summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/binutils/gdb/alphaobsd-nat.c
blob: 128faa10161310634e86ef81a4687c3731ce03f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/* Low level Alpha interface, for GDB when running native.
   Copyright 1993, 1995 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include <sys/ptrace.h>
#include <machine/reg.h>
#include <machine/frame.h>
#include <machine/pcb.h>
#include <string.h>

/* Size of elements in jmpbuf */

#define JB_ELEMENT_SIZE 8

/* The definition for JB_PC in machine/reg.h is wrong.
   And we can't get at the correct definition in setjmp.h as it is
   not always available (eg. if _POSIX_SOURCE is defined which is the
   default). As the defintion is unlikely to change (see comment
   in <setjmp.h>, define the correct value here.  */

#undef JB_PC
#define JB_PC 2

/* Figure out where the longjmp will land.
   We expect the first arg to be a pointer to the jmp_buf structure from which
   we extract the pc (JB_PC) that we will land at.  The pc is copied into PC.
   This routine returns true on success. */

int
get_longjmp_target (pc)
     CORE_ADDR *pc;
{
  CORE_ADDR jb_addr;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];

  jb_addr = read_register(A0_REGNUM);

  if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
			 sizeof(CORE_ADDR)))
    return 0;

  *pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
  return 1;
}

/* Extract the register values out of the core file and store
   them where `read_register' will find them.

   CORE_REG_SECT points to the register values themselves, read into memory.
   CORE_REG_SIZE is the size of that area.
   WHICH says which set of registers we are handling (0 = int, 2 = float
         on machines where they are discontiguous).
   REG_ADDR is the offset from u.u_ar0 to the register values relative to
            core_reg_sect.  This is used with old-fashioned core files to
	    locate the registers in a large upage-plus-stack ".reg" section.
	    Original upage address X is at location core_reg_sect+x+reg_addr.
 */

#define oi(name) \
	    offsetof(struct md_coredump, md_tf.tf_regs[__CONCAT(FRAME_,name)])
#define of(num) \
	    offsetof(struct md_coredump, md_fpstate.fpr_regs[num])

void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
     char *core_reg_sect;
     unsigned core_reg_size;
     int which;
     unsigned reg_addr;
{
  register int regno;
  register int addr;
  int bad_reg = -1;
  static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
  int regoff[NUM_REGS] = {
      oi(V0),  oi(T0),  oi(T1),  oi(T2),  oi(T3),  oi(T4),  oi(T5),  oi(T6),
      oi(T7),  oi(S0),  oi(S1),  oi(S2),  oi(S3),  oi(S4),  oi(S5),  oi(S6),
      oi(A0),  oi(A1),  oi(A2),  oi(A3),  oi(A4),  oi(A5),  oi(T8),  oi(T9), 
      oi(T10), oi(T11), oi(RA),  oi(T12), oi(AT),  oi(GP),  oi(SP),  -1,
      of(0),   of(1),   of(2),   of(3),   of(4),   of(5),   of(6),   of(7),
      of(8),   of(9),   of(10),  of(11),  of(12),  of(13),  of(14),  of(15),
      of(16),  of(17),  of(18),  of(19),  of(20),  of(21),  of(22),  of(23),  
      of(24),  of(25),  of(26),  of(27),  of(28),  of(29),  of(30),  of(31),
      oi(PC),  -1,
  };

  for (regno = 0; regno < NUM_REGS; regno++)
    {
      if (CANNOT_FETCH_REGISTER (regno))
	{
	  supply_register (regno, zerobuf);
	  continue;
	}
      addr = regoff[regno];
      if (addr < 0 || addr >= core_reg_size)
	{
	  if (bad_reg < 0)
	    bad_reg = regno;
	}
      else
	{
	  supply_register (regno, core_reg_sect + addr);
	}
    }
  if (bad_reg >= 0)
    {
      error ("Register %s not found in core file.", reg_names[bad_reg]);
    }
}

register_t
rrf_to_register(regno, reg, fpreg)
	int regno;
	struct reg *reg;
	struct fpreg *fpreg;
{

	if (regno < 0)
		abort();
	else if (regno < FP0_REGNUM)
		return (reg->r_regs[regno]);
	else if (regno == PC_REGNUM)
		return (reg->r_regs[R_ZERO]);
	else if (regno >= FP0_REGNUM)
		return (fpreg->fpr_regs[regno - FP0_REGNUM]);
	else
		abort();
}

void
fetch_inferior_registers (regno)
	int regno;
{
	struct reg reg;
	struct fpreg fpreg;
	register_t regval;
	static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
	char *rp;

	ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)&reg, 0);
	ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);

	if (regno < 0) {
		for (regno = 0; regno < NUM_REGS; regno++) {
			if (CANNOT_FETCH_REGISTER (regno))
				rp = zerobuf;
			else {
				regval = rrf_to_register(regno, &reg, &fpreg);
				rp = (char *)&regval;
			}
			supply_register(regno, rp);
		}
	} else {
		if (CANNOT_FETCH_REGISTER (regno))
			rp = zerobuf;
		else {
			regval = rrf_to_register(regno, &reg, &fpreg);
			rp = (char *)&regval;
		}

		supply_register(regno, rp);
	}
}

void
register_into_rrf(val, regno, reg, fpreg)
	register_t val;
	int regno;
	struct reg *reg;
	struct fpreg *fpreg;
{

	if (regno < 0)
		abort();
	else if (regno < FP0_REGNUM)
		reg->r_regs[regno] = val;
	else if (regno == PC_REGNUM)
		reg->r_regs[R_ZERO] = val;
	else if (regno >= FP0_REGNUM)
		fpreg->fpr_regs[regno - FP0_REGNUM] = val;
	else
		abort();
}

void
store_inferior_registers (regno)
	int regno;
{
	struct reg reg;
	struct fpreg fpreg;
	register_t regval;

	if (regno < 0) {
		for (regno = 0; regno < NUM_REGS; regno++) {
			if (CANNOT_STORE_REGISTER (regno))
				continue;
	
			if (REGISTER_RAW_SIZE (regno) != sizeof regval)
				abort();
			memcpy(&regval, &registers[REGISTER_BYTE (regno)],
			    REGISTER_RAW_SIZE (regno));
			register_into_rrf(regval, regno, &reg, &fpreg);
		}
	} else {
		ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)&reg, 0);
		ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
		
		memcpy(&regval, &registers[REGISTER_BYTE (regno)],
		    REGISTER_RAW_SIZE (regno));
		register_into_rrf(regval, regno, &reg, &fpreg);
	}
	
	ptrace(PT_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE)&reg, 0);
	ptrace(PT_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0);
}

void 
child_resume (pid, step, signal)
	int pid;
	int step;
	enum target_signal signal;
{    

  errno = 0;

  if (pid == -1)
    /* Resume all threads.  */
    /* I think this only gets used in the non-threaded case, where "resume
       all threads" and "resume inferior_pid" are the same.  */
    pid = inferior_pid;

  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
     it was.  (If GDB wanted it to start some other way, we have already
     written a new PC value to the child.)

     If this system does not support PT_STEP, a higher level function will
     have called single_step() to transmute the step request into a
     continue request (by setting breakpoints on all possible successor
     instructions), so we don't have to worry about that here.  */

  if (step)
	abort();
  else
    ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
	    target_signal_to_host (signal));

  if (errno)
    perror_with_name ("ptrace");
}