
    // The size needs to be shrunk as well
    Seg->FileSize -= Diff;
    Seg->MemSize -= Diff;
    // The VAddr needs to be adjusted so that the alignment is correct as well
    Seg->VAddr += Diff;
    Seg->PAddr = Seg->VAddr;
    // We don't want this to be shifted by alignment so we need to set the
    // alignment to zero.
    Seg->Align = 0;
  }

  uint64_t Offset = LayoutSegments(OrderedSegments, 0);

  // TODO: generalize LayoutSections to take a range. Pass a special range
  // constructed from an iterator that skips values for which a predicate does
  // not hold. Then pass such a range to LayoutSections instead of constructing
  // AllocatedSections here.
  std::vector<SectionBase *> AllocatedSections;
  for (auto &Section : this->Sections) {
    if ((Section->Flags & SHF_ALLOC) == 0)
      continue;
    AllocatedSections.push_back(Section.get());
  }
  LayoutSections(AllocatedSections, Offset);

  // Now that every section has been laid out we just need to compute the total
  // file size. This might not be the same as the offset returned by
  // LayoutSections, because we want to truncate the last segment to the end of
  // its last section, to match GNU objcopy's behaviour.
  TotalSize = 0;
  for (const auto &Section : AllocatedSections) {
    if (Section->Type != SHT_NOBITS)
      TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
  }
}

namespace llvm {

template class Object<ELF64LE>;
template class Object<ELF64BE>;
template class Object<ELF32LE>;
template class Object<ELF32BE>;

template class ELFObject<ELF64LE>;
template class ELFObject<ELF64BE>;
template class ELFObject<ELF32LE>;
template class ELFObject<ELF32BE>;

template class BinaryObject<ELF64LE>;
template class BinaryObject<ELF64BE>;
template class BinaryObject<ELF32LE>;
template class BinaryObject<ELF32BE>;

} // end namespace llvm