summaryrefslogtreecommitdiff
path: root/gnu/llvm/utils/TableGen/AsmMatcherEmitter.cpp
blob: 1f8e1b125889fe64d75a6cebe9eb89af2a24dcf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures. It also emits a matcher for
// custom operand parsing.
//
// Converting assembly operands into MCInst structures
// ---------------------------------------------------
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
//   'addl' (immediate ...) (register ...)
//   'add' (immediate ...) (memory ...)
//   'call' '*' %epc
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
//  - It may be ambiguous; many architectures can legally encode particular
//    variants of an instruction in different ways (for example, using a smaller
//    encoding for small immediates). Such ambiguities should never be
//    arbitrarily resolved by the assembler, the assembler is always responsible
//    for choosing the "best" available instruction.
//
//  - It may depend on the subtarget or the assembler context. Instructions
//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
//    an SSE instruction in a file being assembled for i486) should be accepted
//    and rejected by the assembler front end. However, if the proper encoding
//    for an instruction is dependent on the assembler context then the matcher
//    is responsible for selecting the correct machine instruction for the
//    current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
//   1. Classification: Each operand is mapped to the unique set which (a)
//      contains it, and (b) is the largest such subset for which a single
//      instruction could match all members.
//
//      For register classes, we can generate these subgroups automatically. For
//      arbitrary operands, we expect the user to define the classes and their
//      relations to one another (for example, 8-bit signed immediates as a
//      subset of 32-bit immediates).
//
//      By partitioning the operands in this way, we guarantee that for any
//      tuple of classes, any single instruction must match either all or none
//      of the sets of operands which could classify to that tuple.
//
//      In addition, the subset relation amongst classes induces a partial order
//      on such tuples, which we use to resolve ambiguities.
//
//   2. The input can now be treated as a tuple of classes (static tokens are
//      simple singleton sets). Each such tuple should generally map to a single
//      instruction (we currently ignore cases where this isn't true, whee!!!),
//      which we can emit a simple matcher for.
//
// Custom Operand Parsing
// ----------------------
//
//  Some targets need a custom way to parse operands, some specific instructions
//  can contain arguments that can represent processor flags and other kinds of
//  identifiers that need to be mapped to specific values in the final encoded
//  instructions. The target specific custom operand parsing works in the
//  following way:
//
//   1. A operand match table is built, each entry contains a mnemonic, an
//      operand class, a mask for all operand positions for that same
//      class/mnemonic and target features to be checked while trying to match.
//
//   2. The operand matcher will try every possible entry with the same
//      mnemonic and will check if the target feature for this mnemonic also
//      matches. After that, if the operand to be matched has its index
//      present in the mask, a successful match occurs. Otherwise, fallback
//      to the regular operand parsing.
//
//   3. For a match success, each operand class that has a 'ParserMethod'
//      becomes part of a switch from where the custom method is called.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "SubtargetFeatureInfo.h"
#include "Types.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cctype>
#include <forward_list>
#include <map>
#include <set>

using namespace llvm;

#define DEBUG_TYPE "asm-matcher-emitter"

cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");

static cl::opt<std::string>
    MatchPrefix("match-prefix", cl::init(""),
                cl::desc("Only match instructions with the given prefix"),
                cl::cat(AsmMatcherEmitterCat));

namespace {
class AsmMatcherInfo;

// Register sets are used as keys in some second-order sets TableGen creates
// when generating its data structures. This means that the order of two
// RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
// can even affect compiler output (at least seen in diagnostics produced when
// all matches fail). So we use a type that sorts them consistently.
typedef std::set<Record*, LessRecordByID> RegisterSet;

class AsmMatcherEmitter {
  RecordKeeper &Records;
public:
  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}

  void run(raw_ostream &o);
};

/// ClassInfo - Helper class for storing the information about a particular
/// class of operands which can be matched.
struct ClassInfo {
  enum ClassInfoKind {
    /// Invalid kind, for use as a sentinel value.
    Invalid = 0,

    /// The class for a particular token.
    Token,

    /// The (first) register class, subsequent register classes are
    /// RegisterClass0+1, and so on.
    RegisterClass0,

    /// The (first) user defined class, subsequent user defined classes are
    /// UserClass0+1, and so on.
    UserClass0 = 1<<16
  };

  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
  /// N) for the Nth user defined class.
  unsigned Kind;

  /// SuperClasses - The super classes of this class. Note that for simplicities
  /// sake user operands only record their immediate super class, while register
  /// operands include all superclasses.
  std::vector<ClassInfo*> SuperClasses;

  /// Name - The full class name, suitable for use in an enum.
  std::string Name;

  /// ClassName - The unadorned generic name for this class (e.g., Token).
  std::string ClassName;

  /// ValueName - The name of the value this class represents; for a token this
  /// is the literal token string, for an operand it is the TableGen class (or
  /// empty if this is a derived class).
  std::string ValueName;

  /// PredicateMethod - The name of the operand method to test whether the
  /// operand matches this class; this is not valid for Token or register kinds.
  std::string PredicateMethod;

  /// RenderMethod - The name of the operand method to add this operand to an
  /// MCInst; this is not valid for Token or register kinds.
  std::string RenderMethod;

  /// ParserMethod - The name of the operand method to do a target specific
  /// parsing on the operand.
  std::string ParserMethod;

  /// For register classes: the records for all the registers in this class.
  RegisterSet Registers;

  /// For custom match classes: the diagnostic kind for when the predicate fails.
  std::string DiagnosticType;

  /// Is this operand optional and not always required.
  bool IsOptional;

  /// DefaultMethod - The name of the method that returns the default operand
  /// for optional operand
  std::string DefaultMethod;

public:
  /// isRegisterClass() - Check if this is a register class.
  bool isRegisterClass() const {
    return Kind >= RegisterClass0 && Kind < UserClass0;
  }

  /// isUserClass() - Check if this is a user defined class.
  bool isUserClass() const {
    return Kind >= UserClass0;
  }

  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
  /// are related if they are in the same class hierarchy.
  bool isRelatedTo(const ClassInfo &RHS) const {
    // Tokens are only related to tokens.
    if (Kind == Token || RHS.Kind == Token)
      return Kind == Token && RHS.Kind == Token;

    // Registers classes are only related to registers classes, and only if
    // their intersection is non-empty.
    if (isRegisterClass() || RHS.isRegisterClass()) {
      if (!isRegisterClass() || !RHS.isRegisterClass())
        return false;

      RegisterSet Tmp;
      std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
      std::set_intersection(Registers.begin(), Registers.end(),
                            RHS.Registers.begin(), RHS.Registers.end(),
                            II, LessRecordByID());

      return !Tmp.empty();
    }

    // Otherwise we have two users operands; they are related if they are in the
    // same class hierarchy.
    //
    // FIXME: This is an oversimplification, they should only be related if they
    // intersect, however we don't have that information.
    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    const ClassInfo *Root = this;
    while (!Root->SuperClasses.empty())
      Root = Root->SuperClasses.front();

    const ClassInfo *RHSRoot = &RHS;
    while (!RHSRoot->SuperClasses.empty())
      RHSRoot = RHSRoot->SuperClasses.front();

    return Root == RHSRoot;
  }

  /// isSubsetOf - Test whether this class is a subset of \p RHS.
  bool isSubsetOf(const ClassInfo &RHS) const {
    // This is a subset of RHS if it is the same class...
    if (this == &RHS)
      return true;

    // ... or if any of its super classes are a subset of RHS.
    for (const ClassInfo *CI : SuperClasses)
      if (CI->isSubsetOf(RHS))
        return true;

    return false;
  }

  int getTreeDepth() const {
    int Depth = 0;
    const ClassInfo *Root = this;
    while (!Root->SuperClasses.empty()) {
      Depth++;
      Root = Root->SuperClasses.front();
    }
    return Depth;
  }

  const ClassInfo *findRoot() const {
    const ClassInfo *Root = this;
    while (!Root->SuperClasses.empty())
      Root = Root->SuperClasses.front();
    return Root;
  }

  /// Compare two classes. This does not produce a total ordering, but does
  /// guarantee that subclasses are sorted before their parents, and that the
  /// ordering is transitive.
  bool operator<(const ClassInfo &RHS) const {
    if (this == &RHS)
      return false;

    // First, enforce the ordering between the three different types of class.
    // Tokens sort before registers, which sort before user classes.
    if (Kind == Token) {
      if (RHS.Kind != Token)
        return true;
      assert(RHS.Kind == Token);
    } else if (isRegisterClass()) {
      if (RHS.Kind == Token)
        return false;
      else if (RHS.isUserClass())
        return true;
      assert(RHS.isRegisterClass());
    } else if (isUserClass()) {
      if (!RHS.isUserClass())
        return false;
      assert(RHS.isUserClass());
    } else {
      llvm_unreachable("Unknown ClassInfoKind");
    }

    if (Kind == Token || isUserClass()) {
      // Related tokens and user classes get sorted by depth in the inheritence
      // tree (so that subclasses are before their parents).
      if (isRelatedTo(RHS)) {
        if (getTreeDepth() > RHS.getTreeDepth())
          return true;
        if (getTreeDepth() < RHS.getTreeDepth())
          return false;
      } else {
        // Unrelated tokens and user classes are ordered by the name of their
        // root nodes, so that there is a consistent ordering between
        // unconnected trees.
        return findRoot()->ValueName < RHS.findRoot()->ValueName;
      }
    } else if (isRegisterClass()) {
      // For register sets, sort by number of registers. This guarantees that
      // a set will always sort before all of it's strict supersets.
      if (Registers.size() != RHS.Registers.size())
        return Registers.size() < RHS.Registers.size();
    } else {
      llvm_unreachable("Unknown ClassInfoKind");
    }

    // FIXME: We should be able to just return false here, as we only need a
    // partial order (we use stable sorts, so this is deterministic) and the
    // name of a class shouldn't be significant. However, some of the backends
    // accidentally rely on this behaviour, so it will have to stay like this
    // until they are fixed.
    return ValueName < RHS.ValueName;
  }
};

class AsmVariantInfo {
public:
  StringRef RegisterPrefix;
  StringRef TokenizingCharacters;
  StringRef SeparatorCharacters;
  StringRef BreakCharacters;
  StringRef Name;
  int AsmVariantNo;
};

/// MatchableInfo - Helper class for storing the necessary information for an
/// instruction or alias which is capable of being matched.
struct MatchableInfo {
  struct AsmOperand {
    /// Token - This is the token that the operand came from.
    StringRef Token;

    /// The unique class instance this operand should match.
    ClassInfo *Class;

    /// The operand name this is, if anything.
    StringRef SrcOpName;

    /// The suboperand index within SrcOpName, or -1 for the entire operand.
    int SubOpIdx;

    /// Whether the token is "isolated", i.e., it is preceded and followed
    /// by separators.
    bool IsIsolatedToken;

    /// Register record if this token is singleton register.
    Record *SingletonReg;

    explicit AsmOperand(bool IsIsolatedToken, StringRef T)
        : Token(T), Class(nullptr), SubOpIdx(-1),
          IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
  };

  /// ResOperand - This represents a single operand in the result instruction
  /// generated by the match.  In cases (like addressing modes) where a single
  /// assembler operand expands to multiple MCOperands, this represents the
  /// single assembler operand, not the MCOperand.
  struct ResOperand {
    enum {
      /// RenderAsmOperand - This represents an operand result that is
      /// generated by calling the render method on the assembly operand.  The
      /// corresponding AsmOperand is specified by AsmOperandNum.
      RenderAsmOperand,

      /// TiedOperand - This represents a result operand that is a duplicate of
      /// a previous result operand.
      TiedOperand,

      /// ImmOperand - This represents an immediate value that is dumped into
      /// the operand.
      ImmOperand,

      /// RegOperand - This represents a fixed register that is dumped in.
      RegOperand
    } Kind;

    union {
      /// This is the operand # in the AsmOperands list that this should be
      /// copied from.
      unsigned AsmOperandNum;

      /// TiedOperandNum - This is the (earlier) result operand that should be
      /// copied from.
      unsigned TiedOperandNum;

      /// ImmVal - This is the immediate value added to the instruction.
      int64_t ImmVal;

      /// Register - This is the register record.
      Record *Register;
    };

    /// MINumOperands - The number of MCInst operands populated by this
    /// operand.
    unsigned MINumOperands;

    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
      ResOperand X;
      X.Kind = RenderAsmOperand;
      X.AsmOperandNum = AsmOpNum;
      X.MINumOperands = NumOperands;
      return X;
    }

    static ResOperand getTiedOp(unsigned TiedOperandNum) {
      ResOperand X;
      X.Kind = TiedOperand;
      X.TiedOperandNum = TiedOperandNum;
      X.MINumOperands = 1;
      return X;
    }

    static ResOperand getImmOp(int64_t Val) {
      ResOperand X;
      X.Kind = ImmOperand;
      X.ImmVal = Val;
      X.MINumOperands = 1;
      return X;
    }

    static ResOperand getRegOp(Record *Reg) {
      ResOperand X;
      X.Kind = RegOperand;
      X.Register = Reg;
      X.MINumOperands = 1;
      return X;
    }
  };

  /// AsmVariantID - Target's assembly syntax variant no.
  int AsmVariantID;

  /// AsmString - The assembly string for this instruction (with variants
  /// removed), e.g. "movsx $src, $dst".
  std::string AsmString;

  /// TheDef - This is the definition of the instruction or InstAlias that this
  /// matchable came from.
  Record *const TheDef;

  /// DefRec - This is the definition that it came from.
  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;

  const CodeGenInstruction *getResultInst() const {
    if (DefRec.is<const CodeGenInstruction*>())
      return DefRec.get<const CodeGenInstruction*>();
    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
  }

  /// ResOperands - This is the operand list that should be built for the result
  /// MCInst.
  SmallVector<ResOperand, 8> ResOperands;

  /// Mnemonic - This is the first token of the matched instruction, its
  /// mnemonic.
  StringRef Mnemonic;

  /// AsmOperands - The textual operands that this instruction matches,
  /// annotated with a class and where in the OperandList they were defined.
  /// This directly corresponds to the tokenized AsmString after the mnemonic is
  /// removed.
  SmallVector<AsmOperand, 8> AsmOperands;

  /// Predicates - The required subtarget features to match this instruction.
  SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;

  /// ConversionFnKind - The enum value which is passed to the generated
  /// convertToMCInst to convert parsed operands into an MCInst for this
  /// function.
  std::string ConversionFnKind;

  /// If this instruction is deprecated in some form.
  bool HasDeprecation;

  /// If this is an alias, this is use to determine whether or not to using
  /// the conversion function defined by the instruction's AsmMatchConverter
  /// or to use the function generated by the alias.
  bool UseInstAsmMatchConverter;

  MatchableInfo(const CodeGenInstruction &CGI)
    : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
      UseInstAsmMatchConverter(true) {
  }

  MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
    : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
      DefRec(Alias.release()),
      UseInstAsmMatchConverter(
        TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
  }

  // Could remove this and the dtor if PointerUnion supported unique_ptr
  // elements with a dynamic failure/assertion (like the one below) in the case
  // where it was copied while being in an owning state.
  MatchableInfo(const MatchableInfo &RHS)
      : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
        TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
        Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
        RequiredFeatures(RHS.RequiredFeatures),
        ConversionFnKind(RHS.ConversionFnKind),
        HasDeprecation(RHS.HasDeprecation),
        UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
    assert(!DefRec.is<const CodeGenInstAlias *>());
  }

  ~MatchableInfo() {
    delete DefRec.dyn_cast<const CodeGenInstAlias*>();
  }

  // Two-operand aliases clone from the main matchable, but mark the second
  // operand as a tied operand of the first for purposes of the assembler.
  void formTwoOperandAlias(StringRef Constraint);

  void initialize(const AsmMatcherInfo &Info,
                  SmallPtrSetImpl<Record*> &SingletonRegisters,
                  AsmVariantInfo const &Variant,
                  bool HasMnemonicFirst);

  /// validate - Return true if this matchable is a valid thing to match against
  /// and perform a bunch of validity checking.
  bool validate(StringRef CommentDelimiter, bool Hack) const;

  /// findAsmOperand - Find the AsmOperand with the specified name and
  /// suboperand index.
  int findAsmOperand(StringRef N, int SubOpIdx) const {
    auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
      return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
    });
    return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
  }

  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
  /// This does not check the suboperand index.
  int findAsmOperandNamed(StringRef N) const {
    auto I = find_if(AsmOperands,
                     [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
    return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
  }

  void buildInstructionResultOperands();
  void buildAliasResultOperands();

  /// operator< - Compare two matchables.
  bool operator<(const MatchableInfo &RHS) const {
    // The primary comparator is the instruction mnemonic.
    if (int Cmp = Mnemonic.compare(RHS.Mnemonic))
      return Cmp == -1;

    if (AsmOperands.size() != RHS.AsmOperands.size())
      return AsmOperands.size() < RHS.AsmOperands.size();

    // Compare lexicographically by operand. The matcher validates that other
    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
        return true;
      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
        return false;
    }

    // Give matches that require more features higher precedence. This is useful
    // because we cannot define AssemblerPredicates with the negation of
    // processor features. For example, ARM v6 "nop" may be either a HINT or
    // MOV. With v6, we want to match HINT. The assembler has no way to
    // predicate MOV under "NoV6", but HINT will always match first because it
    // requires V6 while MOV does not.
    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
      return RequiredFeatures.size() > RHS.RequiredFeatures.size();

    return false;
  }

  /// couldMatchAmbiguouslyWith - Check whether this matchable could
  /// ambiguously match the same set of operands as \p RHS (without being a
  /// strictly superior match).
  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
    // The primary comparator is the instruction mnemonic.
    if (Mnemonic != RHS.Mnemonic)
      return false;

    // The number of operands is unambiguous.
    if (AsmOperands.size() != RHS.AsmOperands.size())
      return false;

    // Otherwise, make sure the ordering of the two instructions is unambiguous
    // by checking that either (a) a token or operand kind discriminates them,
    // or (b) the ordering among equivalent kinds is consistent.

    // Tokens and operand kinds are unambiguous (assuming a correct target
    // specific parser).
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
          AsmOperands[i].Class->Kind == ClassInfo::Token)
        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
          return false;

    // Otherwise, this operand could commute if all operands are equivalent, or
    // there is a pair of operands that compare less than and a pair that
    // compare greater than.
    bool HasLT = false, HasGT = false;
    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
        HasLT = true;
      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
        HasGT = true;
    }

    return HasLT == HasGT;
  }

  void dump() const;

private:
  void tokenizeAsmString(AsmMatcherInfo const &Info,
                         AsmVariantInfo const &Variant);
  void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
};

struct OperandMatchEntry {
  unsigned OperandMask;
  const MatchableInfo* MI;
  ClassInfo *CI;

  static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
                                  unsigned opMask) {
    OperandMatchEntry X;
    X.OperandMask = opMask;
    X.CI = ci;
    X.MI = mi;
    return X;
  }
};

class AsmMatcherInfo {
public:
  /// Tracked Records
  RecordKeeper &Records;

  /// The tablegen AsmParser record.
  Record *AsmParser;

  /// Target - The target information.
  CodeGenTarget &Target;

  /// The classes which are needed for matching.
  std::forward_list<ClassInfo> Classes;

  /// The information on the matchables to match.
  std::vector<std::unique_ptr<MatchableInfo>> Matchables;

  /// Info for custom matching operands by user defined methods.
  std::vector<OperandMatchEntry> OperandMatchInfo;

  /// Map of Register records to their class information.
  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
  RegisterClassesTy RegisterClasses;

  /// Map of Predicate records to their subtarget information.
  std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;

  /// Map of AsmOperandClass records to their class information.
  std::map<Record*, ClassInfo*> AsmOperandClasses;

private:
  /// Map of token to class information which has already been constructed.
  std::map<std::string, ClassInfo*> TokenClasses;

  /// Map of RegisterClass records to their class information.
  std::map<Record*, ClassInfo*> RegisterClassClasses;

private:
  /// getTokenClass - Lookup or create the class for the given token.
  ClassInfo *getTokenClass(StringRef Token);

  /// getOperandClass - Lookup or create the class for the given operand.
  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
                             int SubOpIdx);
  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);

  /// buildRegisterClasses - Build the ClassInfo* instances for register
  /// classes.
  void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);

  /// buildOperandClasses - Build the ClassInfo* instances for user defined
  /// operand classes.
  void buildOperandClasses();

  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
                                        unsigned AsmOpIdx);
  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
                                  MatchableInfo::AsmOperand &Op);

public:
  AsmMatcherInfo(Record *AsmParser,
                 CodeGenTarget &Target,
                 RecordKeeper &Records);

  /// Construct the various tables used during matching.
  void buildInfo();

  /// buildOperandMatchInfo - Build the necessary information to handle user
  /// defined operand parsing methods.
  void buildOperandMatchInfo();

  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
  /// given operand.
  const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    const auto &I = SubtargetFeatures.find(Def);
    return I == SubtargetFeatures.end() ? nullptr : &I->second;
  }

  RecordKeeper &getRecords() const {
    return Records;
  }

  bool hasOptionalOperands() const {
    return find_if(Classes, [](const ClassInfo &Class) {
             return Class.IsOptional;
           }) != Classes.end();
  }
};

} // end anonymous namespace

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MatchableInfo::dump() const {
  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";

  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    const AsmOperand &Op = AsmOperands[i];
    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    errs() << '\"' << Op.Token << "\"\n";
  }
}
#endif

static std::pair<StringRef, StringRef>
parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
  // Split via the '='.
  std::pair<StringRef, StringRef> Ops = S.split('=');
  if (Ops.second == "")
    PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
  // Trim whitespace and the leading '$' on the operand names.
  size_t start = Ops.first.find_first_of('$');
  if (start == std::string::npos)
    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
  Ops.first = Ops.first.slice(start + 1, std::string::npos);
  size_t end = Ops.first.find_last_of(" \t");
  Ops.first = Ops.first.slice(0, end);
  // Now the second operand.
  start = Ops.second.find_first_of('$');
  if (start == std::string::npos)
    PrintFatalError(Loc, "expected '$' prefix on asm operand name");
  Ops.second = Ops.second.slice(start + 1, std::string::npos);
  end = Ops.second.find_last_of(" \t");
  Ops.first = Ops.first.slice(0, end);
  return Ops;
}

void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
  // Figure out which operands are aliased and mark them as tied.
  std::pair<StringRef, StringRef> Ops =
    parseTwoOperandConstraint(Constraint, TheDef->getLoc());

  // Find the AsmOperands that refer to the operands we're aliasing.
  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
  int DstAsmOperand = findAsmOperandNamed(Ops.second);
  if (SrcAsmOperand == -1)
    PrintFatalError(TheDef->getLoc(),
                    "unknown source two-operand alias operand '" + Ops.first +
                    "'.");
  if (DstAsmOperand == -1)
    PrintFatalError(TheDef->getLoc(),
                    "unknown destination two-operand alias operand '" +
                    Ops.second + "'.");

  // Find the ResOperand that refers to the operand we're aliasing away
  // and update it to refer to the combined operand instead.
  for (ResOperand &Op : ResOperands) {
    if (Op.Kind == ResOperand::RenderAsmOperand &&
        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
      Op.AsmOperandNum = DstAsmOperand;
      break;
    }
  }
  // Remove the AsmOperand for the alias operand.
  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
  // Adjust the ResOperand references to any AsmOperands that followed
  // the one we just deleted.
  for (ResOperand &Op : ResOperands) {
    switch(Op.Kind) {
    default:
      // Nothing to do for operands that don't reference AsmOperands.
      break;
    case ResOperand::RenderAsmOperand:
      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
        --Op.AsmOperandNum;
      break;
    case ResOperand::TiedOperand:
      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
        --Op.TiedOperandNum;
      break;
    }
  }
}

/// extractSingletonRegisterForAsmOperand - Extract singleton register,
/// if present, from specified token.
static void
extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
                                      const AsmMatcherInfo &Info,
                                      StringRef RegisterPrefix) {
  StringRef Tok = Op.Token;

  // If this token is not an isolated token, i.e., it isn't separated from
  // other tokens (e.g. with whitespace), don't interpret it as a register name.
  if (!Op.IsIsolatedToken)
    return;

  if (RegisterPrefix.empty()) {
    std::string LoweredTok = Tok.lower();
    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
      Op.SingletonReg = Reg->TheDef;
    return;
  }

  if (!Tok.startswith(RegisterPrefix))
    return;

  StringRef RegName = Tok.substr(RegisterPrefix.size());
  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    Op.SingletonReg = Reg->TheDef;

  // If there is no register prefix (i.e. "%" in "%eax"), then this may
  // be some random non-register token, just ignore it.
}

void MatchableInfo::initialize(const AsmMatcherInfo &Info,
                               SmallPtrSetImpl<Record*> &SingletonRegisters,
                               AsmVariantInfo const &Variant,
                               bool HasMnemonicFirst) {
  AsmVariantID = Variant.AsmVariantNo;
  AsmString =
    CodeGenInstruction::FlattenAsmStringVariants(AsmString,
                                                 Variant.AsmVariantNo);

  tokenizeAsmString(Info, Variant);

  // The first token of the instruction is the mnemonic, which must be a
  // simple string, not a $foo variable or a singleton register.
  if (AsmOperands.empty())
    PrintFatalError(TheDef->getLoc(),
                  "Instruction '" + TheDef->getName() + "' has no tokens");

  assert(!AsmOperands[0].Token.empty());
  if (HasMnemonicFirst) {
    Mnemonic = AsmOperands[0].Token;
    if (Mnemonic[0] == '$')
      PrintFatalError(TheDef->getLoc(),
                      "Invalid instruction mnemonic '" + Mnemonic + "'!");

    // Remove the first operand, it is tracked in the mnemonic field.
    AsmOperands.erase(AsmOperands.begin());
  } else if (AsmOperands[0].Token[0] != '$')
    Mnemonic = AsmOperands[0].Token;

  // Compute the require features.
  for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
    if (const SubtargetFeatureInfo *Feature =
            Info.getSubtargetFeature(Predicate))
      RequiredFeatures.push_back(Feature);

  // Collect singleton registers, if used.
  for (MatchableInfo::AsmOperand &Op : AsmOperands) {
    extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
    if (Record *Reg = Op.SingletonReg)
      SingletonRegisters.insert(Reg);
  }

  const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
  if (!DepMask)
    DepMask = TheDef->getValue("ComplexDeprecationPredicate");

  HasDeprecation =
      DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
}

/// Append an AsmOperand for the given substring of AsmString.
void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
  AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
}

/// tokenizeAsmString - Tokenize a simplified assembly string.
void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
                                      AsmVariantInfo const &Variant) {
  StringRef String = AsmString;
  size_t Prev = 0;
  bool InTok = false;
  bool IsIsolatedToken = true;
  for (size_t i = 0, e = String.size(); i != e; ++i) {
    char Char = String[i];
    if (Variant.BreakCharacters.find(Char) != std::string::npos) {
      if (InTok) {
        addAsmOperand(String.slice(Prev, i), false);
        Prev = i;
        IsIsolatedToken = false;
      }
      InTok = true;
      continue;
    }
    if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
      if (InTok) {
        addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
        InTok = false;
        IsIsolatedToken = false;
      }
      addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
      Prev = i + 1;
      IsIsolatedToken = true;
      continue;
    }
    if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
      if (InTok) {
        addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
        InTok = false;
      }
      Prev = i + 1;
      IsIsolatedToken = true;
      continue;
    }

    switch (Char) {
    case '\\':
      if (InTok) {
        addAsmOperand(String.slice(Prev, i), false);
        InTok = false;
        IsIsolatedToken = false;
      }
      ++i;
      assert(i != String.size() && "Invalid quoted character");
      addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
      Prev = i + 1;
      IsIsolatedToken = false;
      break;

    case '$': {
      if (InTok) {
        addAsmOperand(String.slice(Prev, i), false);
        InTok = false;
        IsIsolatedToken = false;
      }

      // If this isn't "${", start new identifier looking like "$xxx"
      if (i + 1 == String.size() || String[i + 1] != '{') {
        Prev = i;
        break;
      }

      size_t EndPos = String.find('}', i);
      assert(EndPos != StringRef::npos &&
             "Missing brace in operand reference!");
      addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
      Prev = EndPos + 1;
      i = EndPos;
      IsIsolatedToken = false;
      break;
    }

    default:
      InTok = true;
      break;
    }
  }
  if (InTok && Prev != String.size())
    addAsmOperand(String.substr(Prev), IsIsolatedToken);
}

bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
  // Reject matchables with no .s string.
  if (AsmString.empty())
    PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");

  // Reject any matchables with a newline in them, they should be marked
  // isCodeGenOnly if they are pseudo instructions.
  if (AsmString.find('\n') != std::string::npos)
    PrintFatalError(TheDef->getLoc(),
                  "multiline instruction is not valid for the asmparser, "
                  "mark it isCodeGenOnly");

  // Remove comments from the asm string.  We know that the asmstring only
  // has one line.
  if (!CommentDelimiter.empty() &&
      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    PrintFatalError(TheDef->getLoc(),
                  "asmstring for instruction has comment character in it, "
                  "mark it isCodeGenOnly");

  // Reject matchables with operand modifiers, these aren't something we can
  // handle, the target should be refactored to use operands instead of
  // modifiers.
  //
  // Also, check for instructions which reference the operand multiple times;
  // this implies a constraint we would not honor.
  std::set<std::string> OperandNames;
  for (const AsmOperand &Op : AsmOperands) {
    StringRef Tok = Op.Token;
    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
      PrintFatalError(TheDef->getLoc(),
                      "matchable with operand modifier '" + Tok +
                      "' not supported by asm matcher.  Mark isCodeGenOnly!");

    // Verify that any operand is only mentioned once.
    // We reject aliases and ignore instructions for now.
    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
      if (!Hack)
        PrintFatalError(TheDef->getLoc(),
                        "ERROR: matchable with tied operand '" + Tok +
                        "' can never be matched!");
      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
      // bunch of instructions.  It is unclear what the right answer is.
      DEBUG({
        errs() << "warning: '" << TheDef->getName() << "': "
               << "ignoring instruction with tied operand '"
               << Tok << "'\n";
      });
      return false;
    }
  }

  return true;
}

static std::string getEnumNameForToken(StringRef Str) {
  std::string Res;

  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    switch (*it) {
    case '*': Res += "_STAR_"; break;
    case '%': Res += "_PCT_"; break;
    case ':': Res += "_COLON_"; break;
    case '!': Res += "_EXCLAIM_"; break;
    case '.': Res += "_DOT_"; break;
    case '<': Res += "_LT_"; break;
    case '>': Res += "_GT_"; break;
    case '-': Res += "_MINUS_"; break;
    default:
      if ((*it >= 'A' && *it <= 'Z') ||
          (*it >= 'a' && *it <= 'z') ||
          (*it >= '0' && *it <= '9'))
        Res += *it;
      else
        Res += "_" + utostr((unsigned) *it) + "_";
    }
  }

  return Res;
}

ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
  ClassInfo *&Entry = TokenClasses[Token];

  if (!Entry) {
    Classes.emplace_front();
    Entry = &Classes.front();
    Entry->Kind = ClassInfo::Token;
    Entry->ClassName = "Token";
    Entry->Name = "MCK_" + getEnumNameForToken(Token);
    Entry->ValueName = Token;
    Entry->PredicateMethod = "<invalid>";
    Entry->RenderMethod = "<invalid>";
    Entry->ParserMethod = "";
    Entry->DiagnosticType = "";
    Entry->IsOptional = false;
    Entry->DefaultMethod = "<invalid>";
  }

  return Entry;
}

ClassInfo *
AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
                                int SubOpIdx) {
  Record *Rec = OI.Rec;
  if (SubOpIdx != -1)
    Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
  return getOperandClass(Rec, SubOpIdx);
}

ClassInfo *
AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
  if (Rec->isSubClassOf("RegisterOperand")) {
    // RegisterOperand may have an associated ParserMatchClass. If it does,
    // use it, else just fall back to the underlying register class.
    const RecordVal *R = Rec->getValue("ParserMatchClass");
    if (!R || !R->getValue())
      PrintFatalError("Record `" + Rec->getName() +
        "' does not have a ParserMatchClass!\n");

    if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
      Record *MatchClass = DI->getDef();
      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
        return CI;
    }

    // No custom match class. Just use the register class.
    Record *ClassRec = Rec->getValueAsDef("RegClass");
    if (!ClassRec)
      PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
                    "' has no associated register class!\n");
    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
      return CI;
    PrintFatalError(Rec->getLoc(), "register class has no class info!");
  }

  if (Rec->isSubClassOf("RegisterClass")) {
    if (ClassInfo *CI = RegisterClassClasses[Rec])
      return CI;
    PrintFatalError(Rec->getLoc(), "register class has no class info!");
  }

  if (!Rec->isSubClassOf("Operand"))
    PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
                  "' does not derive from class Operand!\n");
  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
    return CI;

  PrintFatalError(Rec->getLoc(), "operand has no match class!");
}

struct LessRegisterSet {
  bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
    // std::set<T> defines its own compariso "operator<", but it
    // performs a lexicographical comparison by T's innate comparison
    // for some reason. We don't want non-deterministic pointer
    // comparisons so use this instead.
    return std::lexicographical_compare(LHS.begin(), LHS.end(),
                                        RHS.begin(), RHS.end(),
                                        LessRecordByID());
  }
};

void AsmMatcherInfo::
buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
  const auto &Registers = Target.getRegBank().getRegisters();
  auto &RegClassList = Target.getRegBank().getRegClasses();

  typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;

  // The register sets used for matching.
  RegisterSetSet RegisterSets;

  // Gather the defined sets.
  for (const CodeGenRegisterClass &RC : RegClassList)
    RegisterSets.insert(
        RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));

  // Add any required singleton sets.
  for (Record *Rec : SingletonRegisters) {
    RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
  }

  // Introduce derived sets where necessary (when a register does not determine
  // a unique register set class), and build the mapping of registers to the set
  // they should classify to.
  std::map<Record*, RegisterSet> RegisterMap;
  for (const CodeGenRegister &CGR : Registers) {
    // Compute the intersection of all sets containing this register.
    RegisterSet ContainingSet;

    for (const RegisterSet &RS : RegisterSets) {
      if (!RS.count(CGR.TheDef))
        continue;

      if (ContainingSet.empty()) {
        ContainingSet = RS;
        continue;
      }

      RegisterSet Tmp;
      std::swap(Tmp, ContainingSet);
      std::insert_iterator<RegisterSet> II(ContainingSet,
                                           ContainingSet.begin());
      std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
                            LessRecordByID());
    }

    if (!ContainingSet.empty()) {
      RegisterSets.insert(ContainingSet);
      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
    }
  }

  // Construct the register classes.
  std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
  unsigned Index = 0;
  for (const RegisterSet &RS : RegisterSets) {
    Classes.emplace_front();
    ClassInfo *CI = &Classes.front();
    CI->Kind = ClassInfo::RegisterClass0 + Index;
    CI->ClassName = "Reg" + utostr(Index);
    CI->Name = "MCK_Reg" + utostr(Index);
    CI->ValueName = "";
    CI->PredicateMethod = ""; // unused
    CI->RenderMethod = "addRegOperands";
    CI->Registers = RS;
    // FIXME: diagnostic type.
    CI->DiagnosticType = "";
    CI->IsOptional = false;
    CI->DefaultMethod = ""; // unused
    RegisterSetClasses.insert(std::make_pair(RS, CI));
    ++Index;
  }

  // Find the superclasses; we could compute only the subgroup lattice edges,
  // but there isn't really a point.
  for (const RegisterSet &RS : RegisterSets) {
    ClassInfo *CI = RegisterSetClasses[RS];
    for (const RegisterSet &RS2 : RegisterSets)
      if (RS != RS2 &&
          std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
                        LessRecordByID()))
        CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
  }

  // Name the register classes which correspond to a user defined RegisterClass.
  for (const CodeGenRegisterClass &RC : RegClassList) {
    // Def will be NULL for non-user defined register classes.
    Record *Def = RC.getDef();
    if (!Def)
      continue;
    ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
                                                   RC.getOrder().end())];
    if (CI->ValueName.empty()) {
      CI->ClassName = RC.getName();
      CI->Name = "MCK_" + RC.getName();
      CI->ValueName = RC.getName();
    } else
      CI->ValueName = CI->ValueName + "," + RC.getName();

    RegisterClassClasses.insert(std::make_pair(Def, CI));
  }

  // Populate the map for individual registers.
  for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(),
         ie = RegisterMap.end(); it != ie; ++it)
    RegisterClasses[it->first] = RegisterSetClasses[it->second];

  // Name the register classes which correspond to singleton registers.
  for (Record *Rec : SingletonRegisters) {
    ClassInfo *CI = RegisterClasses[Rec];
    assert(CI && "Missing singleton register class info!");

    if (CI->ValueName.empty()) {
      CI->ClassName = Rec->getName();
      CI->Name = "MCK_" + Rec->getName().str();
      CI->ValueName = Rec->getName();
    } else
      CI->ValueName = CI->ValueName + "," + Rec->getName().str();
  }
}

void AsmMatcherInfo::buildOperandClasses() {
  std::vector<Record*> AsmOperands =
    Records.getAllDerivedDefinitions("AsmOperandClass");

  // Pre-populate AsmOperandClasses map.
  for (Record *Rec : AsmOperands) {
    Classes.emplace_front();
    AsmOperandClasses[Rec] = &Classes.front();
  }

  unsigned Index = 0;
  for (Record *Rec : AsmOperands) {
    ClassInfo *CI = AsmOperandClasses[Rec];
    CI->Kind = ClassInfo::UserClass0 + Index;

    ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
    for (Init *I : Supers->getValues()) {
      DefInit *DI = dyn_cast<DefInit>(I);
      if (!DI) {
        PrintError(Rec->getLoc(), "Invalid super class reference!");
        continue;
      }

      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
      if (!SC)
        PrintError(Rec->getLoc(), "Invalid super class reference!");
      else
        CI->SuperClasses.push_back(SC);
    }
    CI->ClassName = Rec->getValueAsString("Name");
    CI->Name = "MCK_" + CI->ClassName;
    CI->ValueName = Rec->getName();

    // Get or construct the predicate method name.
    Init *PMName = Rec->getValueInit("PredicateMethod");
    if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
      CI->PredicateMethod = SI->getValue();
    } else {
      assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
      CI->PredicateMethod = "is" + CI->ClassName;
    }

    // Get or construct the render method name.
    Init *RMName = Rec->getValueInit("RenderMethod");
    if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
      CI->RenderMethod = SI->getValue();
    } else {
      assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
      CI->RenderMethod = "add" + CI->ClassName + "Operands";
    }

    // Get the parse method name or leave it as empty.
    Init *PRMName = Rec->getValueInit("ParserMethod");
    if (StringInit *SI = dyn_cast<StringInit>(PRMName))
      CI->ParserMethod = SI->getValue();

    // Get the diagnostic type or leave it as empty.
    // Get the parse method name or leave it as empty.
    Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
    if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
      CI->DiagnosticType = SI->getValue();

    Init *IsOptional = Rec->getValueInit("IsOptional");
    if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
      CI->IsOptional = BI->getValue();

    // Get or construct the default method name.
    Init *DMName = Rec->getValueInit("DefaultMethod");
    if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
      CI->DefaultMethod = SI->getValue();
    } else {
      assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
      CI->DefaultMethod = "default" + CI->ClassName + "Operands";
    }

    ++Index;
  }
}

AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
                               CodeGenTarget &target,
                               RecordKeeper &records)
  : Records(records), AsmParser(asmParser), Target(target) {
}

/// buildOperandMatchInfo - Build the necessary information to handle user
/// defined operand parsing methods.
void AsmMatcherInfo::buildOperandMatchInfo() {

  /// Map containing a mask with all operands indices that can be found for
  /// that class inside a instruction.
  typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy;
  OpClassMaskTy OpClassMask;

  for (const auto &MI : Matchables) {
    OpClassMask.clear();

    // Keep track of all operands of this instructions which belong to the
    // same class.
    for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
      const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
      if (Op.Class->ParserMethod.empty())
        continue;
      unsigned &OperandMask = OpClassMask[Op.Class];
      OperandMask |= (1 << i);
    }

    // Generate operand match info for each mnemonic/operand class pair.
    for (const auto &OCM : OpClassMask) {
      unsigned OpMask = OCM.second;
      ClassInfo *CI = OCM.first;
      OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
                                                           OpMask));
    }
  }
}

void AsmMatcherInfo::buildInfo() {
  // Build information about all of the AssemblerPredicates.
  const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
      &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
  SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
                           SubtargetFeaturePairs.end());
#ifndef NDEBUG
  for (const auto &Pair : SubtargetFeatures)
    DEBUG(Pair.second.dump());
#endif // NDEBUG
  assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!");

  bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");

  // Parse the instructions; we need to do this first so that we can gather the
  // singleton register classes.
  SmallPtrSet<Record*, 16> SingletonRegisters;
  unsigned VariantCount = Target.getAsmParserVariantCount();
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
    Record *AsmVariant = Target.getAsmParserVariant(VC);
    StringRef CommentDelimiter =
        AsmVariant->getValueAsString("CommentDelimiter");
    AsmVariantInfo Variant;
    Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
    Variant.TokenizingCharacters =
        AsmVariant->getValueAsString("TokenizingCharacters");
    Variant.SeparatorCharacters =
        AsmVariant->getValueAsString("SeparatorCharacters");
    Variant.BreakCharacters =
        AsmVariant->getValueAsString("BreakCharacters");
    Variant.Name = AsmVariant->getValueAsString("Name");
    Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");

    for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {

      // If the tblgen -match-prefix option is specified (for tblgen hackers),
      // filter the set of instructions we consider.
      if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
        continue;

      // Ignore "codegen only" instructions.
      if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
        continue;

      // Ignore instructions for different instructions
      StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
      if (!V.empty() && V != Variant.Name)
        continue;

      auto II = llvm::make_unique<MatchableInfo>(*CGI);

      II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);

      // Ignore instructions which shouldn't be matched and diagnose invalid
      // instruction definitions with an error.
      if (!II->validate(CommentDelimiter, true))
        continue;

      Matchables.push_back(std::move(II));
    }

    // Parse all of the InstAlias definitions and stick them in the list of
    // matchables.
    std::vector<Record*> AllInstAliases =
      Records.getAllDerivedDefinitions("InstAlias");
    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
      auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i],
                                                       Variant.AsmVariantNo,
                                                       Target);

      // If the tblgen -match-prefix option is specified (for tblgen hackers),
      // filter the set of instruction aliases we consider, based on the target
      // instruction.
      if (!StringRef(Alias->ResultInst->TheDef->getName())
            .startswith( MatchPrefix))
        continue;

      StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
      if (!V.empty() && V != Variant.Name)
        continue;

      auto II = llvm::make_unique<MatchableInfo>(std::move(Alias));

      II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);

      // Validate the alias definitions.
      II->validate(CommentDelimiter, false);

      Matchables.push_back(std::move(II));
    }
  }

  // Build info for the register classes.
  buildRegisterClasses(SingletonRegisters);

  // Build info for the user defined assembly operand classes.
  buildOperandClasses();

  // Build the information about matchables, now that we have fully formed
  // classes.
  std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
  for (auto &II : Matchables) {
    // Parse the tokens after the mnemonic.
    // Note: buildInstructionOperandReference may insert new AsmOperands, so
    // don't precompute the loop bound.
    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
      StringRef Token = Op.Token;

      // Check for singleton registers.
      if (Record *RegRecord = Op.SingletonReg) {
        Op.Class = RegisterClasses[RegRecord];
        assert(Op.Class && Op.Class->Registers.size() == 1 &&
               "Unexpected class for singleton register");
        continue;
      }

      // Check for simple tokens.
      if (Token[0] != '$') {
        Op.Class = getTokenClass(Token);
        continue;
      }

      if (Token.size() > 1 && isdigit(Token[1])) {
        Op.Class = getTokenClass(Token);
        continue;
      }

      // Otherwise this is an operand reference.
      StringRef OperandName;
      if (Token[1] == '{')
        OperandName = Token.substr(2, Token.size() - 3);
      else
        OperandName = Token.substr(1);

      if (II->DefRec.is<const CodeGenInstruction*>())
        buildInstructionOperandReference(II.get(), OperandName, i);
      else
        buildAliasOperandReference(II.get(), OperandName, Op);
    }

    if (II->DefRec.is<const CodeGenInstruction*>()) {
      II->buildInstructionResultOperands();
      // If the instruction has a two-operand alias, build up the
      // matchable here. We'll add them in bulk at the end to avoid
      // confusing this loop.
      StringRef Constraint =
          II->TheDef->getValueAsString("TwoOperandAliasConstraint");
      if (Constraint != "") {
        // Start by making a copy of the original matchable.
        auto AliasII = llvm::make_unique<MatchableInfo>(*II);

        // Adjust it to be a two-operand alias.
        AliasII->formTwoOperandAlias(Constraint);

        // Add the alias to the matchables list.
        NewMatchables.push_back(std::move(AliasII));
      }
    } else
      II->buildAliasResultOperands();
  }
  if (!NewMatchables.empty())
    Matchables.insert(Matchables.end(),
                      std::make_move_iterator(NewMatchables.begin()),
                      std::make_move_iterator(NewMatchables.end()));

  // Process token alias definitions and set up the associated superclass
  // information.
  std::vector<Record*> AllTokenAliases =
    Records.getAllDerivedDefinitions("TokenAlias");
  for (Record *Rec : AllTokenAliases) {
    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
    if (FromClass == ToClass)
      PrintFatalError(Rec->getLoc(),
                    "error: Destination value identical to source value.");
    FromClass->SuperClasses.push_back(ToClass);
  }

  // Reorder classes so that classes precede super classes.
  Classes.sort();

#ifdef EXPENSIVE_CHECKS
  // Verify that the table is sorted and operator < works transitively.
  for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
    for (auto J = I; J != E; ++J) {
      assert(!(*J < *I));
      assert(I == J || !J->isSubsetOf(*I));
    }
  }
#endif
}

/// buildInstructionOperandReference - The specified operand is a reference to a
/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
void AsmMatcherInfo::
buildInstructionOperandReference(MatchableInfo *II,
                                 StringRef OperandName,
                                 unsigned AsmOpIdx) {
  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
  const CGIOperandList &Operands = CGI.Operands;
  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];

  // Map this token to an operand.
  unsigned Idx;
  if (!Operands.hasOperandNamed(OperandName, Idx))
    PrintFatalError(II->TheDef->getLoc(),
                    "error: unable to find operand: '" + OperandName + "'");

  // If the instruction operand has multiple suboperands, but the parser
  // match class for the asm operand is still the default "ImmAsmOperand",
  // then handle each suboperand separately.
  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
    Record *Rec = Operands[Idx].Rec;
    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
      StringRef Token = Op->Token; // save this in case Op gets moved
      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
        MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
        NewAsmOp.SubOpIdx = SI;
        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
      }
      // Replace Op with first suboperand.
      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
      Op->SubOpIdx = 0;
    }
  }

  // Set up the operand class.
  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);

  // If the named operand is tied, canonicalize it to the untied operand.
  // For example, something like:
  //   (outs GPR:$dst), (ins GPR:$src)
  // with an asmstring of
  //   "inc $src"
  // we want to canonicalize to:
  //   "inc $dst"
  // so that we know how to provide the $dst operand when filling in the result.
  int OITied = -1;
  if (Operands[Idx].MINumOperands == 1)
    OITied = Operands[Idx].getTiedRegister();
  if (OITied != -1) {
    // The tied operand index is an MIOperand index, find the operand that
    // contains it.
    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
    OperandName = Operands[Idx.first].Name;
    Op->SubOpIdx = Idx.second;
  }

  Op->SrcOpName = OperandName;
}

/// buildAliasOperandReference - When parsing an operand reference out of the
/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
/// operand reference is by looking it up in the result pattern definition.
void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
                                                StringRef OperandName,
                                                MatchableInfo::AsmOperand &Op) {
  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();

  // Set up the operand class.
  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
    if (CGA.ResultOperands[i].isRecord() &&
        CGA.ResultOperands[i].getName() == OperandName) {
      // It's safe to go with the first one we find, because CodeGenInstAlias
      // validates that all operands with the same name have the same record.
      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
      // Use the match class from the Alias definition, not the
      // destination instruction, as we may have an immediate that's
      // being munged by the match class.
      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
                                 Op.SubOpIdx);
      Op.SrcOpName = OperandName;
      return;
    }

  PrintFatalError(II->TheDef->getLoc(),
                  "error: unable to find operand: '" + OperandName + "'");
}

void MatchableInfo::buildInstructionResultOperands() {
  const CodeGenInstruction *ResultInst = getResultInst();

  // Loop over all operands of the result instruction, determining how to
  // populate them.
  for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
    // If this is a tied operand, just copy from the previously handled operand.
    int TiedOp = -1;
    if (OpInfo.MINumOperands == 1)
      TiedOp = OpInfo.getTiedRegister();
    if (TiedOp != -1) {
      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
      continue;
    }

    // Find out what operand from the asmparser this MCInst operand comes from.
    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
    if (OpInfo.Name.empty() || SrcOperand == -1) {
      // This may happen for operands that are tied to a suboperand of a
      // complex operand.  Simply use a dummy value here; nobody should
      // use this operand slot.
      // FIXME: The long term goal is for the MCOperand list to not contain
      // tied operands at all.
      ResOperands.push_back(ResOperand::getImmOp(0));
      continue;
    }

    // Check if the one AsmOperand populates the entire operand.
    unsigned NumOperands = OpInfo.MINumOperands;
    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
      continue;
    }

    // Add a separate ResOperand for each suboperand.
    for (unsigned AI = 0; AI < NumOperands; ++AI) {
      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
             "unexpected AsmOperands for suboperands");
      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
    }
  }
}

void MatchableInfo::buildAliasResultOperands() {
  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
  const CodeGenInstruction *ResultInst = getResultInst();

  // Loop over all operands of the result instruction, determining how to
  // populate them.
  unsigned AliasOpNo = 0;
  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];

    // If this is a tied operand, just copy from the previously handled operand.
    int TiedOp = -1;
    if (OpInfo->MINumOperands == 1)
      TiedOp = OpInfo->getTiedRegister();
    if (TiedOp != -1) {
      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
      continue;
    }

    // Handle all the suboperands for this operand.
    const std::string &OpName = OpInfo->Name;
    for ( ; AliasOpNo <  LastOpNo &&
            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;

      // Find out what operand from the asmparser that this MCInst operand
      // comes from.
      switch (CGA.ResultOperands[AliasOpNo].Kind) {
      case CodeGenInstAlias::ResultOperand::K_Record: {
        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
        int SrcOperand = findAsmOperand(Name, SubIdx);
        if (SrcOperand == -1)
          PrintFatalError(TheDef->getLoc(), "Instruction '" +
                        TheDef->getName() + "' has operand '" + OpName +
                        "' that doesn't appear in asm string!");
        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
                                                        NumOperands));
        break;
      }
      case CodeGenInstAlias::ResultOperand::K_Imm: {
        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
        break;
      }
      case CodeGenInstAlias::ResultOperand::K_Reg: {
        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
        ResOperands.push_back(ResOperand::getRegOp(Reg));
        break;
      }
      }
    }
  }
}

static unsigned
getConverterOperandID(const std::string &Name,
                      SmallSetVector<CachedHashString, 16> &Table,
                      bool &IsNew) {
  IsNew = Table.insert(CachedHashString(Name));

  unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();

  assert(ID < Table.size());

  return ID;
}

static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
                             std::vector<std::unique_ptr<MatchableInfo>> &Infos,
                             bool HasMnemonicFirst, bool HasOptionalOperands,
                             raw_ostream &OS) {
  SmallSetVector<CachedHashString, 16> OperandConversionKinds;
  SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
  std::vector<std::vector<uint8_t> > ConversionTable;
  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.

  // TargetOperandClass - This is the target's operand class, like X86Operand.
  std::string TargetOperandClass = Target.getName().str() + "Operand";

  // Write the convert function to a separate stream, so we can drop it after
  // the enum. We'll build up the conversion handlers for the individual
  // operand types opportunistically as we encounter them.
  std::string ConvertFnBody;
  raw_string_ostream CvtOS(ConvertFnBody);
  // Start the unified conversion function.
  if (HasOptionalOperands) {
    CvtOS << "void " << Target.getName() << ClassName << "::\n"
          << "convertToMCInst(unsigned Kind, MCInst &Inst, "
          << "unsigned Opcode,\n"
          << "                const OperandVector &Operands,\n"
          << "                const SmallBitVector &OptionalOperandsMask) {\n";
  } else {
    CvtOS << "void " << Target.getName() << ClassName << "::\n"
          << "convertToMCInst(unsigned Kind, MCInst &Inst, "
          << "unsigned Opcode,\n"
          << "                const OperandVector &Operands) {\n";
  }
  CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
  CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
  if (HasOptionalOperands) {
    CvtOS << "  unsigned NumDefaults = 0;\n";
  }
  CvtOS << "  unsigned OpIdx;\n";
  CvtOS << "  Inst.setOpcode(Opcode);\n";
  CvtOS << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n";
  if (HasOptionalOperands) {
    CvtOS << "    OpIdx = *(p + 1) - NumDefaults;\n";
  } else {
    CvtOS << "    OpIdx = *(p + 1);\n";
  }
  CvtOS << "    switch (*p) {\n";
  CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
  CvtOS << "    case CVT_Reg:\n";
  CvtOS << "      static_cast<" << TargetOperandClass
        << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
  CvtOS << "      break;\n";
  CvtOS << "    case CVT_Tied:\n";
  CvtOS << "      Inst.addOperand(Inst.getOperand(OpIdx));\n";
  CvtOS << "      break;\n";

  std::string OperandFnBody;
  raw_string_ostream OpOS(OperandFnBody);
  // Start the operand number lookup function.
  OpOS << "void " << Target.getName() << ClassName << "::\n"
       << "convertToMapAndConstraints(unsigned Kind,\n";
  OpOS.indent(27);
  OpOS << "const OperandVector &Operands) {\n"
       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
       << "  unsigned NumMCOperands = 0;\n"
       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
       << "    switch (*p) {\n"
       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
       << "    case CVT_Reg:\n"
       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
       << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
       << "      ++NumMCOperands;\n"
       << "      break;\n"
       << "    case CVT_Tied:\n"
       << "      ++NumMCOperands;\n"
       << "      break;\n";

  // Pre-populate the operand conversion kinds with the standard always
  // available entries.
  OperandConversionKinds.insert(CachedHashString("CVT_Done"));
  OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
  OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
  enum { CVT_Done, CVT_Reg, CVT_Tied };

  for (auto &II : Infos) {
    // Check if we have a custom match function.
    StringRef AsmMatchConverter =
        II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
    if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
      std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
      II->ConversionFnKind = Signature;

      // Check if we have already generated this signature.
      if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
        continue;

      // Remember this converter for the kind enum.
      unsigned KindID = OperandConversionKinds.size();
      OperandConversionKinds.insert(
          CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));

      // Add the converter row for this instruction.
      ConversionTable.emplace_back();
      ConversionTable.back().push_back(KindID);
      ConversionTable.back().push_back(CVT_Done);

      // Add the handler to the conversion driver function.
      CvtOS << "    case CVT_"
            << getEnumNameForToken(AsmMatchConverter) << ":\n"
            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
            << "      break;\n";

      // FIXME: Handle the operand number lookup for custom match functions.
      continue;
    }

    // Build the conversion function signature.
    std::string Signature = "Convert";

    std::vector<uint8_t> ConversionRow;

    // Compute the convert enum and the case body.
    MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );

    for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
      const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];

      // Generate code to populate each result operand.
      switch (OpInfo.Kind) {
      case MatchableInfo::ResOperand::RenderAsmOperand: {
        // This comes from something we parsed.
        const MatchableInfo::AsmOperand &Op =
          II->AsmOperands[OpInfo.AsmOperandNum];

        // Registers are always converted the same, don't duplicate the
        // conversion function based on them.
        Signature += "__";
        std::string Class;
        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
        Signature += Class;
        Signature += utostr(OpInfo.MINumOperands);
        Signature += "_" + itostr(OpInfo.AsmOperandNum);

        // Add the conversion kind, if necessary, and get the associated ID
        // the index of its entry in the vector).
        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
                                     Op.Class->RenderMethod);
        if (Op.Class->IsOptional) {
          // For optional operands we must also care about DefaultMethod
          assert(HasOptionalOperands);
          Name += "_" + Op.Class->DefaultMethod;
        }
        Name = getEnumNameForToken(Name);

        bool IsNewConverter = false;
        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
                                            IsNewConverter);

        // Add the operand entry to the instruction kind conversion row.
        ConversionRow.push_back(ID);
        ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);

        if (!IsNewConverter)
          break;

        // This is a new operand kind. Add a handler for it to the
        // converter driver.
        CvtOS << "    case " << Name << ":\n";
        if (Op.Class->IsOptional) {
          // If optional operand is not present in actual instruction then we
          // should call its DefaultMethod before RenderMethod
          assert(HasOptionalOperands);
          CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
                << "        " << Op.Class->DefaultMethod << "()"
                << "->" << Op.Class->RenderMethod << "(Inst, "
                << OpInfo.MINumOperands << ");\n"
                << "        ++NumDefaults;\n"
                << "      } else {\n"
                << "        static_cast<" << TargetOperandClass
                << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
                << "(Inst, " << OpInfo.MINumOperands << ");\n"
                << "      }\n";
        } else {
          CvtOS << "      static_cast<" << TargetOperandClass
                << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod
                << "(Inst, " << OpInfo.MINumOperands << ");\n";
        }
        CvtOS << "      break;\n";

        // Add a handler for the operand number lookup.
        OpOS << "    case " << Name << ":\n"
             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";

        if (Op.Class->isRegisterClass())
          OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
        else
          OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
        OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
             << "      break;\n";
        break;
      }
      case MatchableInfo::ResOperand::TiedOperand: {
        // If this operand is tied to a previous one, just copy the MCInst
        // operand from the earlier one.We can only tie single MCOperand values.
        assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
        unsigned TiedOp = OpInfo.TiedOperandNum;
        assert(i > TiedOp && "Tied operand precedes its target!");
        Signature += "__Tie" + utostr(TiedOp);
        ConversionRow.push_back(CVT_Tied);
        ConversionRow.push_back(TiedOp);
        break;
      }
      case MatchableInfo::ResOperand::ImmOperand: {
        int64_t Val = OpInfo.ImmVal;
        std::string Ty = "imm_" + itostr(Val);
        Ty = getEnumNameForToken(Ty);
        Signature += "__" + Ty;

        std::string Name = "CVT_" + Ty;
        bool IsNewConverter = false;
        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
                                            IsNewConverter);
        // Add the operand entry to the instruction kind conversion row.
        ConversionRow.push_back(ID);
        ConversionRow.push_back(0);

        if (!IsNewConverter)
          break;

        CvtOS << "    case " << Name << ":\n"
              << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
              << "      break;\n";

        OpOS << "    case " << Name << ":\n"
             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
             << "      ++NumMCOperands;\n"
             << "      break;\n";
        break;
      }
      case MatchableInfo::ResOperand::RegOperand: {
        std::string Reg, Name;
        if (!OpInfo.Register) {
          Name = "reg0";
          Reg = "0";
        } else {
          Reg = getQualifiedName(OpInfo.Register);
          Name = "reg" + OpInfo.Register->getName().str();
        }
        Signature += "__" + Name;
        Name = "CVT_" + Name;
        bool IsNewConverter = false;
        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
                                            IsNewConverter);
        // Add the operand entry to the instruction kind conversion row.
        ConversionRow.push_back(ID);
        ConversionRow.push_back(0);

        if (!IsNewConverter)
          break;
        CvtOS << "    case " << Name << ":\n"
              << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
              << "      break;\n";

        OpOS << "    case " << Name << ":\n"
             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
             << "      ++NumMCOperands;\n"
             << "      break;\n";
      }
      }
    }

    // If there were no operands, add to the signature to that effect
    if (Signature == "Convert")
      Signature += "_NoOperands";

    II->ConversionFnKind = Signature;

    // Save the signature. If we already have it, don't add a new row
    // to the table.
    if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
      continue;

    // Add the row to the table.
    ConversionTable.push_back(std::move(ConversionRow));
  }

  // Finish up the converter driver function.
  CvtOS << "    }\n  }\n}\n\n";

  // Finish up the operand number lookup function.
  OpOS << "    }\n  }\n}\n\n";

  OS << "namespace {\n";

  // Output the operand conversion kind enum.
  OS << "enum OperatorConversionKind {\n";
  for (const auto &Converter : OperandConversionKinds)
    OS << "  " << Converter << ",\n";
  OS << "  CVT_NUM_CONVERTERS\n";
  OS << "};\n\n";

  // Output the instruction conversion kind enum.
  OS << "enum InstructionConversionKind {\n";
  for (const auto &Signature : InstructionConversionKinds)
    OS << "  " << Signature << ",\n";
  OS << "  CVT_NUM_SIGNATURES\n";
  OS << "};\n\n";

  OS << "} // end anonymous namespace\n\n";

  // Output the conversion table.
  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
     << MaxRowLength << "] = {\n";

  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
    OS << "  // " << InstructionConversionKinds[Row] << "\n";
    OS << "  { ";
    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
    OS << "CVT_Done },\n";
  }

  OS << "};\n\n";

  // Spit out the conversion driver function.
  OS << CvtOS.str();

  // Spit out the operand number lookup function.
  OS << OpOS.str();
}

/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
static void emitMatchClassEnumeration(CodeGenTarget &Target,
                                      std::forward_list<ClassInfo> &Infos,
                                      raw_ostream &OS) {
  OS << "namespace {\n\n";

  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
     << "/// instruction matching.\n";
  OS << "enum MatchClassKind {\n";
  OS << "  InvalidMatchClass = 0,\n";
  OS << "  OptionalMatchClass = 1,\n";
  for (const auto &CI : Infos) {
    OS << "  " << CI.Name << ", // ";
    if (CI.Kind == ClassInfo::Token) {
      OS << "'" << CI.ValueName << "'\n";
    } else if (CI.isRegisterClass()) {
      if (!CI.ValueName.empty())
        OS << "register class '" << CI.ValueName << "'\n";
      else
        OS << "derived register class\n";
    } else {
      OS << "user defined class '" << CI.ValueName << "'\n";
    }
  }
  OS << "  NumMatchClassKinds\n";
  OS << "};\n\n";

  OS << "}\n\n";
}

/// emitValidateOperandClass - Emit the function to validate an operand class.
static void emitValidateOperandClass(AsmMatcherInfo &Info,
                                     raw_ostream &OS) {
  OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
     << "MatchClassKind Kind) {\n";
  OS << "  " << Info.Target.getName() << "Operand &Operand = ("
     << Info.Target.getName() << "Operand&)GOp;\n";

  // The InvalidMatchClass is not to match any operand.
  OS << "  if (Kind == InvalidMatchClass)\n";
  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";

  // Check for Token operands first.
  // FIXME: Use a more specific diagnostic type.
  OS << "  if (Operand.isToken())\n";
  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
     << "             MCTargetAsmParser::Match_Success :\n"
     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";

  // Check the user classes. We don't care what order since we're only
  // actually matching against one of them.
  OS << "  switch (Kind) {\n"
        "  default: break;\n";
  for (const auto &CI : Info.Classes) {
    if (!CI.isUserClass())
      continue;

    OS << "  // '" << CI.ClassName << "' class\n";
    OS << "  case " << CI.Name << ":\n";
    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
    OS << "      return MCTargetAsmParser::Match_Success;\n";
    if (!CI.DiagnosticType.empty())
      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
         << CI.DiagnosticType << ";\n";
    else
      OS << "    break;\n";
  }
  OS << "  } // end switch (Kind)\n\n";

  // Check for register operands, including sub-classes.
  OS << "  if (Operand.isReg()) {\n";
  OS << "    MatchClassKind OpKind;\n";
  OS << "    switch (Operand.getReg()) {\n";
  OS << "    default: OpKind = InvalidMatchClass; break;\n";
  for (const auto &RC : Info.RegisterClasses)
    OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
       << RC.first->getName() << ": OpKind = " << RC.second->Name
       << "; break;\n";
  OS << "    }\n";
  OS << "    return isSubclass(OpKind, Kind) ? "
     << "MCTargetAsmParser::Match_Success :\n                             "
     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";

  // Generic fallthrough match failure case for operands that don't have
  // specialized diagnostic types.
  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
  OS << "}\n\n";
}

/// emitIsSubclass - Emit the subclass predicate function.
static void emitIsSubclass(CodeGenTarget &Target,
                           std::forward_list<ClassInfo> &Infos,
                           raw_ostream &OS) {
  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
  OS << "  if (A == B)\n";
  OS << "    return true;\n\n";

  bool EmittedSwitch = false;
  for (const auto &A : Infos) {
    std::vector<StringRef> SuperClasses;
    if (A.IsOptional)
      SuperClasses.push_back("OptionalMatchClass");
    for (const auto &B : Infos) {
      if (&A != &B && A.isSubsetOf(B))
        SuperClasses.push_back(B.Name);
    }

    if (SuperClasses.empty())
      continue;

    // If this is the first SuperClass, emit the switch header.
    if (!EmittedSwitch) {
      OS << "  switch (A) {\n";
      OS << "  default:\n";
      OS << "    return false;\n";
      EmittedSwitch = true;
    }

    OS << "\n  case " << A.Name << ":\n";

    if (SuperClasses.size() == 1) {
      OS << "    return B == " << SuperClasses.back() << ";\n";
      continue;
    }

    if (!SuperClasses.empty()) {
      OS << "    switch (B) {\n";
      OS << "    default: return false;\n";
      for (StringRef SC : SuperClasses)
        OS << "    case " << SC << ": return true;\n";
      OS << "    }\n";
    } else {
      // No case statement to emit
      OS << "    return false;\n";
    }
  }

  // If there were case statements emitted into the string stream write the
  // default.
  if (EmittedSwitch)
    OS << "  }\n";
  else
    OS << "  return false;\n";

  OS << "}\n\n";
}

/// emitMatchTokenString - Emit the function to match a token string to the
/// appropriate match class value.
static void emitMatchTokenString(CodeGenTarget &Target,
                                 std::forward_list<ClassInfo> &Infos,
                                 raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringMatcher::StringPair> Matches;
  for (const auto &CI : Infos) {
    if (CI.Kind == ClassInfo::Token)
      Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
  }

  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";

  StringMatcher("Name", Matches, OS).Emit();

  OS << "  return InvalidMatchClass;\n";
  OS << "}\n\n";
}

/// emitMatchRegisterName - Emit the function to match a string to the target
/// specific register enum.
static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
                                  raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringMatcher::StringPair> Matches;
  const auto &Regs = Target.getRegBank().getRegisters();
  for (const CodeGenRegister &Reg : Regs) {
    if (Reg.TheDef->getValueAsString("AsmName").empty())
      continue;

    Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"),
                         "return " + utostr(Reg.EnumValue) + ";");
  }

  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";

  StringMatcher("Name", Matches, OS).Emit();

  OS << "  return 0;\n";
  OS << "}\n\n";
}

/// Emit the function to match a string to the target
/// specific register enum.
static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
                                     raw_ostream &OS) {
  // Construct the match list.
  std::vector<StringMatcher::StringPair> Matches;
  const auto &Regs = Target.getRegBank().getRegisters();
  for (const CodeGenRegister &Reg : Regs) {

    auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");

    for (auto AltName : AltNames) {
      AltName = StringRef(AltName).trim();

      // don't handle empty alternative names
      if (AltName.empty())
        continue;

      Matches.emplace_back(AltName,
                           "return " + utostr(Reg.EnumValue) + ";");
    }
  }

  OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";

  StringMatcher("Name", Matches, OS).Emit();

  OS << "  return 0;\n";
  OS << "}\n\n";
}

/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
  // Get the set of diagnostic types from all of the operand classes.
  std::set<StringRef> Types;
  for (const auto &OpClassEntry : Info.AsmOperandClasses) {
    if (!OpClassEntry.second->DiagnosticType.empty())
      Types.insert(OpClassEntry.second->DiagnosticType);
  }

  if (Types.empty()) return;

  // Now emit the enum entries.
  for (StringRef Type : Types)
    OS << "  Match_" << Type << ",\n";
  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
}

/// emitGetSubtargetFeatureName - Emit the helper function to get the
/// user-level name for a subtarget feature.
static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
  OS << "// User-level names for subtarget features that participate in\n"
     << "// instruction matching.\n"
     << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
  if (!Info.SubtargetFeatures.empty()) {
    OS << "  switch(Val) {\n";
    for (const auto &SF : Info.SubtargetFeatures) {
      const SubtargetFeatureInfo &SFI = SF.second;
      // FIXME: Totally just a placeholder name to get the algorithm working.
      OS << "  case " << SFI.getEnumName() << ": return \""
         << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
    }
    OS << "  default: return \"(unknown)\";\n";
    OS << "  }\n";
  } else {
    // Nothing to emit, so skip the switch
    OS << "  return \"(unknown)\";\n";
  }
  OS << "}\n\n";
}

static std::string GetAliasRequiredFeatures(Record *R,
                                            const AsmMatcherInfo &Info) {
  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
  std::string Result;
  unsigned NumFeatures = 0;
  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
    const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);

    if (!F)
      PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
                    "' is not marked as an AssemblerPredicate!");

    if (NumFeatures)
      Result += '|';

    Result += F->getEnumName();
    ++NumFeatures;
  }

  if (NumFeatures > 1)
    Result = '(' + Result + ')';
  return Result;
}

static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
                                     std::vector<Record*> &Aliases,
                                     unsigned Indent = 0,
                                  StringRef AsmParserVariantName = StringRef()){
  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
  // iteration order of the map is stable.
  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;

  for (Record *R : Aliases) {
    // FIXME: Allow AssemblerVariantName to be a comma separated list.
    StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
    if (AsmVariantName != AsmParserVariantName)
      continue;
    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
  }
  if (AliasesFromMnemonic.empty())
    return;

  // Process each alias a "from" mnemonic at a time, building the code executed
  // by the string remapper.
  std::vector<StringMatcher::StringPair> Cases;
  for (const auto &AliasEntry : AliasesFromMnemonic) {
    const std::vector<Record*> &ToVec = AliasEntry.second;

    // Loop through each alias and emit code that handles each case.  If there
    // are two instructions without predicates, emit an error.  If there is one,
    // emit it last.
    std::string MatchCode;
    int AliasWithNoPredicate = -1;

    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
      Record *R = ToVec[i];
      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);

      // If this unconditionally matches, remember it for later and diagnose
      // duplicates.
      if (FeatureMask.empty()) {
        if (AliasWithNoPredicate != -1) {
          // We can't have two aliases from the same mnemonic with no predicate.
          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
                     "two MnemonicAliases with the same 'from' mnemonic!");
          PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
        }

        AliasWithNoPredicate = i;
        continue;
      }
      if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
        PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");

      if (!MatchCode.empty())
        MatchCode += "else ";
      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
      MatchCode += "  Mnemonic = \"";
      MatchCode += R->getValueAsString("ToMnemonic");
      MatchCode += "\";\n";
    }

    if (AliasWithNoPredicate != -1) {
      Record *R = ToVec[AliasWithNoPredicate];
      if (!MatchCode.empty())
        MatchCode += "else\n  ";
      MatchCode += "Mnemonic = \"";
      MatchCode += R->getValueAsString("ToMnemonic");
      MatchCode += "\";\n";
    }

    MatchCode += "return;";

    Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
  }
  StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
}

/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
/// emit a function for them and return true, otherwise return false.
static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
                                CodeGenTarget &Target) {
  // Ignore aliases when match-prefix is set.
  if (!MatchPrefix.empty())
    return false;

  std::vector<Record*> Aliases =
    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
  if (Aliases.empty()) return false;

  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
    "uint64_t Features, unsigned VariantID) {\n";
  OS << "  switch (VariantID) {\n";
  unsigned VariantCount = Target.getAsmParserVariantCount();
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
    Record *AsmVariant = Target.getAsmParserVariant(VC);
    int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
    StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
    OS << "    case " << AsmParserVariantNo << ":\n";
    emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
                             AsmParserVariantName);
    OS << "    break;\n";
  }
  OS << "  }\n";

  // Emit aliases that apply to all variants.
  emitMnemonicAliasVariant(OS, Info, Aliases);

  OS << "}\n\n";

  return true;
}

static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
                              const AsmMatcherInfo &Info, StringRef ClassName,
                              StringToOffsetTable &StringTable,
                              unsigned MaxMnemonicIndex, bool HasMnemonicFirst) {
  unsigned MaxMask = 0;
  for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
    MaxMask |= OMI.OperandMask;
  }

  // Emit the static custom operand parsing table;
  OS << "namespace {\n";
  OS << "  struct OperandMatchEntry {\n";
  OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
               << " RequiredFeatures;\n";
  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
               << " Mnemonic;\n";
  OS << "    " << getMinimalTypeForRange(std::distance(
                      Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
  OS << "    " << getMinimalTypeForRange(MaxMask)
               << " OperandMask;\n\n";
  OS << "    StringRef getMnemonic() const {\n";
  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
  OS << "                       MnemonicTable[Mnemonic]);\n";
  OS << "    }\n";
  OS << "  };\n\n";

  OS << "  // Predicate for searching for an opcode.\n";
  OS << "  struct LessOpcodeOperand {\n";
  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
  OS << "      return LHS.getMnemonic()  < RHS;\n";
  OS << "    }\n";
  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
  OS << "      return LHS < RHS.getMnemonic();\n";
  OS << "    }\n";
  OS << "    bool operator()(const OperandMatchEntry &LHS,";
  OS << " const OperandMatchEntry &RHS) {\n";
  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
  OS << "    }\n";
  OS << "  };\n";

  OS << "} // end anonymous namespace.\n\n";

  OS << "static const OperandMatchEntry OperandMatchTable["
     << Info.OperandMatchInfo.size() << "] = {\n";

  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
  for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
    const MatchableInfo &II = *OMI.MI;

    OS << "  { ";

    // Write the required features mask.
    if (!II.RequiredFeatures.empty()) {
      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
        if (i) OS << "|";
        OS << II.RequiredFeatures[i]->getEnumName();
      }
    } else
      OS << "0";

    // Store a pascal-style length byte in the mnemonic.
    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
       << " /* " << II.Mnemonic << " */, ";

    OS << OMI.CI->Name;

    OS << ", " << OMI.OperandMask;
    OS << " /* ";
    bool printComma = false;
    for (int i = 0, e = 31; i !=e; ++i)
      if (OMI.OperandMask & (1 << i)) {
        if (printComma)
          OS << ", ";
        OS << i;
        printComma = true;
      }
    OS << " */";

    OS << " },\n";
  }
  OS << "};\n\n";

  // Emit the operand class switch to call the correct custom parser for
  // the found operand class.
  OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
     << "tryCustomParseOperand(OperandVector"
     << " &Operands,\n                      unsigned MCK) {\n\n"
     << "  switch(MCK) {\n";

  for (const auto &CI : Info.Classes) {
    if (CI.ParserMethod.empty())
      continue;
    OS << "  case " << CI.Name << ":\n"
       << "    return " << CI.ParserMethod << "(Operands);\n";
  }

  OS << "  default:\n";
  OS << "    return MatchOperand_NoMatch;\n";
  OS << "  }\n";
  OS << "  return MatchOperand_NoMatch;\n";
  OS << "}\n\n";

  // Emit the static custom operand parser. This code is very similar with
  // the other matcher. Also use MatchResultTy here just in case we go for
  // a better error handling.
  OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
     << "MatchOperandParserImpl(OperandVector"
     << " &Operands,\n                       StringRef Mnemonic) {\n";

  // Emit code to get the available features.
  OS << "  // Get the current feature set.\n";
  OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";

  OS << "  // Get the next operand index.\n";
  OS << "  unsigned NextOpNum = Operands.size()"
     << (HasMnemonicFirst ? " - 1" : "") << ";\n";

  // Emit code to search the table.
  OS << "  // Search the table.\n";
  if (HasMnemonicFirst) {
    OS << "  auto MnemonicRange =\n";
    OS << "    std::equal_range(std::begin(OperandMatchTable), "
          "std::end(OperandMatchTable),\n";
    OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
  } else {
    OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
          " std::end(OperandMatchTable));\n";
    OS << "  if (!Mnemonic.empty())\n";
    OS << "    MnemonicRange =\n";
    OS << "      std::equal_range(std::begin(OperandMatchTable), "
          "std::end(OperandMatchTable),\n";
    OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
  }

  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
  OS << "    return MatchOperand_NoMatch;\n\n";

  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";

  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";

  // Emit check that the required features are available.
  OS << "    // check if the available features match\n";
  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
     << "!= it->RequiredFeatures) {\n";
  OS << "      continue;\n";
  OS << "    }\n\n";

  // Emit check to ensure the operand number matches.
  OS << "    // check if the operand in question has a custom parser.\n";
  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
  OS << "      continue;\n\n";

  // Emit call to the custom parser method
  OS << "    // call custom parse method to handle the operand\n";
  OS << "    OperandMatchResultTy Result = ";
  OS << "tryCustomParseOperand(Operands, it->Class);\n";
  OS << "    if (Result != MatchOperand_NoMatch)\n";
  OS << "      return Result;\n";
  OS << "  }\n\n";

  OS << "  // Okay, we had no match.\n";
  OS << "  return MatchOperand_NoMatch;\n";
  OS << "}\n\n";
}

static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
                                     unsigned VariantCount) {
  OS << "std::string " << Target.getName() << "MnemonicSpellCheck(StringRef S, uint64_t FBS) {\n";
  if (!VariantCount)
    OS <<  "  return \"\";";
  else {
    OS << "  const unsigned MaxEditDist = 2;\n";
    OS << "  std::vector<StringRef> Candidates;\n";
    OS << "  StringRef Prev = \"\";\n";
    OS << "  auto End = std::end(MatchTable0);\n";
    OS << "\n";
    OS << "  for (auto I = std::begin(MatchTable0); I < End; I++) {\n";
    OS << "    // Ignore unsupported instructions.\n";
    OS << "    if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n";
    OS << "      continue;\n";
    OS << "\n";
    OS << "    StringRef T = I->getMnemonic();\n";
    OS << "    // Avoid recomputing the edit distance for the same string.\n";
    OS << "    if (T.equals(Prev))\n";
    OS << "      continue;\n";
    OS << "\n";
    OS << "    Prev = T;\n";
    OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
    OS << "    if (Dist <= MaxEditDist)\n";
    OS << "      Candidates.push_back(T);\n";
    OS << "  }\n";
    OS << "\n";
    OS << "  if (Candidates.empty())\n";
    OS << "    return \"\";\n";
    OS << "\n";
    OS << "  std::string Res = \", did you mean: \";\n";
    OS << "  unsigned i = 0;\n";
    OS << "  for( ; i < Candidates.size() - 1; i++)\n";
    OS << "    Res += Candidates[i].str() + \", \";\n";
    OS << "  return Res + Candidates[i].str() + \"?\";\n";
  }
  OS << "}\n";
  OS << "\n";
}


void AsmMatcherEmitter::run(raw_ostream &OS) {
  CodeGenTarget Target(Records);
  Record *AsmParser = Target.getAsmParser();
  StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");

  // Compute the information on the instructions to match.
  AsmMatcherInfo Info(AsmParser, Target, Records);
  Info.buildInfo();

  // Sort the instruction table using the partial order on classes. We use
  // stable_sort to ensure that ambiguous instructions are still
  // deterministically ordered.
  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
                   [](const std::unique_ptr<MatchableInfo> &a,
                      const std::unique_ptr<MatchableInfo> &b){
                     return *a < *b;});

#ifdef EXPENSIVE_CHECKS
  // Verify that the table is sorted and operator < works transitively.
  for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
       ++I) {
    for (auto J = I; J != E; ++J) {
      assert(!(**J < **I));
    }
  }
#endif

  DEBUG_WITH_TYPE("instruction_info", {
      for (const auto &MI : Info.Matchables)
        MI->dump();
    });

  // Check for ambiguous matchables.
  DEBUG_WITH_TYPE("ambiguous_instrs", {
    unsigned NumAmbiguous = 0;
    for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
         ++I) {
      for (auto J = std::next(I); J != E; ++J) {
        const MatchableInfo &A = **I;
        const MatchableInfo &B = **J;

        if (A.couldMatchAmbiguouslyWith(B)) {
          errs() << "warning: ambiguous matchables:\n";
          A.dump();
          errs() << "\nis incomparable with:\n";
          B.dump();
          errs() << "\n\n";
          ++NumAmbiguous;
        }
      }
    }
    if (NumAmbiguous)
      errs() << "warning: " << NumAmbiguous
             << " ambiguous matchables!\n";
  });

  // Compute the information on the custom operand parsing.
  Info.buildOperandMatchInfo();

  bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
  bool HasOptionalOperands = Info.hasOptionalOperands();

  // Write the output.

  // Information for the class declaration.
  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
  OS << "#undef GET_ASSEMBLER_HEADER\n";
  OS << "  // This should be included into the middle of the declaration of\n";
  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
  OS << "  uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n";
  if (HasOptionalOperands) {
    OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
       << "unsigned Opcode,\n"
       << "                       const OperandVector &Operands,\n"
       << "                       const SmallBitVector &OptionalOperandsMask);\n";
  } else {
    OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
       << "unsigned Opcode,\n"
       << "                       const OperandVector &Operands);\n";
  }
  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
  OS << "           const OperandVector &Operands) override;\n";
  OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
     << "                                MCInst &Inst,\n"
     << "                                uint64_t &ErrorInfo,"
     << " bool matchingInlineAsm,\n"
     << "                                unsigned VariantID = 0);\n";

  if (!Info.OperandMatchInfo.empty()) {
    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
    OS << "    OperandVector &Operands,\n";
    OS << "    StringRef Mnemonic);\n";

    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
    OS << "    OperandVector &Operands,\n";
    OS << "    unsigned MCK);\n\n";
  }

  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";

  // Emit the operand match diagnostic enum names.
  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
  emitOperandDiagnosticTypes(Info, OS);
  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";

  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
  OS << "#undef GET_REGISTER_MATCHER\n\n";

  // Emit the subtarget feature enumeration.
  SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(
      Info.SubtargetFeatures, OS);

  // Emit the function to match a register name to number.
  // This should be omitted for Mips target
  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
    emitMatchRegisterName(Target, AsmParser, OS);

  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
    emitMatchRegisterAltName(Target, AsmParser, OS);

  OS << "#endif // GET_REGISTER_MATCHER\n\n";

  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";

  // Generate the helper function to get the names for subtarget features.
  emitGetSubtargetFeatureName(Info, OS);

  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";

  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";

  // Generate the function that remaps for mnemonic aliases.
  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);

  // Generate the convertToMCInst function to convert operands into an MCInst.
  // Also, generate the convertToMapAndConstraints function for MS-style inline
  // assembly.  The latter doesn't actually generate a MCInst.
  emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst,
                   HasOptionalOperands, OS);

  // Emit the enumeration for classes which participate in matching.
  emitMatchClassEnumeration(Target, Info.Classes, OS);

  // Emit the routine to match token strings to their match class.
  emitMatchTokenString(Target, Info.Classes, OS);

  // Emit the subclass predicate routine.
  emitIsSubclass(Target, Info.Classes, OS);

  // Emit the routine to validate an operand against a match class.
  emitValidateOperandClass(Info, OS);

  // Emit the available features compute function.
  SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
      Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
      Info.SubtargetFeatures, OS);

  StringToOffsetTable StringTable;

  size_t MaxNumOperands = 0;
  unsigned MaxMnemonicIndex = 0;
  bool HasDeprecation = false;
  for (const auto &MI : Info.Matchables) {
    MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
    HasDeprecation |= MI->HasDeprecation;

    // Store a pascal-style length byte in the mnemonic.
    std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
  }

  OS << "static const char *const MnemonicTable =\n";
  StringTable.EmitString(OS);
  OS << ";\n\n";

  // Emit the static match table; unused classes get initialized to 0 which is
  // guaranteed to be InvalidMatchClass.
  //
  // FIXME: We can reduce the size of this table very easily. First, we change
  // it so that store the kinds in separate bit-fields for each index, which
  // only needs to be the max width used for classes at that index (we also need
  // to reject based on this during classification). If we then make sure to
  // order the match kinds appropriately (putting mnemonics last), then we
  // should only end up using a few bits for each class, especially the ones
  // following the mnemonic.
  OS << "namespace {\n";
  OS << "  struct MatchEntry {\n";
  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
               << " Mnemonic;\n";
  OS << "    uint16_t Opcode;\n";
  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
               << " ConvertFn;\n";
  OS << "    " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size())
               << " RequiredFeatures;\n";
  OS << "    " << getMinimalTypeForRange(
                      std::distance(Info.Classes.begin(), Info.Classes.end()))
     << " Classes[" << MaxNumOperands << "];\n";
  OS << "    StringRef getMnemonic() const {\n";
  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
  OS << "                       MnemonicTable[Mnemonic]);\n";
  OS << "    }\n";
  OS << "  };\n\n";

  OS << "  // Predicate for searching for an opcode.\n";
  OS << "  struct LessOpcode {\n";
  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
  OS << "      return LHS.getMnemonic() < RHS;\n";
  OS << "    }\n";
  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
  OS << "      return LHS < RHS.getMnemonic();\n";
  OS << "    }\n";
  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
  OS << "    }\n";
  OS << "  };\n";

  OS << "} // end anonymous namespace.\n\n";

  unsigned VariantCount = Target.getAsmParserVariantCount();
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
    Record *AsmVariant = Target.getAsmParserVariant(VC);
    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");

    OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";

    for (const auto &MI : Info.Matchables) {
      if (MI->AsmVariantID != AsmVariantNo)
        continue;

      // Store a pascal-style length byte in the mnemonic.
      std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str();
      OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
         << " /* " << MI->Mnemonic << " */, "
         << Target.getInstNamespace() << "::"
         << MI->getResultInst()->TheDef->getName() << ", "
         << MI->ConversionFnKind << ", ";

      // Write the required features mask.
      if (!MI->RequiredFeatures.empty()) {
        for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) {
          if (i) OS << "|";
          OS << MI->RequiredFeatures[i]->getEnumName();
        }
      } else
        OS << "0";

      OS << ", { ";
      for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
        const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];

        if (i) OS << ", ";
        OS << Op.Class->Name;
      }
      OS << " }, },\n";
    }

    OS << "};\n\n";
  }

  emitMnemonicSpellChecker(OS, Target, VariantCount);

  // Finally, build the match function.
  OS << "unsigned " << Target.getName() << ClassName << "::\n"
     << "MatchInstructionImpl(const OperandVector &Operands,\n";
  OS << "                     MCInst &Inst, uint64_t &ErrorInfo,\n"
     << "                     bool matchingInlineAsm, unsigned VariantID) {\n";

  OS << "  // Eliminate obvious mismatches.\n";
  OS << "  if (Operands.size() > "
     << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
  OS << "    ErrorInfo = "
     << (MaxNumOperands + HasMnemonicFirst) << ";\n";
  OS << "    return Match_InvalidOperand;\n";
  OS << "  }\n\n";

  // Emit code to get the available features.
  OS << "  // Get the current feature set.\n";
  OS << "  uint64_t AvailableFeatures = getAvailableFeatures();\n\n";

  OS << "  // Get the instruction mnemonic, which is the first token.\n";
  if (HasMnemonicFirst) {
    OS << "  StringRef Mnemonic = ((" << Target.getName()
       << "Operand&)*Operands[0]).getToken();\n\n";
  } else {
    OS << "  StringRef Mnemonic;\n";
    OS << "  if (Operands[0]->isToken())\n";
    OS << "    Mnemonic = ((" << Target.getName()
       << "Operand&)*Operands[0]).getToken();\n\n";
  }

  if (HasMnemonicAliases) {
    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
    OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
  }

  // Emit code to compute the class list for this operand vector.
  OS << "  // Some state to try to produce better error messages.\n";
  OS << "  bool HadMatchOtherThanFeatures = false;\n";
  OS << "  bool HadMatchOtherThanPredicate = false;\n";
  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
  OS << "  uint64_t MissingFeatures = ~0ULL;\n";
  if (HasOptionalOperands) {
    OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
  }
  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
  OS << "  // wrong for all instances of the instruction.\n";
  OS << "  ErrorInfo = ~0ULL;\n";

  // Emit code to search the table.
  OS << "  // Find the appropriate table for this asm variant.\n";
  OS << "  const MatchEntry *Start, *End;\n";
  OS << "  switch (VariantID) {\n";
  OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
  for (unsigned VC = 0; VC != VariantCount; ++VC) {
    Record *AsmVariant = Target.getAsmParserVariant(VC);
    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
    OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
       << "); End = std::end(MatchTable" << VC << "); break;\n";
  }
  OS << "  }\n";

  OS << "  // Search the table.\n";
  if (HasMnemonicFirst) {
    OS << "  auto MnemonicRange = "
          "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
  } else {
    OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
    OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
    OS << "  if (!Mnemonic.empty())\n";
    OS << "    MnemonicRange = "
          "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
  }

  OS << "  // Return a more specific error code if no mnemonics match.\n";
  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
  OS << "    return Match_MnemonicFail;\n\n";

  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
     << "*ie = MnemonicRange.second;\n";
  OS << "       it != ie; ++it) {\n";

  if (HasMnemonicFirst) {
    OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
    OS << "    assert(Mnemonic == it->getMnemonic());\n";
  }

  // Emit check that the subclasses match.
  OS << "    bool OperandsValid = true;\n";
  if (HasOptionalOperands) {
    OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
  }
  OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
     << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
     << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
  OS << "      auto Formal = "
     << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
  OS << "      if (ActualIdx >= Operands.size()) {\n";
  OS << "        OperandsValid = (Formal == " <<"InvalidMatchClass) || "
                                 "isSubclass(Formal, OptionalMatchClass);\n";
  OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
  if (HasOptionalOperands) {
    OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
       << ");\n";
  }
  OS << "        break;\n";
  OS << "      }\n";
  OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
  OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
  OS << "      if (Diag == Match_Success) {\n";
  OS << "        ++ActualIdx;\n";
  OS << "        continue;\n";
  OS << "      }\n";
  OS << "      // If the generic handler indicates an invalid operand\n";
  OS << "      // failure, check for a special case.\n";
  OS << "      if (Diag == Match_InvalidOperand) {\n";
  OS << "        Diag = validateTargetOperandClass(Actual, Formal);\n";
  OS << "        if (Diag == Match_Success) {\n";
  OS << "          ++ActualIdx;\n";
  OS << "          continue;\n";
  OS << "        }\n";
  OS << "      }\n";
  OS << "      // If current formal operand wasn't matched and it is optional\n"
     << "      // then try to match next formal operand\n";
  OS << "      if (Diag == Match_InvalidOperand "
     << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
  if (HasOptionalOperands) {
    OS << "        OptionalOperandsMask.set(FormalIdx);\n";
  }
  OS << "        continue;\n";
  OS << "      }\n";
  OS << "      // If this operand is broken for all of the instances of this\n";
  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
  OS << "      // If we already had a match that only failed due to a\n";
  OS << "      // target predicate, that diagnostic is preferred.\n";
  OS << "      if (!HadMatchOtherThanPredicate &&\n";
  OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
  OS << "        ErrorInfo = ActualIdx;\n";
  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
  OS << "        if (Diag != Match_InvalidOperand)\n";
  OS << "          RetCode = Diag;\n";
  OS << "      }\n";
  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
  OS << "      OperandsValid = false;\n";
  OS << "      break;\n";
  OS << "    }\n\n";

  OS << "    if (!OperandsValid) continue;\n";

  // Emit check that the required features are available.
  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
     << "!= it->RequiredFeatures) {\n";
  OS << "      HadMatchOtherThanFeatures = true;\n";
  OS << "      uint64_t NewMissingFeatures = it->RequiredFeatures & "
        "~AvailableFeatures;\n";
  OS << "      if (countPopulation(NewMissingFeatures) <=\n"
        "          countPopulation(MissingFeatures))\n";
  OS << "        MissingFeatures = NewMissingFeatures;\n";
  OS << "      continue;\n";
  OS << "    }\n";
  OS << "\n";
  OS << "    Inst.clear();\n\n";
  OS << "    Inst.setOpcode(it->Opcode);\n";
  // Verify the instruction with the target-specific match predicate function.
  OS << "    // We have a potential match but have not rendered the operands.\n"
     << "    // Check the target predicate to handle any context sensitive\n"
        "    // constraints.\n"
     << "    // For example, Ties that are referenced multiple times must be\n"
        "    // checked here to ensure the input is the same for each match\n"
        "    // constraints. If we leave it any later the ties will have been\n"
        "    // canonicalized\n"
     << "    unsigned MatchResult;\n"
     << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
        "Operands)) != Match_Success) {\n"
     << "      Inst.clear();\n"
     << "      RetCode = MatchResult;\n"
     << "      HadMatchOtherThanPredicate = true;\n"
     << "      continue;\n"
     << "    }\n\n";
  OS << "    if (matchingInlineAsm) {\n";
  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
  OS << "      return Match_Success;\n";
  OS << "    }\n\n";
  OS << "    // We have selected a definite instruction, convert the parsed\n"
     << "    // operands into the appropriate MCInst.\n";
  if (HasOptionalOperands) {
    OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
       << "                    OptionalOperandsMask);\n";
  } else {
    OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
  }
  OS << "\n";

  // Verify the instruction with the target-specific match predicate function.
  OS << "    // We have a potential match. Check the target predicate to\n"
     << "    // handle any context sensitive constraints.\n"
     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
     << " Match_Success) {\n"
     << "      Inst.clear();\n"
     << "      RetCode = MatchResult;\n"
     << "      HadMatchOtherThanPredicate = true;\n"
     << "      continue;\n"
     << "    }\n\n";

  // Call the post-processing function, if used.
  StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
  if (!InsnCleanupFn.empty())
    OS << "    " << InsnCleanupFn << "(Inst);\n";

  if (HasDeprecation) {
    OS << "    std::string Info;\n";
    OS << "    if (!getParser().getTargetParser().\n";
    OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
    OS << "        MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
    OS << "      SMLoc Loc = ((" << Target.getName()
       << "Operand&)*Operands[0]).getStartLoc();\n";
    OS << "      getParser().Warning(Loc, Info, None);\n";
    OS << "    }\n";
  }

  OS << "    return Match_Success;\n";
  OS << "  }\n\n";

  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
  OS << "    return RetCode;\n\n";
  OS << "  // Missing feature matches return which features were missing\n";
  OS << "  ErrorInfo = MissingFeatures;\n";
  OS << "  return Match_MissingFeature;\n";
  OS << "}\n\n";

  if (!Info.OperandMatchInfo.empty())
    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
                             MaxMnemonicIndex, HasMnemonicFirst);

  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
}

namespace llvm {

void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
  AsmMatcherEmitter(RK).run(OS);
}

} // end namespace llvm