1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/* $NetBSD: libmath.b,v 1.2 1994/12/02 00:43:33 phil Exp $ */
/* libmath.b for bc for minix. */
/* This file is part of bc written for MINIX.
Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License , or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
You may contact the author by:
e-mail: phil@cs.wwu.edu
us-mail: Philip A. Nelson
Computer Science Department, 9062
Western Washington University
Bellingham, WA 98226-9062
*************************************************************************/
scale = 20
/* Uses the fact that e^x = (e^(x/2))^2
When x is small enough, we use the series:
e^x = 1 + x + x^2/2! + x^3/3! + ...
*/
define e(x) {
auto a, d, e, f, i, m, n, v, z
/* a - holds x^y of x^y/y! */
/* d - holds y! */
/* e - is the value x^y/y! */
/* v - is the sum of the e's */
/* f - number of times x was divided by 2. */
/* m - is 1 if x was minus. */
/* i - iteration count. */
/* n - the scale to compute the sum. */
/* z - orignal scale. */
/* Check the sign of x. */
if (x<0) {
m = 1
x = -x
}
/* Precondition x. */
z = scale;
n = 6 + z + .44*x;
scale = scale(x)+1;
while (x > 1) {
f += 1;
x /= 2;
scale += 1;
}
/* Initialize the variables. */
scale = n;
v = 1+x
a = x
d = 1
for (i=2; 1; i++) {
e = (a *= x) / (d *= i)
if (e == 0) {
if (f>0) while (f--) v = v*v;
scale = z
if (m) return (1/v);
return (v/1);
}
v += e
}
}
/* Natural log. Uses the fact that ln(x^2) = 2*ln(x)
The series used is:
ln(x) = 2(a+a^3/3+a^5/5+...) where a=(x-1)/(x+1)
*/
define l(x) {
auto e, f, i, m, n, v, z
/* return something for the special case. */
if (x <= 0) return (1 - 10^scale)
/* Precondition x to make .5 < x < 2.0. */
z = scale;
scale = 6 + scale;
f = 2;
i=0
while (x >= 2) { /* for large numbers */
f *= 2;
x = sqrt(x);
}
while (x <= .5) { /* for small numbers */
f *= 2;
x = sqrt(x);
}
/* Set up the loop. */
v = n = (x-1)/(x+1)
m = n*n
/* Sum the series. */
for (i=3; 1; i+=2) {
e = (n *= m) / i
if (e == 0) {
v = f*v
scale = z
return (v/1)
}
v += e
}
}
/* Sin(x) uses the standard series:
sin(x) = x - x^3/3! + x^5/5! - x^7/7! ... */
define s(x) {
auto e, i, m, n, s, v, z
/* precondition x. */
z = scale
scale = 1.1*z + 2;
v = a(1)
if (x < 0) {
m = 1;
x = -x;
}
scale = 0
n = (x / v + 2 )/4
x = x - 4*n*v
if (n%2) x = -x
/* Do the loop. */
scale = z + 2;
v = e = x
s = -x*x
for (i=3; 1; i+=2) {
e *= s/(i*(i-1))
if (e == 0) {
scale = z
if (m) return (-v/1);
return (v/1);
}
v += e
}
}
/* Cosine : cos(x) = sin(x+pi/2) */
define c(x) {
auto v;
scale += 1;
v = s(x+a(1)*2);
scale -= 1;
return (v/1);
}
/* Arctan: Using the formula:
atan(x) = atan(c) + atan((x-c)/(1+xc)) for a small c (.2 here)
For under .2, use the series:
atan(x) = x - x^3/3 + x^5/5 - x^7/7 + ... */
define a(x) {
auto a, e, f, i, m, n, s, v, z
/* a is the value of a(.2) if it is needed. */
/* f is the value to multiply by a in the return. */
/* e is the value of the current term in the series. */
/* v is the accumulated value of the series. */
/* m is 1 or -1 depending on x (-x -> -1). results are divided by m. */
/* i is the denominator value for series element. */
/* n is the numerator value for the series element. */
/* s is -x*x. */
/* z is the saved user's scale. */
/* Negative x? */
m = 1;
if (x<0) {
m = -1;
x = -x;
}
/* Special case and for fast answers */
if (x==1) {
if (scale <= 25) return (.7853981633974483096156608/m)
if (scale <= 40) return (.7853981633974483096156608458198757210492/m)
if (scale <= 60) \
return (.785398163397448309615660845819875721049292349843776455243736/m)
}
if (x==.2) {
if (scale <= 25) return (.1973955598498807583700497/m)
if (scale <= 40) return (.1973955598498807583700497651947902934475/m)
if (scale <= 60) \
return (.197395559849880758370049765194790293447585103787852101517688/m)
}
/* Save the scale. */
z = scale;
/* Note: a and f are known to be zero due to being auto vars. */
/* Calculate atan of a known number. */
if (x > .2) {
scale = z+5;
a = a(.2);
}
/* Precondition x. */
scale = z+3;
while (x > .2) {
f += 1;
x = (x-.2) / (1+x*.2);
}
/* Initialize the series. */
v = n = x;
s = -x*x;
/* Calculate the series. */
for (i=3; 1; i+=2) {
e = (n *= s) / i;
if (e == 0) {
scale = z;
return ((f*a+v)/m);
}
v += e
}
}
/* Bessel function of integer order. Uses the following:
j(-n,x) = (-1)^n*j(n,x)
j(n,x) = x^n/(2^n*n!) * (1 - x^2/(2^2*1!*(n+1)) + x^4/(2^4*2!*(n+1)*(n+2))
- x^6/(2^6*3!*(n+1)*(n+2)*(n+3)) .... )
*/
define j(n,x) {
auto a, d, e, f, i, m, s, v, z
/* Make n an integer and check for negative n. */
z = scale;
scale = 0;
n = n/1;
if (n<0) {
n = -n;
if (n%2 == 1) m = 1;
}
/* Compute the factor of x^n/(2^n*n!) */
f = 1;
for (i=2; i<=n; i++) f = f*i;
scale = 1.5*z;
f = x^n / 2^n / f;
/* Initialize the loop .*/
v = e = 1;
s = -x*x/4
scale = 1.5*z
/* The Loop.... */
for (i=1; 1; i++) {
e = e * s / i / (n+i);
if (e == 0) {
scale = z
if (m) return (-f*v/1);
return (f*v/1);
}
v += e;
}
}
|