summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/binutils/gdb/ppc-linux-nat.c
blob: c98bb93f879f61449d0d8a9775f16a0661975d2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/* PPC GNU/Linux native support.

   Copyright 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002,
   2003 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "regcache.h"
#include "gdb_assert.h"

#include <sys/types.h>
#include <sys/param.h>
#include <signal.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include "gdb_wait.h"
#include <fcntl.h>
#include <sys/procfs.h>
#include <sys/ptrace.h>

/* Prototypes for supply_gregset etc. */
#include "gregset.h"
#include "ppc-tdep.h"

#ifndef PT_READ_U
#define PT_READ_U PTRACE_PEEKUSR
#endif
#ifndef PT_WRITE_U
#define PT_WRITE_U PTRACE_POKEUSR
#endif

/* Default the type of the ptrace transfer to int.  */
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#endif

/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
   configure time check.  Some older glibc's (for instance 2.2.1)
   don't have a specific powerpc version of ptrace.h, and fall back on
   a generic one.  In such cases, sys/ptrace.h defines
   PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
   ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
   PTRACE_SETVRREGS to be.  This also makes a configury check pretty
   much useless.  */

/* These definitions should really come from the glibc header files,
   but Glibc doesn't know about the vrregs yet.  */
#ifndef PTRACE_GETVRREGS
#define PTRACE_GETVRREGS 18
#define PTRACE_SETVRREGS 19
#endif


/* Similarly for the ptrace requests for getting / setting the SPE
   registers (ev0 -- ev31, acc, and spefscr).  See the description of
   gdb_evrregset_t for details.  */
#ifndef PTRACE_GETEVRREGS
#define PTRACE_GETEVRREGS 20
#define PTRACE_SETEVRREGS 21
#endif


/* This oddity is because the Linux kernel defines elf_vrregset_t as
   an array of 33 16 bytes long elements.  I.e. it leaves out vrsave.
   However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
   the vrsave as an extra 4 bytes at the end.  I opted for creating a
   flat array of chars, so that it is easier to manipulate for gdb.

   There are 32 vector registers 16 bytes longs, plus a VSCR register
   which is only 4 bytes long, but is fetched as a 16 bytes
   quantity. Up to here we have the elf_vrregset_t structure.
   Appended to this there is space for the VRSAVE register: 4 bytes.
   Even though this vrsave register is not included in the regset
   typedef, it is handled by the ptrace requests.

   Note that GNU/Linux doesn't support little endian PPC hardware,
   therefore the offset at which the real value of the VSCR register
   is located will be always 12 bytes.

   The layout is like this (where x is the actual value of the vscr reg): */

/* *INDENT-OFF* */
/*
   |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
   <------->     <-------><-------><->
     VR0           VR31     VSCR    VRSAVE
*/
/* *INDENT-ON* */

#define SIZEOF_VRREGS 33*16+4

typedef char gdb_vrregset_t[SIZEOF_VRREGS];


/* On PPC processors that support the the Signal Processing Extension
   (SPE) APU, the general-purpose registers are 64 bits long.
   However, the ordinary Linux kernel PTRACE_PEEKUSR / PTRACE_POKEUSR
   / PT_READ_U / PT_WRITE_U ptrace calls only access the lower half of
   each register, to allow them to behave the same way they do on
   non-SPE systems.  There's a separate pair of calls,
   PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that read and write the top
   halves of all the general-purpose registers at once, along with
   some SPE-specific registers.

   GDB itself continues to claim the general-purpose registers are 32
   bits long.  It has unnamed raw registers that hold the upper halves
   of the gprs, and the the full 64-bit SIMD views of the registers,
   'ev0' -- 'ev31', are pseudo-registers that splice the top and
   bottom halves together.

   This is the structure filled in by PTRACE_GETEVRREGS and written to
   the inferior's registers by PTRACE_SETEVRREGS.  */
struct gdb_evrregset_t
{
  unsigned long evr[32];
  unsigned long long acc;
  unsigned long spefscr;
};


/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
   PTRACE_SETVRREGS requests, for reading and writing the Altivec
   registers.  Zero if we've tried one of them and gotten an
   error.  */
int have_ptrace_getvrregs = 1;


/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests, for reading and writing the SPE
   registers.  Zero if we've tried one of them and gotten an
   error.  */
int have_ptrace_getsetevrregs = 1;


int
kernel_u_size (void)
{
  return (sizeof (struct user));
}

/* *INDENT-OFF* */
/* registers layout, as presented by the ptrace interface:
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
/* *INDENT_ON * */

static int
ppc_register_u_addr (int regno)
{
  int u_addr = -1;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
     interface, and not the wordsize of the program's ABI.  */
  int wordsize = sizeof (PTRACE_XFER_TYPE);

  /* General purpose registers occupy 1 slot each in the buffer */
  if (regno >= tdep->ppc_gp0_regnum 
      && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
    u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);

  /* Floating point regs: eight bytes each in both 32- and 64-bit
     ptrace interfaces.  Thus, two slots each in 32-bit interface, one
     slot each in 64-bit interface.  */
  if (tdep->ppc_fp0_regnum >= 0
      && regno >= tdep->ppc_fp0_regnum
      && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
    u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);

  /* UISA special purpose registers: 1 slot each */
  if (regno == PC_REGNUM)
    u_addr = PT_NIP * wordsize;
  if (regno == tdep->ppc_lr_regnum)
    u_addr = PT_LNK * wordsize;
  if (regno == tdep->ppc_cr_regnum)
    u_addr = PT_CCR * wordsize;
  if (regno == tdep->ppc_xer_regnum)
    u_addr = PT_XER * wordsize;
  if (regno == tdep->ppc_ctr_regnum)
    u_addr = PT_CTR * wordsize;
#ifdef PT_MQ
  if (regno == tdep->ppc_mq_regnum)
    u_addr = PT_MQ * wordsize;
#endif
  if (regno == tdep->ppc_ps_regnum)
    u_addr = PT_MSR * wordsize;
  if (tdep->ppc_fpscr_regnum >= 0
      && regno == tdep->ppc_fpscr_regnum)
    u_addr = PT_FPSCR * wordsize;

  return u_addr;
}

/* The Linux kernel ptrace interface for AltiVec registers uses the
   registers set mechanism, as opposed to the interface for all the
   other registers, that stores/fetches each register individually.  */
static void
fetch_altivec_register (int tid, int regno)
{
  int ret;
  int offset = 0;
  gdb_vrregset_t regs;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);

  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getvrregs = 0;
          return;
        }
      perror_with_name ("Unable to fetch AltiVec register");
    }
 
  /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
     long on the hardware.  We deal only with the lower 4 bytes of the
     vector.  VRSAVE is at the end of the array in a 4 bytes slot, so
     there is no need to define an offset for it.  */
  if (regno == (tdep->ppc_vrsave_regnum - 1))
    offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
  
  regcache_raw_supply (current_regcache, regno,
		       regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
}

/* Fetch the top 32 bits of TID's general-purpose registers and the
   SPE-specific registers, and place the results in EVRREGSET.  If we
   don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
   zeros.

   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   set_spe_registers.  */
static void
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
  if (have_ptrace_getsetevrregs)
    {
      if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
        return;
      else
        {
          /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
             we just return zeros.  */
          if (errno == EIO)
            have_ptrace_getsetevrregs = 0;
          else
            /* Anything else needs to be reported.  */
            perror_with_name ("Unable to fetch SPE registers");
        }
    }

  memset (evrregset, 0, sizeof (*evrregset));
}

/* Supply values from TID for SPE-specific raw registers: the upper
   halves of the GPRs, the accumulator, and the spefscr.  REGNO must
   be the number of an upper half register, acc, spefscr, or -1 to
   supply the values of all registers.  */
static void
fetch_spe_register (int tid, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  struct gdb_evrregset_t evrregs;

  gdb_assert (sizeof (evrregs.evr[0])
              == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
  gdb_assert (sizeof (evrregs.acc)
              == register_size (current_gdbarch, tdep->ppc_acc_regnum));
  gdb_assert (sizeof (evrregs.spefscr)
              == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));

  get_spe_registers (tid, &evrregs);

  if (regno == -1)
    {
      int i;

      for (i = 0; i < ppc_num_gprs; i++)
        regcache_raw_supply (current_regcache, tdep->ppc_ev0_upper_regnum + i,
                             &evrregs.evr[i]);
    }
  else if (tdep->ppc_ev0_upper_regnum <= regno
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    regcache_raw_supply (current_regcache, regno,
                         &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);

  if (regno == -1
      || regno == tdep->ppc_acc_regnum)
    regcache_raw_supply (current_regcache, tdep->ppc_acc_regnum, &evrregs.acc);

  if (regno == -1
      || regno == tdep->ppc_spefscr_regnum)
    regcache_raw_supply (current_regcache, tdep->ppc_spefscr_regnum,
                         &evrregs.spefscr);
}

static void
fetch_register (int tid, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr = ppc_register_u_addr (regno);
  int bytes_transferred;
  unsigned int offset;         /* Offset of registers within the u area. */
  char buf[MAX_REGISTER_SIZE];

  if (altivec_register_p (regno))
    {
      /* If this is the first time through, or if it is not the first
         time through, and we have comfirmed that there is kernel
         support for such a ptrace request, then go and fetch the
         register.  */
      if (have_ptrace_getvrregs)
       {
         fetch_altivec_register (tid, regno);
         return;
       }
     /* If we have discovered that there is no ptrace support for
        AltiVec registers, fall through and return zeroes, because
        regaddr will be -1 in this case.  */
    }
  else if (spe_register_p (regno))
    {
      fetch_spe_register (tid, regno);
      return;
    }

  if (regaddr == -1)
    {
      memset (buf, '\0', register_size (current_gdbarch, regno));   /* Supply zeroes */
      regcache_raw_supply (current_regcache, regno, buf);
      return;
    }

  /* Read the raw register using PTRACE_XFER_TYPE sized chunks.  On a
     32-bit platform, 64-bit floating-point registers will require two
     transfers.  */
  for (bytes_transferred = 0;
       bytes_transferred < register_size (current_gdbarch, regno);
       bytes_transferred += sizeof (PTRACE_XFER_TYPE))
    {
      errno = 0;
      *(PTRACE_XFER_TYPE *) & buf[bytes_transferred]
        = ptrace (PT_READ_U, tid, (PTRACE_ARG3_TYPE) regaddr, 0);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
	{
          char message[128];
	  sprintf (message, "reading register %s (#%d)", 
		   REGISTER_NAME (regno), regno);
	  perror_with_name (message);
	}
    }

  /* Now supply the register.  Keep in mind that the regcache's idea
     of the register's size may not be a multiple of sizeof
     (PTRACE_XFER_TYPE).  */
  if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
    {
      /* Little-endian values are always found at the left end of the
         bytes transferred.  */
      regcache_raw_supply (current_regcache, regno, buf);
    }
  else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
    {
      /* Big-endian values are found at the right end of the bytes
         transferred.  */
      size_t padding = (bytes_transferred
                        - register_size (current_gdbarch, regno));
      regcache_raw_supply (current_regcache, regno, buf + padding);
    }
  else 
    internal_error (__FILE__, __LINE__,
                    "fetch_register: unexpected byte order: %d",
                    gdbarch_byte_order (current_gdbarch));
}

static void
supply_vrregset (gdb_vrregset_t *vrregsetp)
{
  int i;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
  int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
  int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);

  for (i = 0; i < num_of_vrregs; i++)
    {
      /* The last 2 registers of this set are only 32 bit long, not
         128.  However an offset is necessary only for VSCR because it
         occupies a whole vector, while VRSAVE occupies a full 4 bytes
         slot.  */
      if (i == (num_of_vrregs - 2))
        regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
			     *vrregsetp + i * vrregsize + offset);
      else
        regcache_raw_supply (current_regcache, tdep->ppc_vr0_regnum + i,
			     *vrregsetp + i * vrregsize);
    }
}

static void
fetch_altivec_registers (int tid)
{
  int ret;
  gdb_vrregset_t regs;
  
  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
	{
          have_ptrace_getvrregs = 0;
	  return;
	}
      perror_with_name ("Unable to fetch AltiVec registers");
    }
  supply_vrregset (&regs);
}

static void 
fetch_ppc_registers (int tid)
{
  int i;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  for (i = 0; i < ppc_num_gprs; i++)
    fetch_register (tid, tdep->ppc_gp0_regnum + i);
  if (tdep->ppc_fp0_regnum >= 0)
    for (i = 0; i < ppc_num_fprs; i++)
      fetch_register (tid, tdep->ppc_fp0_regnum + i);
  fetch_register (tid, PC_REGNUM);
  if (tdep->ppc_ps_regnum != -1)
    fetch_register (tid, tdep->ppc_ps_regnum);
  if (tdep->ppc_cr_regnum != -1)
    fetch_register (tid, tdep->ppc_cr_regnum);
  if (tdep->ppc_lr_regnum != -1)
    fetch_register (tid, tdep->ppc_lr_regnum);
  if (tdep->ppc_ctr_regnum != -1)
    fetch_register (tid, tdep->ppc_ctr_regnum);
  if (tdep->ppc_xer_regnum != -1)
    fetch_register (tid, tdep->ppc_xer_regnum);
  if (tdep->ppc_mq_regnum != -1)
    fetch_register (tid, tdep->ppc_mq_regnum);
  if (tdep->ppc_fpscr_regnum != -1)
    fetch_register (tid, tdep->ppc_fpscr_regnum);
  if (have_ptrace_getvrregs)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
      fetch_altivec_registers (tid);
  if (tdep->ppc_ev0_upper_regnum >= 0)
    fetch_spe_register (tid, -1);
}

/* Fetch registers from the child process.  Fetch all registers if
   regno == -1, otherwise fetch all general registers or all floating
   point registers depending upon the value of regno.  */
void
fetch_inferior_registers (int regno)
{
  /* Overload thread id onto process id */
  int tid = TIDGET (inferior_ptid);

  /* No thread id, just use process id */
  if (tid == 0)
    tid = PIDGET (inferior_ptid);

  if (regno == -1)
    fetch_ppc_registers (tid);
  else 
    fetch_register (tid, regno);
}

/* Store one register. */
static void
store_altivec_register (int tid, int regno)
{
  int ret;
  int offset = 0;
  gdb_vrregset_t regs;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);

  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getvrregs = 0;
          return;
        }
      perror_with_name ("Unable to fetch AltiVec register");
    }

  /* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
     long on the hardware.  */
  if (regno == (tdep->ppc_vrsave_regnum - 1))
    offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);

  regcache_raw_collect (current_regcache, regno,
			regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);

  ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
  if (ret < 0)
    perror_with_name ("Unable to store AltiVec register");
}

/* Assuming TID referrs to an SPE process, set the top halves of TID's
   general-purpose registers and its SPE-specific registers to the
   values in EVRREGSET.  If we don't support PTRACE_SETEVRREGS, do
   nothing.

   All the logic to deal with whether or not the PTRACE_GETEVRREGS and
   PTRACE_SETEVRREGS requests are supported is isolated here, and in
   get_spe_registers.  */
static void
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
  if (have_ptrace_getsetevrregs)
    {
      if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
        return;
      else
        {
          /* EIO means that the PTRACE_SETEVRREGS request isn't
             supported; we fail silently, and don't try the call
             again.  */
          if (errno == EIO)
            have_ptrace_getsetevrregs = 0;
          else
            /* Anything else needs to be reported.  */
            perror_with_name ("Unable to set SPE registers");
        }
    }
}

/* Write GDB's value for the SPE-specific raw register REGNO to TID.
   If REGNO is -1, write the values of all the SPE-specific
   registers.  */
static void
store_spe_register (int tid, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  struct gdb_evrregset_t evrregs;

  gdb_assert (sizeof (evrregs.evr[0])
              == register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
  gdb_assert (sizeof (evrregs.acc)
              == register_size (current_gdbarch, tdep->ppc_acc_regnum));
  gdb_assert (sizeof (evrregs.spefscr)
              == register_size (current_gdbarch, tdep->ppc_spefscr_regnum));

  if (regno == -1)
    /* Since we're going to write out every register, the code below
       should store to every field of evrregs; if that doesn't happen,
       make it obvious by initializing it with suspicious values.  */
    memset (&evrregs, 42, sizeof (evrregs));
  else
    /* We can only read and write the entire EVR register set at a
       time, so to write just a single register, we do a
       read-modify-write maneuver.  */
    get_spe_registers (tid, &evrregs);

  if (regno == -1)
    {
      int i;

      for (i = 0; i < ppc_num_gprs; i++)
        regcache_raw_collect (current_regcache,
                              tdep->ppc_ev0_upper_regnum + i,
                              &evrregs.evr[i]);
    }
  else if (tdep->ppc_ev0_upper_regnum <= regno
           && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
    regcache_raw_collect (current_regcache, regno,
                          &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);

  if (regno == -1
      || regno == tdep->ppc_acc_regnum)
    regcache_raw_collect (current_regcache,
                          tdep->ppc_acc_regnum,
                          &evrregs.acc);

  if (regno == -1
      || regno == tdep->ppc_spefscr_regnum)
    regcache_raw_collect (current_regcache,
                          tdep->ppc_spefscr_regnum,
                          &evrregs.spefscr);

  /* Write back the modified register set.  */
  set_spe_registers (tid, &evrregs);
}

static void
store_register (int tid, int regno)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  /* This isn't really an address.  But ptrace thinks of it as one.  */
  CORE_ADDR regaddr = ppc_register_u_addr (regno);
  int i;
  size_t bytes_to_transfer;
  char buf[MAX_REGISTER_SIZE];

  if (altivec_register_p (regno))
    {
      store_altivec_register (tid, regno);
      return;
    }
  else if (spe_register_p (regno))
    {
      store_spe_register (tid, regno);
      return;
    }

  if (regaddr == -1)
    return;

  /* First collect the register.  Keep in mind that the regcache's
     idea of the register's size may not be a multiple of sizeof
     (PTRACE_XFER_TYPE).  */
  memset (buf, 0, sizeof buf);
  bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
                                sizeof (PTRACE_XFER_TYPE));
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
    {
      /* Little-endian values always sit at the left end of the buffer.  */
      regcache_raw_collect (current_regcache, regno, buf);
    }
  else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      /* Big-endian values sit at the right end of the buffer.  */
      size_t padding = (bytes_to_transfer
                        - register_size (current_gdbarch, regno));
      regcache_raw_collect (current_regcache, regno, buf + padding);
    }

  for (i = 0; i < bytes_to_transfer; i += sizeof (PTRACE_XFER_TYPE))
    {
      errno = 0;
      ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
	      *(PTRACE_XFER_TYPE *) & buf[i]);
      regaddr += sizeof (PTRACE_XFER_TYPE);

      if (errno == EIO 
          && regno == tdep->ppc_fpscr_regnum)
	{
	  /* Some older kernel versions don't allow fpscr to be written.  */
	  continue;
	}

      if (errno != 0)
	{
          char message[128];
	  sprintf (message, "writing register %s (#%d)", 
		   REGISTER_NAME (regno), regno);
	  perror_with_name (message);
	}
    }
}

static void
fill_vrregset (gdb_vrregset_t *vrregsetp)
{
  int i;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
  int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
  int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);

  for (i = 0; i < num_of_vrregs; i++)
    {
      /* The last 2 registers of this set are only 32 bit long, not
         128, but only VSCR is fetched as a 16 bytes quantity.  */
      if (i == (num_of_vrregs - 2))
        regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
			      *vrregsetp + i * vrregsize + offset);
      else
        regcache_raw_collect (current_regcache, tdep->ppc_vr0_regnum + i,
			      *vrregsetp + i * vrregsize);
    }
}

static void
store_altivec_registers (int tid)
{
  int ret;
  gdb_vrregset_t regs;

  ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
  if (ret < 0)
    {
      if (errno == EIO)
        {
          have_ptrace_getvrregs = 0;
          return;
        }
      perror_with_name ("Couldn't get AltiVec registers");
    }

  fill_vrregset (&regs);
  
  if (ptrace (PTRACE_SETVRREGS, tid, 0, &regs) < 0)
    perror_with_name ("Couldn't write AltiVec registers");
}

static void
store_ppc_registers (int tid)
{
  int i;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  
  for (i = 0; i < ppc_num_gprs; i++)
    store_register (tid, tdep->ppc_gp0_regnum + i);
  if (tdep->ppc_fp0_regnum >= 0)
    for (i = 0; i < ppc_num_fprs; i++)
      store_register (tid, tdep->ppc_fp0_regnum + i);
  store_register (tid, PC_REGNUM);
  if (tdep->ppc_ps_regnum != -1)
    store_register (tid, tdep->ppc_ps_regnum);
  if (tdep->ppc_cr_regnum != -1)
    store_register (tid, tdep->ppc_cr_regnum);
  if (tdep->ppc_lr_regnum != -1)
    store_register (tid, tdep->ppc_lr_regnum);
  if (tdep->ppc_ctr_regnum != -1)
    store_register (tid, tdep->ppc_ctr_regnum);
  if (tdep->ppc_xer_regnum != -1)
    store_register (tid, tdep->ppc_xer_regnum);
  if (tdep->ppc_mq_regnum != -1)
    store_register (tid, tdep->ppc_mq_regnum);
  if (tdep->ppc_fpscr_regnum != -1)
    store_register (tid, tdep->ppc_fpscr_regnum);
  if (have_ptrace_getvrregs)
    if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
      store_altivec_registers (tid);
  if (tdep->ppc_ev0_upper_regnum >= 0)
    store_spe_register (tid, -1);
}

void
store_inferior_registers (int regno)
{
  /* Overload thread id onto process id */
  int tid = TIDGET (inferior_ptid);

  /* No thread id, just use process id */
  if (tid == 0)
    tid = PIDGET (inferior_ptid);

  if (regno >= 0)
    store_register (tid, regno);
  else
    store_ppc_registers (tid);
}

void
supply_gregset (gdb_gregset_t *gregsetp)
{
  /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
     interface, and not the wordsize of the program's ABI.  */
  int wordsize = sizeof (PTRACE_XFER_TYPE);
  ppc_linux_supply_gregset (current_regcache, -1, gregsetp,
			    sizeof (gdb_gregset_t), wordsize);
}

static void
right_fill_reg (int regnum, void *reg)
{
  /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
     interface, and not the wordsize of the program's ABI.  */
  int wordsize = sizeof (PTRACE_XFER_TYPE);
  /* Right fill the register.  */
  regcache_raw_collect (current_regcache, regnum,
			((bfd_byte *) reg
			 + wordsize
			 - register_size (current_gdbarch, regnum)));
}

void
fill_gregset (gdb_gregset_t *gregsetp, int regno)
{
  int regi;
  elf_greg_t *regp = (elf_greg_t *) gregsetp;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
  const int elf_ngreg = 48;


  /* Start with zeros.  */
  memset (regp, 0, elf_ngreg * sizeof (*regp));

  for (regi = 0; regi < ppc_num_gprs; regi++)
    {
      if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
	right_fill_reg (tdep->ppc_gp0_regnum + regi, (regp + PT_R0 + regi));
    }

  if ((regno == -1) || regno == PC_REGNUM)
    right_fill_reg (PC_REGNUM, regp + PT_NIP);
  if ((regno == -1) || regno == tdep->ppc_lr_regnum)
    right_fill_reg (tdep->ppc_lr_regnum, regp + PT_LNK);
  if ((regno == -1) || regno == tdep->ppc_cr_regnum)
    regcache_raw_collect (current_regcache, tdep->ppc_cr_regnum,
			  regp + PT_CCR);
  if ((regno == -1) || regno == tdep->ppc_xer_regnum)
    regcache_raw_collect (current_regcache, tdep->ppc_xer_regnum,
			  regp + PT_XER);
  if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
    right_fill_reg (tdep->ppc_ctr_regnum, regp + PT_CTR);
#ifdef PT_MQ
  if (((regno == -1) || regno == tdep->ppc_mq_regnum)
      && (tdep->ppc_mq_regnum != -1))
    right_fill_reg (tdep->ppc_mq_regnum, regp + PT_MQ);
#endif
  if ((regno == -1) || regno == tdep->ppc_ps_regnum)
    right_fill_reg (tdep->ppc_ps_regnum, regp + PT_MSR);
}

void
supply_fpregset (gdb_fpregset_t * fpregsetp)
{
  ppc_linux_supply_fpregset (NULL, current_regcache, -1, fpregsetp,
			     sizeof (gdb_fpregset_t));
}

/* Given a pointer to a floating point register set in /proc format
   (fpregset_t *), update the register specified by REGNO from gdb's
   idea of the current floating point register set.  If REGNO is -1,
   update them all.  */
void
fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
{
  int regi;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); 
  bfd_byte *fpp = (void *) fpregsetp;
  
  if (ppc_floating_point_unit_p (current_gdbarch))
    {
      for (regi = 0; regi < ppc_num_fprs; regi++)
        {
          if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
            regcache_raw_collect (current_regcache, tdep->ppc_fp0_regnum + regi,
				  fpp + 8 * regi);
        }
      if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
        right_fill_reg (tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
    }
}