summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gcc/config/rs6000/rs6000.c
blob: 08ebd4e37da42e117ca0a7c8d984b699176620bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
/* Subroutines used for code generation on IBM RS/6000.
   Copyright (C) 1991, 1993, 1994, 1995 Free Software Foundation, Inc.
   Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include <stdio.h>
#include <ctype.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#include "tree.h"

extern char *language_string;
extern int profile_block_flag;

#define min(A,B)	((A) < (B) ? (A) : (B))
#define max(A,B)	((A) > (B) ? (A) : (B))

/* Target cpu type */

enum processor_type rs6000_cpu;
char *rs6000_cpu_string;

/* Set to non-zero by "fix" operation to indicate that itrunc and
   uitrunc must be defined.  */

int rs6000_trunc_used;

/* Set to non-zero once they have been defined.  */

static int trunc_defined;

/* Set to non-zero once AIX common-mode calls have been defined.  */
static int common_mode_defined;
/* Save information from a "cmpxx" operation until the branch or scc is
   emitted.  */

rtx rs6000_compare_op0, rs6000_compare_op1;
int rs6000_compare_fp_p;

#ifdef USING_SVR4_H
/* Label number of label created for -mrelocatable, to call to so we can
   get the address of the GOT section */
int rs6000_pic_labelno;
#endif

/* Whether a System V.4 varargs area was created.  */
int rs6000_sysv_varargs_p;

/* Temporary memory used to convert integer -> float */
static rtx stack_temps[NUM_MACHINE_MODES];


/* Print the options used in the assembly file.  */

extern char *version_string, *language_string;

struct asm_option
{
  char *string;
  int *variable;
  int on_value;
};

#define MAX_LINE 79

static int
output_option (file, type, name, pos)
     FILE *file;
     char *type;
     char *name;
     int pos;
{
  int type_len = strlen (type);
  int name_len = strlen (name);

  if (1 + type_len + name_len + pos > MAX_LINE)
    {
      fprintf (file, "\n # %s%s", type, name);
      return 3 + type_len + name_len;
    }
  fprintf (file, " %s%s", type, name);
  return pos + 1 + type_len + name_len;
}

static struct { char *name; int value; } m_options[] = TARGET_SWITCHES;

void
output_options (file, f_options, f_len, W_options, W_len)
     FILE *file;
     struct asm_option *f_options;
     int f_len;
     struct asm_option *W_options;
     int W_len;
{
  int j;
  int flags = target_flags;
  int pos = 32767;

  fprintf (file, " # %s %s", language_string, version_string);

  if (optimize)
    {
      char opt_string[20];
      sprintf (opt_string, "%d", optimize);
      pos = output_option (file, "-O", opt_string, pos);
    }

  if (profile_flag)
    pos = output_option (file, "-p", "", pos);

  if (profile_block_flag)
    pos = output_option (file, "-a", "", pos);

  if (inhibit_warnings)
    pos = output_option (file, "-w", "", pos);

  for (j = 0; j < f_len; j++)
    {
      if (*f_options[j].variable == f_options[j].on_value)
	pos = output_option (file, "-f", f_options[j].string, pos);
    }

  for (j = 0; j < W_len; j++)
    {
      if (*W_options[j].variable == W_options[j].on_value)
	pos = output_option (file, "-W", W_options[j].string, pos);
    }

  for (j = 0; j < sizeof m_options / sizeof m_options[0]; j++)
    {
      if (m_options[j].name[0] != '\0'
	  && m_options[j].value > 0
	  && ((m_options[j].value & flags) == m_options[j].value))
	{
	  pos = output_option (file, "-m", m_options[j].name, pos);
	  flags &= ~ m_options[j].value;
	}
    }

  if (rs6000_cpu_string != (char *)0)
    pos = output_option (file, "-mcpu=", rs6000_cpu_string, pos);

  fputs ("\n\n", file);
}


/* Override command line options.  Mostly we process the processor
   type and sometimes adjust other TARGET_ options.  */

void
rs6000_override_options ()
{
  int i;

  /* Simplify the entries below by making a mask for any POWER
     variant and any PowerPC variant.  */

#define POWER_MASKS (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE | MASK_STRING)
#define POWERPC_MASKS (MASK_POWERPC | MASK_PPC_GPOPT \
		       | MASK_PPC_GFXOPT | MASK_POWERPC64)
#define POWERPC_OPT_MASKS (MASK_PPC_GPOPT | MASK_PPC_GFXOPT)

  static struct ptt
    {
      char *name;		/* Canonical processor name.  */
      enum processor_type processor; /* Processor type enum value.  */
      int target_enable;	/* Target flags to enable.  */
      int target_disable;	/* Target flags to disable.  */
    } processor_target_table[]
      = {{"common", PROCESSOR_COMMON, 0, POWER_MASKS | POWERPC_MASKS},
	 {"power", PROCESSOR_POWER,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"powerpc", PROCESSOR_POWERPC,
	    MASK_POWERPC | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"rios", PROCESSOR_RIOS1,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rios1", PROCESSOR_RIOS1,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rsc", PROCESSOR_PPC601,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rsc1", PROCESSOR_PPC601,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"rios2", PROCESSOR_RIOS2,
	    MASK_POWER | MASK_MULTIPLE | MASK_STRING | MASK_POWER2,
	    POWERPC_MASKS | MASK_NEW_MNEMONICS},
	 {"403", PROCESSOR_PPC403,
	    MASK_POWERPC | MASK_SOFT_FLOAT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"601", PROCESSOR_PPC601,
	    MASK_POWER | MASK_POWERPC | MASK_NEW_MNEMONICS | MASK_MULTIPLE | MASK_STRING,
	    MASK_POWER2 | POWERPC_OPT_MASKS | MASK_POWERPC64},
	 {"603", PROCESSOR_PPC603,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64},
	 {"604", PROCESSOR_PPC604,
	    MASK_POWERPC | MASK_PPC_GFXOPT | MASK_NEW_MNEMONICS,
	    POWER_MASKS | MASK_PPC_GPOPT | MASK_POWERPC64}};

  int ptt_size = sizeof (processor_target_table) / sizeof (struct ptt);

  int multiple = TARGET_MULTIPLE;	/* save current -mmultiple/-mno-multiple status */
  int string   = TARGET_STRING;		/* save current -mstring/-mno-string status */

  profile_block_flag = 0;

  /* Identify the processor type */
  if (rs6000_cpu_string == 0)
    rs6000_cpu = PROCESSOR_DEFAULT;
  else
    {
      for (i = 0; i < ptt_size; i++)
	if (! strcmp (rs6000_cpu_string, processor_target_table[i].name))
	  {
	    rs6000_cpu = processor_target_table[i].processor;
	    target_flags |= processor_target_table[i].target_enable;
	    target_flags &= ~processor_target_table[i].target_disable;
	    break;
	  }

      if (i == ptt_size)
	{
	  error ("bad value (%s) for -mcpu= switch", rs6000_cpu_string);
	  rs6000_cpu_string = "default";
	  rs6000_cpu = PROCESSOR_DEFAULT;
	}
    }

  /* If -mmultiple or -mno-multiple was explicitly used, don't
     override with the processor default */
  if (TARGET_MULTIPLE_SET)
    target_flags = (target_flags & ~MASK_MULTIPLE) | multiple;

  /* If -mstring or -mno-string was explicitly used, don't
     override with the processor default */
  if (TARGET_STRING_SET)
    target_flags = (target_flags & ~MASK_STRING) | string;

  /* Don't allow -mmultiple or -mstring on little endian systems, because the
     hardware doesn't support the instructions used in little endian mode */
  if (!BYTES_BIG_ENDIAN)
    {
      if (TARGET_MULTIPLE)
	{
	  target_flags &= ~MASK_MULTIPLE;
	  if (TARGET_MULTIPLE_SET)
	    warning ("-mmultiple is not supported on little endian systems");
	}

      if (TARGET_STRING)
	{
	  target_flags &= ~MASK_STRING;
	  if (TARGET_STRING_SET)
	    warning ("-mstring is not supported on little endian systems");
	}
    }

#ifdef SUBTARGET_OVERRIDE_OPTIONS
  SUBTARGET_OVERRIDE_OPTIONS;
#endif
}

/* Create a CONST_DOUBLE from a string.  */

struct rtx_def *
rs6000_float_const (string, mode)
     char *string;
     enum machine_mode mode;
{
  REAL_VALUE_TYPE value = REAL_VALUE_ATOF (string, mode);
  return immed_real_const_1 (value, mode);
}


/* Create a CONST_DOUBLE like immed_double_const, except reverse the
   two parts of the constant if the target is little endian.  */

struct rtx_def *
rs6000_immed_double_const (i0, i1, mode)
     HOST_WIDE_INT i0, i1;
     enum machine_mode mode;
{
  if (! WORDS_BIG_ENDIAN)
    return immed_double_const (i1, i0, mode);

  return immed_double_const (i0, i1, mode);
}


/* Return non-zero if this function is known to have a null epilogue.  */

int
direct_return ()
{
  if (reload_completed)
    {
      rs6000_stack_t *info = rs6000_stack_info ();

      if (info->first_gp_reg_save == 32
	  && info->first_fp_reg_save == 64
	  && !info->lr_save_p
	  && !info->cr_save_p
	  && !info->push_p)
	return 1;
    }

  return 0;
}

/* Returns 1 always.  */

int
any_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return 1;
}

/* Return 1 if OP is a constant that can fit in a D field.  */

int
short_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT
	  && (unsigned) (INTVAL (op) + 0x8000) < 0x10000);
}

/* Similar for a unsigned D field.  */

int
u_short_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff0000) == 0);
}

/* Return 1 if OP is a CONST_INT that cannot fit in a signed D field.  */

int
non_short_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT
	  && (unsigned) (INTVAL (op) + 0x8000) >= 0x10000);
}

/* Returns 1 if OP is a register that is not special (i.e., not MQ,
   ctr, or lr).  */

int
gpc_reg_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  && (GET_CODE (op) != REG || REGNO (op) >= 67 || REGNO (op) < 64));
}

/* Returns 1 if OP is either a pseudo-register or a register denoting a
   CR field.  */

int
cc_reg_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (register_operand (op, mode)
	  && (GET_CODE (op) != REG
	      || REGNO (op) >= FIRST_PSEUDO_REGISTER
	      || CR_REGNO_P (REGNO (op))));
}

/* Returns 1 if OP is either a constant integer valid for a D-field or a
   non-special register.  If a register, it must be in the proper mode unless
   MODE is VOIDmode.  */

int
reg_or_short_operand (op, mode)
      register rtx op;
      enum machine_mode mode;
{
  return short_cint_operand (op, mode) || gpc_reg_operand (op, mode);
}

/* Similar, except check if the negation of the constant would be valid for
   a D-field.  */

int
reg_or_neg_short_operand (op, mode)
      register rtx op;
      enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT)
    return CONST_OK_FOR_LETTER_P (INTVAL (op), 'P');

  return gpc_reg_operand (op, mode);
}

/* Return 1 if the operand is either a register or an integer whose high-order
   16 bits are zero.  */

int
reg_or_u_short_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (GET_CODE (op) == CONST_INT
      && (INTVAL (op) & 0xffff0000) == 0)
    return 1;

  return gpc_reg_operand (op, mode);
}

/* Return 1 is the operand is either a non-special register or ANY
   constant integer.  */

int
reg_or_cint_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
     return GET_CODE (op) == CONST_INT || gpc_reg_operand (op, mode);
}

/* Return 1 if the operand is a CONST_DOUBLE and it can be put into a register
   with one instruction per word.  We only do this if we can safely read
   CONST_DOUBLE_{LOW,HIGH}.  */

int
easy_fp_constant (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  rtx low, high;

  if (GET_CODE (op) != CONST_DOUBLE
      || GET_MODE (op) != mode
      || GET_MODE_CLASS (mode) != MODE_FLOAT)
    return 0;

  high = operand_subword (op, 0, 0, mode);
  low = operand_subword (op, 1, 0, mode);

  if (high == 0 || ! input_operand (high, word_mode))
    return 0;

  return (mode == SFmode
	  || (low != 0 && input_operand (low, word_mode)));
}

/* Return 1 if the operand is an offsettable memory address.  */

int
offsettable_addr_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return offsettable_address_p (reload_completed | reload_in_progress,
				mode, op);
}

/* Return 1 if the operand is either a floating-point register, a pseudo
   register, or memory.  */

int
fp_reg_or_mem_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (memory_operand (op, mode)
	  || (register_operand (op, mode)
	      && (GET_CODE (op) != REG
		  || REGNO (op) >= FIRST_PSEUDO_REGISTER
		  || FP_REGNO_P (REGNO (op)))));
}

/* Return 1 if the operand is either an easy FP constant (see above) or
   memory.  */

int
mem_or_easy_const_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return memory_operand (op, mode) || easy_fp_constant (op, mode);
}

/* Return 1 if the operand is either a non-special register or an item
   that can be used as the operand of an SI add insn.  */

int
add_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return (reg_or_short_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff) == 0));
}

/* Return 1 if OP is a constant but not a valid add_operand.  */

int
non_add_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT
	  && (unsigned) (INTVAL (op) + 0x8000) >= 0x10000
	  && (INTVAL (op) & 0xffff) != 0);
}

/* Return 1 if the operand is a non-special register or a constant that
   can be used as the operand of an OR or XOR insn on the RS/6000.  */

int
logical_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (gpc_reg_operand (op, mode)
	  || (GET_CODE (op) == CONST_INT
	      && ((INTVAL (op) & 0xffff0000) == 0
		  || (INTVAL (op) & 0xffff) == 0)));
}

/* Return 1 if C is a constant that is not a logical operand (as
   above).  */

int
non_logical_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == CONST_INT
	  && (INTVAL (op) & 0xffff0000) != 0
	  && (INTVAL (op) & 0xffff) != 0);
}

/* Return 1 if C is a constant that can be encoded in a mask on the
   RS/6000.  It is if there are no more than two 1->0 or 0->1 transitions.
   Reject all ones and all zeros, since these should have been optimized
   away and confuse the making of MB and ME.  */

int
mask_constant (c)
     register int c;
{
  int i;
  int last_bit_value;
  int transitions = 0;

  if (c == 0 || c == ~0)
    return 0;

  last_bit_value = c & 1;

  for (i = 1; i < 32; i++)
    if (((c >>= 1) & 1) != last_bit_value)
      last_bit_value ^= 1, transitions++;

  return transitions <= 2;
}

/* Return 1 if the operand is a constant that is a mask on the RS/6000. */

int
mask_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return GET_CODE (op) == CONST_INT && mask_constant (INTVAL (op));
}

/* Return 1 if the operand is either a non-special register or a
   constant that can be used as the operand of an RS/6000 logical AND insn.  */

int
and_operand (op, mode)
    register rtx op;
    enum machine_mode mode;
{
  return (reg_or_short_operand (op, mode)
	  || logical_operand (op, mode)
	  || mask_operand (op, mode));
}

/* Return 1 if the operand is a constant but not a valid operand for an AND
   insn.  */

int
non_and_cint_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return GET_CODE (op) == CONST_INT && ! and_operand (op, mode);
}

/* Return 1 if the operand is a general register or memory operand.  */

int
reg_or_mem_operand (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  return gpc_reg_operand (op, mode) || memory_operand (op, mode);
}

/* Return 1 if the operand is a general register or memory operand without
   pre-inc or pre_dec which produces invalid form of PowerPC lwa
   instruction.  */

int
lwa_operand (op, mode)
     register rtx op;
     register enum machine_mode mode;
{
  rtx inner = op;

  if (reload_completed && GET_CODE (inner) == SUBREG)
    inner = SUBREG_REG (inner);
    
  return gpc_reg_operand (inner, mode)
    || (memory_operand (inner, mode)
	&& GET_CODE (XEXP (inner, 0)) != PRE_INC
	&& GET_CODE (XEXP (inner, 0)) != PRE_DEC);
}

/* Return 1 if the operand, used inside a MEM, is a valid first argument
   to CALL.  This is a SYMBOL_REF or a pseudo-register, which will be
   forced to lr.  */

int
call_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  if (mode != VOIDmode && GET_MODE (op) != mode)
    return 0;

  return (GET_CODE (op) == SYMBOL_REF
	  || (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER));
}


/* Return 1 if the operand is a SYMBOL_REF for a function known to be in
   this file.  */

int
current_file_function_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  return (GET_CODE (op) == SYMBOL_REF
	  && (SYMBOL_REF_FLAG (op)
	      || op == XEXP (DECL_RTL (current_function_decl), 0)));
}


/* Return 1 if this operand is a valid input for a move insn.  */

int
input_operand (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  /* Memory is always valid.  */
  if (memory_operand (op, mode))
    return 1;

  /* For floating-point, easy constants are valid.  */
  if (GET_MODE_CLASS (mode) == MODE_FLOAT
      && CONSTANT_P (op)
      && easy_fp_constant (op, mode))
    return 1;

  /* For floating-point or multi-word mode, the only remaining valid type
     is a register.  */
  if (GET_MODE_CLASS (mode) == MODE_FLOAT
      || GET_MODE_SIZE (mode) > UNITS_PER_WORD)
    return register_operand (op, mode);

  /* The only cases left are integral modes one word or smaller (we
     do not get called for MODE_CC values).  These can be in any
     register.  */
  if (register_operand (op, mode))
    return 1;

  /* For HImode and QImode, any constant is valid. */
  if ((mode == HImode || mode == QImode)
      && GET_CODE (op) == CONST_INT)
    return 1;

  /* A SYMBOL_REF referring to the TOC is valid.  */
  if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (op))
    return 1;

  /* Otherwise, we will be doing this SET with an add, so anything valid
     for an add will be valid.  */
  return add_operand (op, mode);
}

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.

   For incoming args we set the number of arguments in the prototype large
   so we never return an EXPR_LIST.  */

void
init_cumulative_args (cum, fntype, libname, incoming)
     CUMULATIVE_ARGS *cum;
     tree fntype;
     rtx libname;
     int incoming;
{
  static CUMULATIVE_ARGS zero_cumulative;

  *cum = zero_cumulative;
  cum->words = 0;
  cum->fregno = FP_ARG_MIN_REG;
  cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));

  if (incoming)
    {
      cum->nargs_prototype = 1000;		/* don't return an EXPR_LIST */
#ifdef TARGET_V4_CALLS
      if (TARGET_V4_CALLS)
	cum->varargs_offset = RS6000_VARARGS_OFFSET;
#endif
    }

  else if (cum->prototype)
    cum->nargs_prototype = (list_length (TYPE_ARG_TYPES (fntype)) - 1
			    + (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode
			       || RETURN_IN_MEMORY (TREE_TYPE (fntype))));

  else
    cum->nargs_prototype = 0;

  cum->orig_nargs = cum->nargs_prototype;
  if (TARGET_DEBUG_ARG)
    {
      fprintf (stderr, "\ninit_cumulative_args:");
      if (fntype)
	{
	  tree ret_type = TREE_TYPE (fntype);
	  fprintf (stderr, " ret code = %s,",
		   tree_code_name[ (int)TREE_CODE (ret_type) ]);
	}

#ifdef TARGET_V4_CALLS
      if (TARGET_V4_CALLS && incoming)
	fprintf (stderr, " varargs = %d, ", cum->varargs_offset);
#endif

      fprintf (stderr, " proto = %d, nargs = %d\n",
	       cum->prototype, cum->nargs_prototype);
    }
}

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

void
function_arg_advance (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  cum->nargs_prototype--;

#ifdef TARGET_V4_CALLS
  if (TARGET_V4_CALLS)
    {
      /* Long longs must not be split between registers and stack */
      if ((GET_MODE_CLASS (mode) != MODE_FLOAT || TARGET_SOFT_FLOAT)
	  && type && !AGGREGATE_TYPE_P (type)
	  && cum->words < GP_ARG_NUM_REG
	  && cum->words + RS6000_ARG_SIZE (mode, type, named) > GP_ARG_NUM_REG)
	{
	  cum->words = GP_ARG_NUM_REG;
	}

      /* Aggregates get passed as pointers */
      if (type && AGGREGATE_TYPE_P (type))
	cum->words++;

      /* Floats go in registers, & don't occupy space in the GP registers
	 like they do for AIX unless software floating point.  */
      else if (GET_MODE_CLASS (mode) == MODE_FLOAT
	       && TARGET_HARD_FLOAT
	       && cum->fregno <= FP_ARG_V4_MAX_REG)
	cum->fregno++;

      else
	cum->words += RS6000_ARG_SIZE (mode, type, 1);
    }
  else
#endif
    if (named)
      {
	cum->words += RS6000_ARG_SIZE (mode, type, named);
	if (GET_MODE_CLASS (mode) == MODE_FLOAT && TARGET_HARD_FLOAT)
	  cum->fregno++;
      }

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "function_adv: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, named = %d\n",
	     cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), named);
}

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).

   On RS/6000 the first eight words of non-FP are normally in registers
   and the rest are pushed.  Under AIX, the first 13 FP args are in registers.
   Under V.4, the first 8 FP args are in registers.

   If this is floating-point and no prototype is specified, we use
   both an FP and integer register (or possibly FP reg and stack).  Library
   functions (when TYPE is zero) always have the proper types for args,
   so we can pass the FP value just in one register.  emit_library_function
   doesn't support EXPR_LIST anyway.  */

struct rtx_def *
function_arg (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "function_arg: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, named = %d\n",
	     cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), named);

  /* Return a marker to indicate whether CR1 needs to set or clear the bit that V.4
     uses to say fp args were passed in registers.  Assume that we don't need the
     marker for software floating point, or compiler generated library calls.  */
  if (mode == VOIDmode)
    {
#ifdef TARGET_V4_CALLS
      if (TARGET_V4_CALLS && TARGET_HARD_FLOAT && cum->nargs_prototype < 0
	  && type && (cum->prototype || TARGET_NO_PROTOTYPE))
	return GEN_INT ((cum->fregno == FP_ARG_MIN_REG) ? -1 : 1);
#endif

      return GEN_INT (0);
    }

  if (!named)
    {
#ifdef TARGET_V4_CALLS
      if (!TARGET_V4_CALLS)
#endif
	return NULL_RTX;
    }

  if (type && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    return NULL_RTX;

  if (USE_FP_FOR_ARG_P (*cum, mode, type))
    {
      if ((cum->nargs_prototype > 0)
#ifdef TARGET_V4_CALLS
	  || TARGET_V4_CALLS	/* V.4 never passes FP values in GP registers */
#endif
	  || !type)
	return gen_rtx (REG, mode, cum->fregno);

      return gen_rtx (EXPR_LIST, VOIDmode,
		      ((cum->words < GP_ARG_NUM_REG)
		       ? gen_rtx (REG, mode, GP_ARG_MIN_REG + cum->words)
		       : NULL_RTX),
		      gen_rtx (REG, mode, cum->fregno));
    }

#ifdef TARGET_V4_CALLS
  /* Long longs won't be split between register and stack */
  else if (TARGET_V4_CALLS &&
	   cum->words + RS6000_ARG_SIZE (mode, type, named) > GP_ARG_NUM_REG)
    {
      return NULL_RTX;
    }
#endif

  else if (cum->words < GP_ARG_NUM_REG)
    return gen_rtx (REG, mode, GP_ARG_MIN_REG + cum->words);

  return NULL_RTX;
}

/* For an arg passed partly in registers and partly in memory,
   this is the number of registers used.
   For args passed entirely in registers or entirely in memory, zero.  */

int
function_arg_partial_nregs (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
  if (! named)
    return 0;

#ifdef TARGET_V4_CALLS
  if (TARGET_V4_CALLS)
    return 0;
#endif

  if (USE_FP_FOR_ARG_P (*cum, mode, type))
    {
      if (cum->nargs_prototype >= 0)
	return 0;
    }

  if (cum->words < GP_ARG_NUM_REG
      && GP_ARG_NUM_REG < (cum->words + RS6000_ARG_SIZE (mode, type, named)))
    {
      int ret = GP_ARG_NUM_REG - cum->words;
      if (ret && TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_partial_nregs: %d\n", ret);

      return ret;
    }

  return 0;
}

/* A C expression that indicates when an argument must be passed by
   reference.  If nonzero for an argument, a copy of that argument is
   made in memory and a pointer to the argument is passed instead of
   the argument itself.  The pointer is passed in whatever way is
   appropriate for passing a pointer to that type.

   Under V.4, structures and unions are passed by reference.  */

int
function_arg_pass_by_reference (cum, mode, type, named)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int named;
{
#ifdef TARGET_V4_CALLS
  if (TARGET_V4_CALLS && type && AGGREGATE_TYPE_P (type))
    {
      if (TARGET_DEBUG_ARG)
	fprintf (stderr, "function_arg_pass_by_reference: aggregate\n");

      return 1;
    }
#endif

  return 0;
}


/* Perform any needed actions needed for a function that is receiving a
   variable number of arguments. 

   CUM is as above.

   MODE and TYPE are the mode and type of the current parameter.

   PRETEND_SIZE is a variable that should be set to the amount of stack
   that must be pushed by the prolog to pretend that our caller pushed
   it.

   Normally, this macro will push all remaining incoming registers on the
   stack and set PRETEND_SIZE to the length of the registers pushed.  */

void
setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
     CUMULATIVE_ARGS *cum;
     enum machine_mode mode;
     tree type;
     int *pretend_size;
     int no_rtl;

{
  rtx save_area = virtual_incoming_args_rtx;
  int reg_size	= (TARGET_64BIT) ? 8 : 4;

  if (TARGET_DEBUG_ARG)
    fprintf (stderr,
	     "setup_vararg: words = %2d, fregno = %2d, nargs = %4d, proto = %d, mode = %4s, no_rtl= %d\n",
	     cum->words, cum->fregno, cum->nargs_prototype, cum->prototype, GET_MODE_NAME (mode), no_rtl);

#ifdef TARGET_V4_CALLS
  if (TARGET_V4_CALLS && !no_rtl)
    {
      rs6000_sysv_varargs_p = 1;
      save_area = plus_constant (frame_pointer_rtx, RS6000_VARARGS_OFFSET);
    }
#endif

  if (cum->words < 8)
    {
      int first_reg_offset = cum->words;

      if (MUST_PASS_IN_STACK (mode, type))
	first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (type), type, 1);

      if (first_reg_offset > GP_ARG_NUM_REG)
	first_reg_offset = GP_ARG_NUM_REG;

      if (!no_rtl && first_reg_offset != GP_ARG_NUM_REG)
	move_block_from_reg
	  (GP_ARG_MIN_REG + first_reg_offset,
	   gen_rtx (MEM, BLKmode,
		    plus_constant (save_area, first_reg_offset * reg_size)),
	   GP_ARG_NUM_REG - first_reg_offset,
	   (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD);

      *pretend_size = (GP_ARG_NUM_REG - first_reg_offset) * UNITS_PER_WORD;
    }

#ifdef TARGET_V4_CALLS
  /* Save FP registers if needed.  */
  if (TARGET_V4_CALLS && TARGET_HARD_FLOAT && !no_rtl)
    {
      int fregno     = cum->fregno;
      int num_fp_reg = FP_ARG_V4_MAX_REG + 1 - fregno;

      if (num_fp_reg >= 0)
	{
	  rtx cr1 = gen_rtx (REG, CCmode, 69);
	  rtx lab = gen_label_rtx ();
	  int off = (GP_ARG_NUM_REG * reg_size) + ((fregno - FP_ARG_MIN_REG) * 8);

	  emit_jump_insn (gen_rtx (SET, VOIDmode,
				   pc_rtx,
				   gen_rtx (IF_THEN_ELSE, VOIDmode,
					    gen_rtx (NE, VOIDmode, cr1, const0_rtx),
					    gen_rtx (LABEL_REF, VOIDmode, lab),
					    pc_rtx)));

	  while ( num_fp_reg-- >= 0)
	    {
	      emit_move_insn (gen_rtx (MEM, DFmode, plus_constant (save_area, off)),
			      gen_rtx (REG, DFmode, fregno++));
	      off += 8;
	    }

	  emit_label (lab);
	}
    }
#endif
}

/* If defined, is a C expression that produces the machine-specific
   code for a call to `__builtin_saveregs'.  This code will be moved
   to the very beginning of the function, before any parameter access
   are made.  The return value of this function should be an RTX that
   contains the value to use as the return of `__builtin_saveregs'.

   The argument ARGS is a `tree_list' containing the arguments that
   were passed to `__builtin_saveregs'.

   If this macro is not defined, the compiler will output an ordinary
   call to the library function `__builtin_saveregs'.
   
   On the Power/PowerPC return the address of the area on the stack
   used to hold arguments.  Under AIX, this includes the 8 word register
   save area.  Under V.4 this does not.  */

struct rtx_def *
expand_builtin_saveregs (args)
     tree args;
{
  return virtual_incoming_args_rtx;
}


/* Allocate a stack temp.  Only allocate one stack temp per type for a
   function.  */

struct rtx_def *
rs6000_stack_temp (mode, size)
     enum machine_mode mode;
     int size;
{
  rtx temp = stack_temps[ (int)mode ];
  rtx addr;

  if (temp == NULL_RTX)
    {
      temp = assign_stack_local (mode, size, 0);
      addr = XEXP (temp, 0);

      if ((size > 4 && !offsettable_address_p (0, mode, addr))
	  || (size <= 4 && !memory_address_p (mode, addr)))
	{
	  XEXP (temp, 0) = copy_addr_to_reg (addr);
	}

      stack_temps[ (int)mode ] = temp;
    }

  return temp;
}


/* Generate a memory reference for expand_block_move, copying volatile,
   and other bits from an original memory reference.  */

static rtx
expand_block_move_mem (mode, addr, orig_mem)
     enum machine_mode mode;
     rtx addr;
     rtx orig_mem;
{
  rtx mem = gen_rtx (MEM, mode, addr);
  MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (orig_mem);
  MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (orig_mem);
  return mem;
}

/* Expand a block move operation, and return 1 if successful.  Return 0
   if we should let the compiler generate normal code.

   operands[0] is the destination
   operands[1] is the source
   operands[2] is the length
   operands[3] is the alignment */

#define MAX_MOVE_REG 4

int
expand_block_move (operands)
     rtx operands[];
{
  rtx bytes_rtx	= operands[2];
  rtx align_rtx = operands[3];
  int constp	= (GET_CODE (bytes_rtx) == CONST_INT);
  int align	= XINT (align_rtx, 0);
  int bytes;
  int offset;
  int num_reg;
  int i;
  rtx src_reg;
  rtx dest_reg;
  rtx src_addr;
  rtx dest_addr;
  rtx tmp_reg;
  rtx stores[MAX_MOVE_REG];
  int move_bytes;

  /* If this is not a fixed size move, just call memcpy */
  if (!constp)
    return 0;

  /* Anything to move? */
  bytes = INTVAL (bytes_rtx);
  if (bytes <= 0)
    return 1;

  /* Don't support real large moves.  If string instructions are not used,
     then don't generate more than 8 loads.  */
  if (TARGET_STRING)
    {
      if (bytes > 4*8)
	return 0;
    }
  else if (!STRICT_ALIGNMENT)
    {
      if (bytes > 4*8)
	return 0;
    }
  else if (bytes > 8*align)
    return 0;

  /* Move the address into scratch registers.  */
  dest_reg = copy_addr_to_reg (XEXP (operands[0], 0));
  src_reg  = copy_addr_to_reg (XEXP (operands[1], 0));

  if (TARGET_STRING)	/* string instructions are available */
    {
      for ( ; bytes > 0; bytes -= move_bytes)
	{
	  if (bytes > 24		/* move up to 32 bytes at a time */
	      && !fixed_regs[5]
	      && !fixed_regs[6]
	      && !fixed_regs[7]
	      && !fixed_regs[8]
	      && !fixed_regs[9]
	      && !fixed_regs[10]
	      && !fixed_regs[11]
	      && !fixed_regs[12])
	    {
	      move_bytes = (bytes > 32) ? 32 : bytes;
	      emit_insn (gen_movstrsi_8reg (dest_reg,
					    src_reg,
					    GEN_INT ((move_bytes == 32) ? 0 : move_bytes),
					    align_rtx));
	    }
	  else if (bytes > 16	/* move up to 24 bytes at a time */
		   && !fixed_regs[7]
		   && !fixed_regs[8]
		   && !fixed_regs[9]
		   && !fixed_regs[10]
		   && !fixed_regs[11]
		   && !fixed_regs[12])
	    {
	      move_bytes = (bytes > 24) ? 24 : bytes;
	      emit_insn (gen_movstrsi_6reg (dest_reg,
					    src_reg,
					    GEN_INT (move_bytes),
					    align_rtx));
	    }
	  else if (bytes > 8	/* move up to 16 bytes at a time */
		   && !fixed_regs[9]
		   && !fixed_regs[10]
		   && !fixed_regs[11]
		   && !fixed_regs[12])
	    {
	      move_bytes = (bytes > 16) ? 16 : bytes;
	      emit_insn (gen_movstrsi_4reg (dest_reg,
					    src_reg,
					    GEN_INT (move_bytes),
					    align_rtx));
	    }
	  else if (bytes > 4 && !TARGET_64BIT)
	    {			/* move up to 8 bytes at a time */
	      move_bytes = (bytes > 8) ? 8 : bytes;
	      emit_insn (gen_movstrsi_2reg (dest_reg,
					    src_reg,
					    GEN_INT (move_bytes),
					    align_rtx));
	    }
	  else if (bytes >= 4 && (align >= 4 || !STRICT_ALIGNMENT))
	    {			/* move 4 bytes */
	      move_bytes = 4;
	      tmp_reg = gen_reg_rtx (SImode);
	      emit_move_insn (tmp_reg, gen_rtx (MEM, SImode, src_reg));
	      emit_move_insn (gen_rtx (MEM, SImode, dest_reg), tmp_reg);
	    }
	  else if (bytes == 2 && (align >= 2 || !STRICT_ALIGNMENT))
	    {			/* move 2 bytes */
	      move_bytes = 2;
	      tmp_reg = gen_reg_rtx (HImode);
	      emit_move_insn (tmp_reg, gen_rtx (MEM, HImode, src_reg));
	      emit_move_insn (gen_rtx (MEM, HImode, dest_reg), tmp_reg);
	    }
	  else if (bytes == 1)	/* move 1 byte */
	    {
	      move_bytes = 1;
	      tmp_reg = gen_reg_rtx (QImode);
	      emit_move_insn (tmp_reg, gen_rtx (MEM, QImode, src_reg));
	      emit_move_insn (gen_rtx (MEM, QImode, dest_reg), tmp_reg);
	    }
	  else
	    {			/* move up to 4 bytes at a time */
	      move_bytes = (bytes > 4) ? 4 : bytes;
	      emit_insn (gen_movstrsi_1reg (dest_reg,
					    src_reg,
					    GEN_INT (move_bytes),
					    align_rtx));
	    }

	  if (bytes > move_bytes)
	    {
	      emit_insn (gen_addsi3 (src_reg, src_reg, GEN_INT (move_bytes)));
	      emit_insn (gen_addsi3 (dest_reg, dest_reg, GEN_INT (move_bytes)));
	    }
	}
    }

  else			/* string instructions not available */
    {
      num_reg = offset = 0;
      for ( ; bytes > 0; (bytes -= move_bytes), (offset += move_bytes))
	{
	  /* Calculate the correct offset for src/dest */
	  if (offset == 0)
	    {
	      src_addr  = src_reg;
	      dest_addr = dest_reg;
	    }
	  else
	    {
	      src_addr  = gen_rtx (PLUS, Pmode, src_reg,  GEN_INT (offset));
	      dest_addr = gen_rtx (PLUS, Pmode, dest_reg, GEN_INT (offset));
	    }

	  /* Generate the appropriate load and store, saving the stores for later */
	  if (bytes >= 4 && (align >= 4 || !STRICT_ALIGNMENT))
	    {
	      move_bytes = 4;
	      tmp_reg = gen_reg_rtx (SImode);
	      emit_insn (gen_movsi (tmp_reg, gen_rtx (MEM, SImode, src_addr)));
	      stores[ num_reg++ ] = gen_movsi (gen_rtx (MEM, SImode, dest_addr), tmp_reg);
	    }
	  else if (bytes >= 2 && (align >= 2 || !STRICT_ALIGNMENT))
	    {
	      move_bytes = 2;
	      tmp_reg = gen_reg_rtx (HImode);
	      emit_insn (gen_movhi (tmp_reg, gen_rtx (MEM, HImode, src_addr)));
	      stores[ num_reg++ ] = gen_movhi (gen_rtx (MEM, HImode, dest_addr), tmp_reg);
	    }
	  else
	    {
	      move_bytes = 1;
	      tmp_reg = gen_reg_rtx (QImode);
	      emit_insn (gen_movqi (tmp_reg, gen_rtx (MEM, QImode, src_addr)));
	      stores[ num_reg++ ] = gen_movqi (gen_rtx (MEM, QImode, dest_addr), tmp_reg);
	    }

	  if (num_reg >= MAX_MOVE_REG)
	    {
	      for (i = 0; i < num_reg; i++)
		emit_insn (stores[i]);
	      num_reg = 0;
	    }
	}

      if (num_reg > 0)
	{
	  for (i = 0; i < num_reg; i++)
	    emit_insn (stores[i]);
	}
    }

  return 1;
}


/* Return 1 if OP is a load multiple operation.  It is known to be a
   PARALLEL and the first section will be tested.  */

int
load_multiple_operation (op, mode)
     rtx op;
     enum machine_mode mode;
{
  int count = XVECLEN (op, 0);
  int dest_regno;
  rtx src_addr;
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
    return 0;

  dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
  src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);

  for (i = 1; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i);

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_DEST (elt)) != REG
	  || GET_MODE (SET_DEST (elt)) != SImode
	  || REGNO (SET_DEST (elt)) != dest_regno + i
	  || GET_CODE (SET_SRC (elt)) != MEM
	  || GET_MODE (SET_SRC (elt)) != SImode
	  || GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
	  || ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
	  || GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
	  || INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
	return 0;
    }

  return 1;
}

/* Similar, but tests for store multiple.  Here, the second vector element
   is a CLOBBER.  It will be tested later.  */

int
store_multiple_operation (op, mode)
     rtx op;
     enum machine_mode mode;
{
  int count = XVECLEN (op, 0) - 1;
  int src_regno;
  rtx dest_addr;
  int i;

  /* Perform a quick check so we don't blow up below.  */
  if (count <= 1
      || GET_CODE (XVECEXP (op, 0, 0)) != SET
      || GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
      || GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
    return 0;

  src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
  dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);

  for (i = 1; i < count; i++)
    {
      rtx elt = XVECEXP (op, 0, i + 1);

      if (GET_CODE (elt) != SET
	  || GET_CODE (SET_SRC (elt)) != REG
	  || GET_MODE (SET_SRC (elt)) != SImode
	  || REGNO (SET_SRC (elt)) != src_regno + i
	  || GET_CODE (SET_DEST (elt)) != MEM
	  || GET_MODE (SET_DEST (elt)) != SImode
	  || GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
	  || ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
	  || GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
	  || INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
	return 0;
    }

  return 1;
}

/* Return 1 if OP is a comparison operation that is valid for a branch insn.
   We only check the opcode against the mode of the CC value here.  */

int
branch_comparison_operator (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  cc_mode = GET_MODE (XEXP (op, 0));
  if (GET_MODE_CLASS (cc_mode) != MODE_CC)
    return 0;

  if ((code == GT || code == LT || code == GE || code == LE)
      && cc_mode == CCUNSmode)
    return 0;

  if ((code == GTU || code == LTU || code == GEU || code == LEU)
      && (cc_mode != CCUNSmode))
    return 0;

  return 1;
}

/* Return 1 if OP is a comparison operation that is valid for an scc insn.
   We check the opcode against the mode of the CC value and disallow EQ or
   NE comparisons for integers.  */

int
scc_comparison_operator (op, mode)
     register rtx op;
     enum machine_mode mode;
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;

  if (GET_MODE (op) != mode && mode != VOIDmode)
    return 0;

  if (GET_RTX_CLASS (code) != '<')
    return 0;

  cc_mode = GET_MODE (XEXP (op, 0));
  if (GET_MODE_CLASS (cc_mode) != MODE_CC)
    return 0;

  if (code == NE && cc_mode != CCFPmode)
    return 0;

  if ((code == GT || code == LT || code == GE || code == LE)
      && cc_mode == CCUNSmode)
    return 0;

  if ((code == GTU || code == LTU || code == GEU || code == LEU)
      && (cc_mode != CCUNSmode))
    return 0;

  if (cc_mode == CCEQmode && code != EQ && code != NE)
    return 0;

  return 1;
}

/* Return 1 if ANDOP is a mask that has no bits on that are not in the
   mask required to convert the result of a rotate insn into a shift
   left insn of SHIFTOP bits.  Both are known to be CONST_INT.  */

int
includes_lshift_p (shiftop, andop)
     register rtx shiftop;
     register rtx andop;
{
  int shift_mask = (~0 << INTVAL (shiftop));

  return (INTVAL (andop) & ~shift_mask) == 0;
}

/* Similar, but for right shift.  */

int
includes_rshift_p (shiftop, andop)
     register rtx shiftop;
     register rtx andop;
{
  unsigned shift_mask = ~0;

  shift_mask >>= INTVAL (shiftop);

  return (INTVAL (andop) & ~ shift_mask) == 0;
}

/* Return 1 if REGNO (reg1) == REGNO (reg2) - 1 making them candidates
   for lfq and stfq insns.

   Note reg1 and reg2 *must* be hard registers.  To be sure we will
   abort if we are passed pseudo registers.  */

int
registers_ok_for_quad_peep (reg1, reg2)
     rtx reg1, reg2;
{
  /* We might have been passed a SUBREG.  */
  if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) 
    return 0;

  return (REGNO (reg1) == REGNO (reg2) - 1);
}

/* Return 1 if addr1 and addr2 are suitable for lfq or stfq insn.  addr1 and
   addr2 must be in consecutive memory locations (addr2 == addr1 + 8).  */

int
addrs_ok_for_quad_peep (addr1, addr2)
     register rtx addr1;
     register rtx addr2;
{
  int reg1;
  int offset1;

  /* Extract an offset (if used) from the first addr.  */
  if (GET_CODE (addr1) == PLUS)
    {
      /* If not a REG, return zero.  */
      if (GET_CODE (XEXP (addr1, 0)) != REG)
	return 0;
      else
	{
          reg1 = REGNO (XEXP (addr1, 0));
	  /* The offset must be constant!  */
	  if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
            return 0;
          offset1 = INTVAL (XEXP (addr1, 1));
	}
    }
  else if (GET_CODE (addr1) != REG)
    return 0;
  else
    {
      reg1 = REGNO (addr1);
      /* This was a simple (mem (reg)) expression.  Offset is 0.  */
      offset1 = 0;
    }

  /* Make sure the second address is a (mem (plus (reg) (const_int).  */
  if (GET_CODE (addr2) != PLUS)
    return 0;

  if (GET_CODE (XEXP (addr2, 0)) != REG
      || GET_CODE (XEXP (addr2, 1)) != CONST_INT)
    return 0;

  if (reg1 != REGNO (XEXP (addr2, 0)))
    return 0;

  /* The offset for the second addr must be 8 more than the first addr.  */
  if (INTVAL (XEXP (addr2, 1)) != offset1 + 8)
    return 0;

  /* All the tests passed.  addr1 and addr2 are valid for lfq or stfq
     instructions.  */
  return 1;
}

/* Return the register class of a scratch register needed to copy IN into
   or out of a register in CLASS in MODE.  If it can be done directly,
   NO_REGS is returned.  */

enum reg_class
secondary_reload_class (class, mode, in)
     enum reg_class class;
     enum machine_mode mode;
     rtx in;
{
  int regno = true_regnum (in);

  if (regno >= FIRST_PSEUDO_REGISTER)
    regno = -1;

  /* We can place anything into GENERAL_REGS and can put GENERAL_REGS
     into anything.  */
  if (class == GENERAL_REGS || class == BASE_REGS
      || (regno >= 0 && INT_REGNO_P (regno)))
    return NO_REGS;

  /* Constants, memory, and FP registers can go into FP registers.  */
  if ((regno == -1 || FP_REGNO_P (regno))
      && (class == FLOAT_REGS || class == NON_SPECIAL_REGS))
    return NO_REGS;

  /* We can copy among the CR registers.  */
  if ((class == CR_REGS || class == CR0_REGS)
      && regno >= 0 && CR_REGNO_P (regno))
    return NO_REGS;

  /* Otherwise, we need GENERAL_REGS.  */
  return GENERAL_REGS;
}

/* Given a comparison operation, return the bit number in CCR to test.  We
   know this is a valid comparison.  

   SCC_P is 1 if this is for an scc.  That means that %D will have been
   used instead of %C, so the bits will be in different places.

   Return -1 if OP isn't a valid comparison for some reason.  */

int
ccr_bit (op, scc_p)
     register rtx op;
     int scc_p;
{
  enum rtx_code code = GET_CODE (op);
  enum machine_mode cc_mode;
  int cc_regnum;
  int base_bit;

  if (GET_RTX_CLASS (code) != '<')
    return -1;

  cc_mode = GET_MODE (XEXP (op, 0));
  cc_regnum = REGNO (XEXP (op, 0));
  base_bit = 4 * (cc_regnum - 68);

  /* In CCEQmode cases we have made sure that the result is always in the
     third bit of the CR field.  */

  if (cc_mode == CCEQmode)
    return base_bit + 3;

  switch (code)
    {
    case NE:
      return scc_p ? base_bit + 3 : base_bit + 2;
    case EQ:
      return base_bit + 2;
    case GT:  case GTU:
      return base_bit + 1;
    case LT:  case LTU:
      return base_bit;

    case GE:  case GEU:
      /* If floating-point, we will have done a cror to put the bit in the
	 unordered position.  So test that bit.  For integer, this is ! LT
	 unless this is an scc insn.  */
      return cc_mode == CCFPmode || scc_p ? base_bit + 3 : base_bit;

    case LE:  case LEU:
      return cc_mode == CCFPmode || scc_p ? base_bit + 3 : base_bit + 1;

    default:
      abort ();
    }
}

/* Print an operand.  Recognize special options, documented below.  */

void
print_operand (file, x, code)
    FILE *file;
    rtx x;
    char code;
{
  int i;
  int val;

  /* These macros test for integers and extract the low-order bits.  */
#define INT_P(X)  \
((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE)	\
 && GET_MODE (X) == VOIDmode)

#define INT_LOWPART(X) \
  (GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))

  switch (code)
    {
    case '.':
      /* Write out an instruction after the call which may be replaced
	 with glue code by the loader.  This depends on the AIX version.  */
      asm_fprintf (file, RS6000_CALL_GLUE);
      return;

    case '*':
      /* Write the register number of the TOC register.  */
      fputs (TARGET_MINIMAL_TOC ? reg_names[30] : reg_names[2], file);
      return;

    case 'A':
      /* If X is a constant integer whose low-order 5 bits are zero,
	 write 'l'.  Otherwise, write 'r'.  This is a kludge to fix a bug
	 in the AIX assembler where "sri" with a zero shift count
	 write a trash instruction.  */
      if (GET_CODE (x) == CONST_INT && (INTVAL (x) & 31) == 0)
	putc ('l', file);
      else
	putc ('r', file);
      return;

    case 'b':
      /* Low-order 16 bits of constant, unsigned.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%b value");

      fprintf (file, "%d", INT_LOWPART (x) & 0xffff);
      return;

    case 'C':
      /* This is an optional cror needed for LE or GE floating-point
	 comparisons.  Otherwise write nothing.  */
      if ((GET_CODE (x) == LE || GET_CODE (x) == GE)
	  && GET_MODE (XEXP (x, 0)) == CCFPmode)
	{
	  int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68);

	  fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3,
		   base_bit + 2, base_bit + (GET_CODE (x) == GE));
	}
      return;

    case 'D':
      /* Similar, except that this is for an scc, so we must be able to
	 encode the test in a single bit that is one.  We do the above
	 for any LE, GE, GEU, or LEU and invert the bit for NE.  */
      if (GET_CODE (x) == LE || GET_CODE (x) == GE
	  || GET_CODE (x) == LEU || GET_CODE (x) == GEU)
	{
	  int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68);

	  fprintf (file, "cror %d,%d,%d\n\t", base_bit + 3,
		   base_bit + 2,
		   base_bit + (GET_CODE (x) == GE || GET_CODE (x) == GEU));
	}

      else if (GET_CODE (x) == NE)
	{
	  int base_bit = 4 * (REGNO (XEXP (x, 0)) - 68);

	  fprintf (file, "crnor %d,%d,%d\n\t", base_bit + 3,
		   base_bit + 2, base_bit + 2);
	}
      return;

    case 'E':
      /* X is a CR register.  Print the number of the third bit of the CR */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%E value");

      fprintf(file, "%d", 4 * (REGNO (x) - 68) + 3);
      return;

    case 'f':
      /* X is a CR register.  Print the shift count needed to move it
	 to the high-order four bits.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%f value");
      else
	fprintf (file, "%d", 4 * (REGNO (x) - 68));
      return;

    case 'F':
      /* Similar, but print the count for the rotate in the opposite
	 direction.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%F value");
      else
	fprintf (file, "%d", 32 - 4 * (REGNO (x) - 68));
      return;

    case 'G':
      /* X is a constant integer.  If it is negative, print "m",
	 otherwise print "z".  This is to make a aze or ame insn.  */
      if (GET_CODE (x) != CONST_INT)
	output_operand_lossage ("invalid %%G value");
      else if (INTVAL (x) >= 0)
	putc ('z', file);
      else
	putc ('m', file);
      return;
	
    case 'h':
      /* If constant, output low-order five bits.  Otherwise,
	 write normally. */
      if (INT_P (x))
	fprintf (file, "%d", INT_LOWPART (x) & 31);
      else
	print_operand (file, x, 0);
      return;

    case 'I':
      /* Print `i' if this is a constant, else nothing.  */
      if (INT_P (x))
	putc ('i', file);
      return;

    case 'j':
      /* Write the bit number in CCR for jump.  */
      i = ccr_bit (x, 0);
      if (i == -1)
	output_operand_lossage ("invalid %%j code");
      else
	fprintf (file, "%d", i);
      return;

    case 'J':
      /* Similar, but add one for shift count in rlinm for scc and pass
	 scc flag to `ccr_bit'.  */
      i = ccr_bit (x, 1);
      if (i == -1)
	output_operand_lossage ("invalid %%J code");
      else
	/* If we want bit 31, write a shift count of zero, not 32.  */
	fprintf (file, "%d", i == 31 ? 0 : i + 1);
      return;

    case 'k':
      /* X must be a constant.  Write the 1's complement of the
	 constant.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%k value");

      fprintf (file, "%d", ~ INT_LOWPART (x));
      return;

    case 'L':
      /* Write second word of DImode or DFmode reference.  Works on register
	 or non-indexed memory only.  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%d", REGNO (x) + 1);
      else if (GET_CODE (x) == MEM)
	{
	  /* Handle possible auto-increment.  Since it is pre-increment and
	     we have already done it, we can just use an offset of four.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
	  else
	    output_address (plus_constant (XEXP (x, 0), 4));
	}
      return;
			    
    case 'm':
      /* MB value for a mask operand.  */
      if (! mask_operand (x, VOIDmode))
	output_operand_lossage ("invalid %%m value");

      val = INT_LOWPART (x);

      /* If the high bit is set and the low bit is not, the value is zero.
	 If the high bit is zero, the value is the first 1 bit we find from
	 the left.  */
      if (val < 0 && (val & 1) == 0)
	{
	  fprintf (file, "0");
	  return;
	}
      else if (val >= 0)
	{
	  for (i = 1; i < 32; i++)
	    if ((val <<= 1) < 0)
	      break;
	  fprintf (file, "%d", i);
	  return;
	}
	  
      /* Otherwise, look for the first 0 bit from the right.  The result is its
	 number plus 1. We know the low-order bit is one.  */
      for (i = 0; i < 32; i++)
	if (((val >>= 1) & 1) == 0)
	  break;

      /* If we ended in ...01, I would be 0.  The correct value is 31, so
	 we want 31 - i.  */
      fprintf (file, "%d", 31 - i);
      return;

    case 'M':
      /* ME value for a mask operand.  */
      if (! mask_operand (x, VOIDmode))
	output_operand_lossage ("invalid %%m value");

      val = INT_LOWPART (x);

      /* If the low bit is set and the high bit is not, the value is 31.
	 If the low bit is zero, the value is the first 1 bit we find from
	 the right.  */
      if ((val & 1) && val >= 0)
	{
	  fputs ("31", file);
	  return;
	}
      else if ((val & 1) == 0)
	{
	  for (i = 0; i < 32; i++)
	    if ((val >>= 1) & 1)
	      break;

	  /* If we had ....10, I would be 0.  The result should be
	     30, so we need 30 - i.  */
	  fprintf (file, "%d", 30 - i);
	  return;
	}
	  
      /* Otherwise, look for the first 0 bit from the left.  The result is its
	 number minus 1. We know the high-order bit is one.  */
      for (i = 0; i < 32; i++)
	if ((val <<= 1) >= 0)
	  break;

      fprintf (file, "%d", i);
      return;

    case 'N':
      /* Write the number of elements in the vector times 4.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%N value");

      fprintf (file, "%d", XVECLEN (x, 0) * 4);
      return;

    case 'O':
      /* Similar, but subtract 1 first.  */
      if (GET_CODE (x) != PARALLEL)
	output_operand_lossage ("invalid %%N value");

      fprintf (file, "%d", (XVECLEN (x, 0) - 1) * 4);
      return;

    case 'p':
      /* X is a CONST_INT that is a power of two.  Output the logarithm.  */
      if (! INT_P (x)
	  || (i = exact_log2 (INT_LOWPART (x))) < 0)
	output_operand_lossage ("invalid %%p value");

      fprintf (file, "%d", i);
      return;

    case 'P':
      /* The operand must be an indirect memory reference.  The result
	 is the register number. */
      if (GET_CODE (x) != MEM || GET_CODE (XEXP (x, 0)) != REG
	  || REGNO (XEXP (x, 0)) >= 32)
	output_operand_lossage ("invalid %%P value");

      fprintf (file, "%d", REGNO (XEXP (x, 0)));
      return;

    case 'R':
      /* X is a CR register.  Print the mask for `mtcrf'.  */
      if (GET_CODE (x) != REG || ! CR_REGNO_P (REGNO (x)))
	output_operand_lossage ("invalid %%R value");
      else
	fprintf (file, "%d", 128 >> (REGNO (x) - 68));
      return;

    case 's':
      /* Low 5 bits of 32 - value */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%s value");

      fprintf (file, "%d", (32 - INT_LOWPART (x)) & 31);
      return;

    case 't':
      /* Write 12 if this jump operation will branch if true, 4 otherwise. 
	 All floating-point operations except NE branch true and integer
	 EQ, LT, GT, LTU and GTU also branch true.  */
      if (GET_RTX_CLASS (GET_CODE (x)) != '<')
	output_operand_lossage ("invalid %%t value");

      else if ((GET_MODE (XEXP (x, 0)) == CCFPmode
		&& GET_CODE (x) != NE)
	       || GET_CODE (x) == EQ
	       || GET_CODE (x) == LT || GET_CODE (x) == GT
	       || GET_CODE (x) == LTU || GET_CODE (x) == GTU)
	fputs ("12", file);
      else
	putc ('4', file);
      return;
      
    case 'T':
      /* Opposite of 't': write 4 if this jump operation will branch if true,
	 12 otherwise.   */
      if (GET_RTX_CLASS (GET_CODE (x)) != '<')
	output_operand_lossage ("invalid %%t value");

      else if ((GET_MODE (XEXP (x, 0)) == CCFPmode
		&& GET_CODE (x) != NE)
	       || GET_CODE (x) == EQ
	       || GET_CODE (x) == LT || GET_CODE (x) == GT
	       || GET_CODE (x) == LTU || GET_CODE (x) == GTU)
	putc ('4', file);
      else
	fputs ("12", file);
      return;
      
    case 'u':
      /* High-order 16 bits of constant.  */
      if (! INT_P (x))
	output_operand_lossage ("invalid %%u value");

      fprintf (file, "0x%x", (INT_LOWPART (x) >> 16) & 0xffff);
      return;

    case 'U':
      /* Print `u' if this has an auto-increment or auto-decrement.  */
      if (GET_CODE (x) == MEM
	  && (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC))
	putc ('u', file);
      return;

    case 'w':
      /* If constant, low-order 16 bits of constant, signed.  Otherwise, write
	 normally.  */
      if (INT_P (x))
	fprintf (file, "%d",
		 (INT_LOWPART (x) & 0xffff) - 2 * (INT_LOWPART (x) & 0x8000));
      else
	print_operand (file, x, 0);
      return;

    case 'W':
      /* If constant, low-order 16 bits of constant, unsigned.
	 Otherwise, write normally.  */
      if (INT_P (x))
	fprintf (file, "%d", INT_LOWPART (x) & 0xffff);
      else
	print_operand (file, x, 0);
      return;

    case 'X':
      if (GET_CODE (x) == MEM
	  && LEGITIMATE_INDEXED_ADDRESS_P (XEXP (x, 0)))
	putc ('x', file);
      return;

    case 'Y':
      /* Like 'L', for third word of TImode  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%d", REGNO (x) + 2);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 8));
	  else
	    output_address (plus_constant (XEXP (x, 0), 8));
	}
      return;
			    
    case 'z':
      /* X is a SYMBOL_REF.  Write out the name preceded by a
	 period and without any trailing data in brackets.  Used for function
	 names.  If we are configured for System V (or the embedded ABI) on
	 the PowerPC, do not emit the period, since those systems do not use
	 TOCs and the like.  */
      if (GET_CODE (x) != SYMBOL_REF)
	abort ();

#ifndef USING_SVR4_H
      putc ('.', file);
#endif
      RS6000_OUTPUT_BASENAME (file, XSTR (x, 0));
      return;

    case 'Z':
      /* Like 'L', for last word of TImode.  */
      if (GET_CODE (x) == REG)
	fprintf (file, "%d", REGNO (x) + 3);
      else if (GET_CODE (x) == MEM)
	{
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC
	      || GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    output_address (plus_constant (XEXP (XEXP (x, 0), 0), 12));
	  else
	    output_address (plus_constant (XEXP (x, 0), 12));
	}
      return;
			    
    case 0:
      if (GET_CODE (x) == REG)
	fprintf (file, "%s", reg_names[REGNO (x)]);
      else if (GET_CODE (x) == MEM)
	{
	  /* We need to handle PRE_INC and PRE_DEC here, since we need to
	     know the width from the mode.  */
	  if (GET_CODE (XEXP (x, 0)) == PRE_INC)
	    fprintf (file, "%d(%d)", GET_MODE_SIZE (GET_MODE (x)),
		     REGNO (XEXP (XEXP (x, 0), 0)));
	  else if (GET_CODE (XEXP (x, 0)) == PRE_DEC)
	    fprintf (file, "%d(%d)", - GET_MODE_SIZE (GET_MODE (x)),
		     REGNO (XEXP (XEXP (x, 0), 0)));
	  else
	    output_address (XEXP (x, 0));
	}
      else
	output_addr_const (file, x);
      return;

    default:
      output_operand_lossage ("invalid %%xn code");
    }
}

/* Print the address of an operand.  */

void
print_operand_address (file, x)
     FILE *file;
     register rtx x;
{
  if (GET_CODE (x) == REG)
    fprintf (file, "0(%s)", reg_names[ REGNO (x) ]);
  else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == CONST)
    {
      output_addr_const (file, x);
      /* When TARGET_MINIMAL_TOC, use the indirected toc table pointer instead
	 of the toc pointer.  */
#ifdef TARGET_NO_TOC
      if (TARGET_NO_TOC)
	;
      else
#endif
	fprintf (file, "(%s)", reg_names[ TARGET_MINIMAL_TOC ? 30 : 2 ]);
    }
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG)
    {
      if (REGNO (XEXP (x, 0)) == 0)
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 1)) ],
		 reg_names[ REGNO (XEXP (x, 0)) ]);
      else
	fprintf (file, "%s,%s", reg_names[ REGNO (XEXP (x, 0)) ],
		 reg_names[ REGNO (XEXP (x, 1)) ]);
    }
  else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
    fprintf (file, "%d(%s)", INTVAL (XEXP (x, 1)), reg_names[ REGNO (XEXP (x, 0)) ]);
  else if (TARGET_ELF && !TARGET_64BIT && GET_CODE (x) == LO_SUM
	   && GET_CODE (XEXP (x, 0)) == REG && CONSTANT_P (XEXP (x, 1)))
    {
      output_addr_const (file, XEXP (x, 1));
      fprintf (file, "@l(%s)", reg_names[ REGNO (XEXP (x, 0)) ]);
    }
  else
    abort ();
}

/* This page contains routines that are used to determine what the function
   prologue and epilogue code will do and write them out.  */

/*  Return the first fixed-point register that is required to be saved. 32 if
    none.  */

int
first_reg_to_save ()
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 13; first_reg <= 31; first_reg++)
    if (regs_ever_live[first_reg])
      break;

  /* If profiling, then we must save/restore every register that contains
     a parameter before/after the .mcount call.  Use registers from 30 down
     to 23 to do this.  Don't use the frame pointer in reg 31.

     For now, save enough room for all of the parameter registers.  */
#ifndef USING_SVR4_H
  if (profile_flag)
    if (first_reg > 23)
      first_reg = 23;
#endif

  return first_reg;
}

/* Similar, for FP regs.  */

int
first_fp_reg_to_save ()
{
  int first_reg;

  /* Find lowest numbered live register.  */
  for (first_reg = 14 + 32; first_reg <= 63; first_reg++)
    if (regs_ever_live[first_reg])
      break;

  return first_reg;
}

/* Return non-zero if this function makes calls.  */

int
rs6000_makes_calls ()
{
  rtx insn;

  /* If we are profiling, we will be making a call to mcount.  */
  if (profile_flag)
    return 1;

  for (insn = get_insns (); insn; insn = next_insn (insn))
    if (GET_CODE (insn) == CALL_INSN)
      return 1;

  return 0;
}


/* Calculate the stack information for the current function.  This is
   complicated by having two separate calling sequences, the AIX calling
   sequence and the V.4 calling sequence.

   AIX stack frames look like:

	SP---->	+---------------------------------------+
		| back chain to caller			| 0
		+---------------------------------------+
		| saved CR				| 4
		+---------------------------------------+
		| saved LR				| 8
		+---------------------------------------+
		| reserved for compilers		| 12
		+---------------------------------------+
		| reserved for binders			| 16
		+---------------------------------------+
		| saved TOC pointer			| 20
		+---------------------------------------+
		| Parameter save area (P)		| 24
		+---------------------------------------+
		| Alloca space (A)			| 24+P
		+---------------------------------------+
		| Local variable space (L)		| 24+P+A
		+---------------------------------------+
		| Save area for GP registers (G)	| 24+P+A+L
		+---------------------------------------+
		| Save area for FP registers (F)	| 24+P+A+L+G
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+

   V.4 stack frames look like:

	SP---->	+---------------------------------------+
		| back chain to caller			| 0
		+---------------------------------------+
		| caller's saved LR			| 4
		+---------------------------------------+
		| Parameter save area (P)		| 8
		+---------------------------------------+
		| Alloca space (A)			| 8+P
		+---------------------------------------+
		| Varargs save area (V)			| 8+P+A
		+---------------------------------------+
		| Local variable space (L)		| 8+P+A+V
		+---------------------------------------+
		| saved CR (C)				| 8+P+A+V+L
		+---------------------------------------+
		| Save area for GP registers (G)	| 8+P+A+V+L+C
		+---------------------------------------+
		| Save area for FP registers (F)	| 8+P+A+V+L+C+G
		+---------------------------------------+
	old SP->| back chain to caller's caller		|
		+---------------------------------------+
*/

rs6000_stack_t *
rs6000_stack_info ()
{
  static rs6000_stack_t info, zero_info;
  rs6000_stack_t *info_ptr = &info;
  int reg_size = TARGET_64BIT ? 8 : 4;
  enum rs6000_abi abi;

  /* Zero all fields portably */
  info = zero_info;

  /* Select which calling sequence */
#ifdef TARGET_V4_CALLS
  if (TARGET_V4_CALLS)
    abi = ABI_V4;
  else
#endif
    abi = ABI_AIX;

  info_ptr->abi = abi;

  /* Calculate which registers need to be saved & save area size */
  info_ptr->first_gp_reg_save = first_reg_to_save ();
  info_ptr->gp_size = reg_size * (32 - info_ptr->first_gp_reg_save);

  info_ptr->first_fp_reg_save = first_fp_reg_to_save ();
  info_ptr->fp_size = 8 * (64 - info_ptr->first_fp_reg_save);

  /* Does this function call anything? */
  info_ptr->calls_p = rs6000_makes_calls ();

  /* Determine if we need to save the link register */
  if (regs_ever_live[65] || profile_flag
#ifdef TARGET_RELOCATABLE
      || (TARGET_RELOCATABLE && (get_pool_size () != 0))
#endif
      || (info_ptr->first_fp_reg_save != 64
	  && !FP_SAVE_INLINE (info_ptr->first_fp_reg_save))
      || (abi == ABI_V4 && current_function_calls_alloca)
      || info_ptr->calls_p)
    {
      info_ptr->lr_save_p = 1;
      regs_ever_live[65] = 1;
    }

  /* Determine if we need to save the condition code registers */
  if (regs_ever_live[70] || regs_ever_live[71] || regs_ever_live[72])
    {
      info_ptr->cr_save_p = 1;
      if (abi == ABI_V4)
	info_ptr->cr_size = reg_size;
    }

  /* Determine various sizes */
  info_ptr->reg_size     = reg_size;
  info_ptr->fixed_size   = RS6000_SAVE_AREA;
  info_ptr->varargs_size = RS6000_VARARGS_AREA;
  info_ptr->vars_size    = ALIGN (get_frame_size (), 8);
  info_ptr->parm_size    = ALIGN (current_function_outgoing_args_size, 8);
  info_ptr->save_size    = ALIGN (info_ptr->fp_size + info_ptr->gp_size + info_ptr->cr_size, 8);
  info_ptr->total_size   = ALIGN (info_ptr->vars_size
				  + info_ptr->parm_size
				  + info_ptr->save_size
				  + info_ptr->varargs_size
				  + info_ptr->fixed_size, STACK_BOUNDARY / BITS_PER_UNIT);

  /* Determine if we need to allocate any stack frame.
     For AIX We need to push the stack if a frame pointer is needed (because
     the stack might be dynamically adjusted), if we are debugging, if the
     total stack size is more than 220 bytes, or if we make calls.

     For V.4 we don't have the stack cushion that AIX uses, but assume that
     the debugger can handle stackless frames.  */

  if (info_ptr->calls_p)
    info_ptr->push_p = 1;

  else if (abi == ABI_V4)
    info_ptr->push_p = (info_ptr->total_size > info_ptr->fixed_size
			|| info_ptr->lr_save_p);

  else
    info_ptr->push_p = (frame_pointer_needed
			|| write_symbols != NO_DEBUG
			|| info_ptr->total_size > 220);

  /* Calculate the offsets */
  info_ptr->fp_save_offset = - info_ptr->fp_size;
  info_ptr->gp_save_offset = info_ptr->fp_save_offset - info_ptr->gp_size;
  switch (abi)
    {
    default:
      info_ptr->cr_save_offset = 4;
      info_ptr->lr_save_offset = 8;
      break;

    case ABI_V4:
      info_ptr->cr_save_offset = info_ptr->gp_save_offset - reg_size;
      info_ptr->lr_save_offset = reg_size;
      break;
    }

  /* Zero offsets if we're not saving those registers */
  if (!info_ptr->fp_size)
    info_ptr->fp_save_offset = 0;

  if (!info_ptr->gp_size)
    info_ptr->gp_save_offset = 0;

  if (!info_ptr->lr_save_p)
    info_ptr->lr_save_offset = 0;

  if (!info_ptr->cr_save_p)
    info_ptr->cr_save_offset = 0;

  return info_ptr;
}

void
debug_stack_info (info)
     rs6000_stack_t *info;
{
  char *abi_string;

  if (!info)
    info = rs6000_stack_info ();

  fprintf (stderr, "\nStack information for function %s:\n",
	   ((current_function_decl && DECL_NAME (current_function_decl))
	    ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl))
	    : "<unknown>"));

  switch (info->abi)
    {
    default:	   abi_string = "Unknown";	break;
    case ABI_NONE: abi_string = "NONE";		break;
    case ABI_AIX:  abi_string = "AIX";		break;
    case ABI_V4:   abi_string = "V.4";		break;
    }

  fprintf (stderr, "\tABI                 = %5s\n", abi_string);

  if (info->first_gp_reg_save != 32)
    fprintf (stderr, "\tfirst_gp_reg_save   = %5d\n", info->first_gp_reg_save);

  if (info->first_fp_reg_save != 64)
    fprintf (stderr, "\tfirst_fp_reg_save   = %5d\n", info->first_fp_reg_save);

  if (info->lr_save_p)
    fprintf (stderr, "\tlr_save_p           = %5d\n", info->lr_save_p);

  if (info->cr_save_p)
    fprintf (stderr, "\tcr_save_p           = %5d\n", info->cr_save_p);

  if (info->push_p)
    fprintf (stderr, "\tpush_p              = %5d\n", info->push_p);

  if (info->calls_p)
    fprintf (stderr, "\tcalls_p             = %5d\n", info->calls_p);

  if (info->gp_save_offset)
    fprintf (stderr, "\tgp_save_offset      = %5d\n", info->gp_save_offset);

  if (info->fp_save_offset)
    fprintf (stderr, "\tfp_save_offset      = %5d\n", info->fp_save_offset);

  if (info->lr_save_offset)
    fprintf (stderr, "\tlr_save_offset      = %5d\n", info->lr_save_offset);

  if (info->cr_save_offset)
    fprintf (stderr, "\tcr_save_offset      = %5d\n", info->cr_save_offset);

  if (info->varargs_save_offset)
    fprintf (stderr, "\tvarargs_save_offset = %5d\n", info->varargs_save_offset);

  if (info->total_size)
    fprintf (stderr, "\ttotal_size          = %5d\n", info->total_size);

  if (info->varargs_size)
    fprintf (stderr, "\tvarargs_size        = %5d\n", info->varargs_size);

  if (info->vars_size)
    fprintf (stderr, "\tvars_size           = %5d\n", info->vars_size);

  if (info->parm_size)
    fprintf (stderr, "\tparm_size           = %5d\n", info->parm_size);

  if (info->fixed_size)
    fprintf (stderr, "\tfixed_size          = %5d\n", info->fixed_size);

  if (info->gp_size)
    fprintf (stderr, "\tgp_size             = %5d\n", info->gp_size);

  if (info->fp_size)
    fprintf (stderr, "\tfp_size             = %5d\n", info->fp_size);

  if (info->cr_size)
    fprintf (stderr, "\tcr_size             = %5d\n", info->cr_size);

  if (info->save_size)
    fprintf (stderr, "\tsave_size           = %5d\n", info->save_size);

  if (info->reg_size != 4)
    fprintf (stderr, "\treg_size            = %5d\n", info->reg_size);

  fprintf (stderr, "\n");
}



#ifdef USING_SVR4_H
/* Write out a System V.4 style traceback table before the prologue

   At present, only emit the basic tag table (ie, do not emit tag_types other
   than 0, which might use more than 1 tag word).

   The first tag word looks like:

    0			1		    2			3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         0 |ver| tag |e|s| alloca  | # fprs  | # gprs  |s|l|c|f|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

*/

void
svr4_traceback (file, name, decl)
     FILE *file;
     tree name, decl;
{
  rs6000_stack_t *info = rs6000_stack_info ();
  long tag;
  long version		= 0;				/* version number */
  long tag_type		= 0;				/* function type */
  long extended_tag	= 0;				/* additional tag words needed */
  long spare		= 0;				/* reserved for future use */
  long fpscr_max	= 0;				/* 1 if the function has a FPSCR save word */
  long fpr_max		= 64 - info->first_fp_reg_save;	/* # of floating point registers saved */
  long gpr_max		= 32 - info->first_gp_reg_save;	/* # of general purpose registers saved */
  long alloca_reg;					/* stack/frame register */

  if (frame_pointer_needed)
    alloca_reg = 31;

  else if (info->push_p != 0)
    alloca_reg = 1;

  else
    alloca_reg = 0;

  tag = ((version << 24)
	 | (tag_type << 21)
	 | (extended_tag << 20)
	 | (spare << 19)
	 | (alloca_reg << 14)
	 | (fpr_max << 9)
	 | (gpr_max << 4)
	 | (info->push_p << 3)
	 | (info->lr_save_p << 2)
	 | (info->cr_save_p << 1)
	 | (fpscr_max << 0));
	   
  fprintf (file, "\t.long 0x%lx\n", tag);
}

#endif /* USING_SVR4_H */

/* Write function prologue.  */
void
output_prolog (file, size)
     FILE *file;
     int size;
{
  rs6000_stack_t *info = rs6000_stack_info ();
  char *store_reg = (TARGET_64BIT) ? "\tstd %s,%d(%s)" : "\t{st|stw} %s,%d(%s)\n";

  if (TARGET_DEBUG_STACK)
    debug_stack_info (info);

  /* Write .extern for any function we will call to save and restore fp
     values.  */
#ifndef USING_SVR4_H
  if (info->first_fp_reg_save < 62)
    fprintf (file, "\t.extern %s%d%s\n\t.extern %s%d%s\n",
	     SAVE_FP_PREFIX, info->first_fp_reg_save - 32, SAVE_FP_SUFFIX,
	     RESTORE_FP_PREFIX, info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);
#endif

  /* Write .extern for truncation routines, if needed.  */
  if (rs6000_trunc_used && ! trunc_defined)
    {
      fprintf (file, "\t.extern .%s\n\t.extern .%s\n",
	       RS6000_ITRUNC, RS6000_UITRUNC);
      trunc_defined = 1;
    }

  /* Write .extern for AIX common mode routines, if needed.  */
  if (! TARGET_POWER && ! TARGET_POWERPC && ! common_mode_defined)
    {
      fputs ("\t.extern __mulh\n", file);
      fputs ("\t.extern __mull\n", file);
      fputs ("\t.extern __divss\n", file);
      fputs ("\t.extern __divus\n", file);
      fputs ("\t.extern __quoss\n", file);
      fputs ("\t.extern __quous\n", file);
      common_mode_defined = 1;
    }

  /* If we use the link register, get it into r0.  */
  if (info->lr_save_p)
    asm_fprintf (file, "\tmflr %s\n", reg_names[0]);

  /* If we need to save CR, put it into r12.  */
  if (info->cr_save_p)
    asm_fprintf (file, "\tmfcr %s\n", reg_names[12]);

  /* Do any required saving of fpr's.  If only one or two to save, do it
     ourself.  Otherwise, call function.  Note that since they are statically
     linked, we do not need a nop following them.  */
  if (FP_SAVE_INLINE (info->first_fp_reg_save))
    {
      int regno = info->first_fp_reg_save;
      int loc   = info->fp_save_offset;

      for ( ; regno < 64; regno++, loc += 8)
	asm_fprintf (file, "\tstfd %s,%d(%s)\n", reg_names[regno], loc, reg_names[1]);
    }
  else if (info->first_fp_reg_save != 64)
    asm_fprintf (file, "\tbl %s%d%s\n", SAVE_FP_PREFIX,
		 info->first_fp_reg_save - 32, SAVE_FP_SUFFIX);

  /* Now save gpr's.  */
  if (! TARGET_MULTIPLE || info->first_gp_reg_save == 31 || TARGET_64BIT)
    {
      int regno    = info->first_gp_reg_save;
      int loc      = info->gp_save_offset;
      int reg_size = (TARGET_64BIT) ? 8 : 4;

      for ( ; regno < 32; regno++, loc += reg_size)
	asm_fprintf (file, store_reg, reg_names[regno], loc, reg_names[1]);
    }

  else if (info->first_gp_reg_save != 32)
    asm_fprintf (file, "\t{stm|stmw} %s,%d(%s)\n",
		 reg_names[info->first_gp_reg_save],
		 info->gp_save_offset,
		 reg_names[1]);

  /* Save lr if we used it.  */
  if (info->lr_save_p)
    asm_fprintf (file, store_reg, reg_names[0], info->lr_save_offset, reg_names[1]);

  /* Save CR if we use any that must be preserved.  */
  if (info->cr_save_p)
    asm_fprintf (file, store_reg, reg_names[12], info->cr_save_offset, reg_names[1]);

  /* Update stack and set back pointer.  */
  if (info->push_p)
    {
      if (info->total_size < 32767)
	asm_fprintf (file,
		     (TARGET_64BIT) ? "\tstdu %s,%d(%s)\n" : "\t{stu|stwu} %s,%d(%s)\n",
		     reg_names[1], - info->total_size, reg_names[1]);
      else
	{
	  int neg_size = - info->total_size;
	  asm_fprintf (file, "\t{liu|lis} %s,%d\n\t{oril|ori} %s,%s,%d\n",
		       reg_names[0], (neg_size >> 16) & 0xffff,
		       reg_names[0], reg_names[0], neg_size & 0xffff);
	  asm_fprintf (file,
		       (TARGET_64BIT) ? "\tstdux %s,%s,%s\n" : "\t{stux|stwux} %s,%s,%s\n",
		       reg_names[1], reg_names[1], reg_names[0]);
	}
    }

  /* Set frame pointer, if needed.  */
  if (frame_pointer_needed)
    asm_fprintf (file, "\tmr %s,%s\n", reg_names[31], reg_names[1]);

  /* If TARGET_MINIMAL_TOC, and the constant pool is needed, then load the
     TOC_TABLE address into register 30.  */
  if (TARGET_TOC && TARGET_MINIMAL_TOC && get_pool_size () != 0)
    {
      char buf[256];

#ifdef USING_SVR4_H
      if (TARGET_RELOCATABLE)
	{
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
	  fprintf (file, "\tbl ");
	  assemble_name (file, buf);
	  fprintf (file, "\n");

	  ASM_OUTPUT_INTERNAL_LABEL (file, "LCF", rs6000_pic_labelno);
	  fprintf (file, "\tmflr %s\n", reg_names[30]);

	  if (TARGET_POWERPC64)
	    fprintf (file, "\tld");
	  else if (TARGET_NEW_MNEMONICS)
	    fprintf (file, "\tlwz");
	  else
	    fprintf (file, "\tl");

	  fprintf (file, " %s,(", reg_names[0]);
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCL", rs6000_pic_labelno);
	  assemble_name (file, buf);
	  fprintf (file, "-");
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCF", rs6000_pic_labelno);
	  assemble_name (file, buf);
	  fprintf (file, ")(%s)\n", reg_names[30]);
	  asm_fprintf (file, "\t{cax|add} %s,%s,%s\n",
		       reg_names[30], reg_names[0], reg_names[30]);
	  rs6000_pic_labelno++;
	}
      else if (!TARGET_64BIT)
	{
	  ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 1);
	  asm_fprintf (file, "\t{cau|addis} %s,%s,", reg_names[30], reg_names[0]);
	  assemble_name (file, buf);
	  asm_fprintf (file, "@ha\n");
	  if (TARGET_NEW_MNEMONICS)
	    {
	      asm_fprintf (file, "\taddi %s,%s,", reg_names[30], reg_names[30]);
	      assemble_name (file, buf);
	      asm_fprintf (file, "@l\n");
	    }
	  else
	    {
	      asm_fprintf (file, "\tcal %s,", reg_names[30]);
	      assemble_name (file, buf);
	      asm_fprintf (file, "@l(%s)\n", reg_names[30]);
	    }
	}
      else
	abort ();

#else	/* !USING_SVR4_H */
      ASM_GENERATE_INTERNAL_LABEL (buf, "LCTOC", 0);
      asm_fprintf (file, "\t{l|lwz} %s,", reg_names[30]);
      assemble_name (file, buf);
      asm_fprintf (file, "(%s)\n", reg_names[2]);
#endif /* USING_SVR4_H */
    }
}

/* Write function epilogue.  */

void
output_epilog (file, size)
     FILE *file;
     int size;
{
  rs6000_stack_t *info = rs6000_stack_info ();
  char *load_reg = (TARGET_64BIT) ? "\tld %s,%d(%s)" : "\t{l|lwz} %s,%d(%s)\n";
  rtx insn = get_last_insn ();
  int i;

  /* Forget about any temporaries created */
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    stack_temps[i] = NULL_RTX;

  /* If the last insn was a BARRIER, we don't have to write anything except
     the trace table.  */
  if (GET_CODE (insn) == NOTE)
    insn = prev_nonnote_insn (insn);
  if (insn == 0 ||  GET_CODE (insn) != BARRIER)
    {
      /* If we have a frame pointer, a call to alloca,  or a large stack
	 frame, restore the old stack pointer using the backchain.  Otherwise,
	 we know what size to update it with.  */
      if (frame_pointer_needed || current_function_calls_alloca
	  || info->total_size > 32767)
	asm_fprintf (file, load_reg, reg_names[1], 0, reg_names[1]);
      else if (info->push_p)
	{
	  if (TARGET_NEW_MNEMONICS)
	    asm_fprintf (file, "\taddi %s,%s,%d\n", reg_names[1], reg_names[1], info->total_size);
	  else
	    asm_fprintf (file, "\tcal %s,%d(%s)\n", reg_names[1], info->total_size, reg_names[1]);
	}

      /* Get the old lr if we saved it.  */
      if (info->lr_save_p)
	asm_fprintf (file, load_reg, reg_names[0], info->lr_save_offset, reg_names[1]);

      /* Get the old cr if we saved it.  */
      if (info->cr_save_p)
	asm_fprintf (file, load_reg, reg_names[12], info->cr_save_offset, reg_names[1]);

      /* Set LR here to try to overlap restores below.  */
      if (info->lr_save_p)
	asm_fprintf (file, "\tmtlr %s\n", reg_names[0]);

      /* Restore gpr's.  */
      if (! TARGET_MULTIPLE || info->first_gp_reg_save == 31 || TARGET_64BIT)
	{
	  int regno    = info->first_gp_reg_save;
	  int loc      = info->gp_save_offset;
	  int reg_size = (TARGET_64BIT) ? 8 : 4;

	  for ( ; regno < 32; regno++, loc += reg_size)
	    asm_fprintf (file, load_reg, reg_names[regno], loc, reg_names[1]);
	}

      else if (info->first_gp_reg_save != 32)
	asm_fprintf (file, "\t{lm|lmw} %s,%d(%s)\n",
		     reg_names[info->first_gp_reg_save],
		     info->gp_save_offset,
		     reg_names[1]);

      /* Restore fpr's if we can do it without calling a function.  */
      if (FP_SAVE_INLINE (info->first_fp_reg_save))
	{
	  int regno = info->first_fp_reg_save;
	  int loc   = info->fp_save_offset;

	  for ( ; regno < 64; regno++, loc += 8)
	    asm_fprintf (file, "\tlfd %s,%d(%s)\n", reg_names[regno], loc, reg_names[1]);
	}

      /* If we saved cr, restore it here.  Just those of cr2, cr3, and cr4
	 that were used.  */
      if (info->cr_save_p)
	asm_fprintf (file, "\tmtcrf %d,%s\n",
		     (regs_ever_live[70] != 0) * 0x20
		     + (regs_ever_live[71] != 0) * 0x10
		     + (regs_ever_live[72] != 0) * 0x8, reg_names[12]);

      /* If we have to restore more than two FP registers, branch to the
	 restore function.  It will return to our caller.  */
      if (info->first_fp_reg_save != 64 && !FP_SAVE_INLINE (info->first_fp_reg_save))
	asm_fprintf (file, "\tb %s%d%s\n", RESTORE_FP_PREFIX,
		     info->first_fp_reg_save - 32, RESTORE_FP_SUFFIX);
      else
	asm_fprintf (file, "\t{br|blr}\n");
    }

  /* Output a traceback table here.  See /usr/include/sys/debug.h for info
     on its format.

     We don't output a traceback table if -finhibit-size-directive was
     used.  The documentation for -finhibit-size-directive reads
     ``don't output a @code{.size} assembler directive, or anything
     else that would cause trouble if the function is split in the
     middle, and the two halves are placed at locations far apart in
     memory.''  The traceback table has this property, since it
     includes the offset from the start of the function to the
     traceback table itself.

     System V.4 Powerpc's (and the embedded ABI derived from it) use a
     different traceback table located before the prologue.  */
#ifndef USING_SVR4_H
  if (! flag_inhibit_size_directive)
    {
      char *fname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
      int fixed_parms, float_parms, parm_info;
      int i;

      /* Need label immediately before tbtab, so we can compute its offset
	 from the function start.  */
      if (*fname == '*')
	++fname;
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
      ASM_OUTPUT_LABEL (file, fname);

      /* The .tbtab pseudo-op can only be used for the first eight
	 expressions, since it can't handle the possibly variable
	 length fields that follow.  However, if you omit the optional
	 fields, the assembler outputs zeros for all optional fields
	 anyways, giving each variable length field is minimum length
	 (as defined in sys/debug.h).  Thus we can not use the .tbtab
	 pseudo-op at all.  */

      /* An all-zero word flags the start of the tbtab, for debuggers
	 that have to find it by searching forward from the entry
	 point or from the current pc.  */
      fprintf (file, "\t.long 0\n");

      /* Tbtab format type.  Use format type 0.  */
      fprintf (file, "\t.byte 0,");

      /* Language type.  Unfortunately, there doesn't seem to be any
	 official way to get this info, so we use language_string.  C
	 is 0.  C++ is 9.  No number defined for Obj-C, so use the
	 value for C for now.  */
      if (! strcmp (language_string, "GNU C")
	  || ! strcmp (language_string, "GNU Obj-C"))
	i = 0;
      else if (! strcmp (language_string, "GNU F77"))
	i = 1;
      else if (! strcmp (language_string, "GNU Ada"))
	i = 3;
      else if (! strcmp (language_string, "GNU PASCAL"))
	i = 2;
      else if (! strcmp (language_string, "GNU C++"))
	i = 9;
      else
	abort ();
      fprintf (file, "%d,", i);

      /* 8 single bit fields: global linkage (not set for C extern linkage,
	 apparently a PL/I convention?), out-of-line epilogue/prologue, offset
	 from start of procedure stored in tbtab, internal function, function
	 has controlled storage, function has no toc, function uses fp,
	 function logs/aborts fp operations.  */
      /* Assume that fp operations are used if any fp reg must be saved.  */
      fprintf (file, "%d,", (1 << 5) | ((info->first_fp_reg_save != 64) << 1));

      /* 6 bitfields: function is interrupt handler, name present in
	 proc table, function calls alloca, on condition directives
	 (controls stack walks, 3 bits), saves condition reg, saves
	 link reg.  */
      /* The `function calls alloca' bit seems to be set whenever reg 31 is
	 set up as a frame pointer, even when there is no alloca call.  */
      fprintf (file, "%d,",
	       ((1 << 6) | (frame_pointer_needed << 5)
		| (info->cr_save_p << 1) | (info->lr_save_p)));

      /* 3 bitfields: saves backchain, spare bit, number of fpr saved
	 (6 bits).  */
      fprintf (file, "%d,",
	       (info->push_p << 7) | (64 - info->first_fp_reg_save));

      /* 2 bitfields: spare bits (2 bits), number of gpr saved (6 bits).  */
      fprintf (file, "%d,", (32 - first_reg_to_save ()));

      {
	/* Compute the parameter info from the function decl argument
	   list.  */
	tree decl;
	int next_parm_info_bit;

	next_parm_info_bit = 31;
	parm_info = 0;
	fixed_parms = 0;
	float_parms = 0;

	for (decl = DECL_ARGUMENTS (current_function_decl);
	     decl; decl = TREE_CHAIN (decl))
	  {
	    rtx parameter = DECL_INCOMING_RTL (decl);
	    enum machine_mode mode = GET_MODE (parameter);

	    if (GET_CODE (parameter) == REG)
	      {
		if (GET_MODE_CLASS (mode) == MODE_FLOAT)
		  {
		    int bits;

		    float_parms++;

		    if (mode == SFmode)
		      bits = 0x2;
		    else if (mode == DFmode)
		      bits = 0x3;
		    else
		      abort ();

		    /* If only one bit will fit, don't or in this entry.  */
		    if (next_parm_info_bit > 0)
		      parm_info |= (bits << (next_parm_info_bit - 1));
		    next_parm_info_bit -= 2;
		  }
		else
		  {
		    fixed_parms += ((GET_MODE_SIZE (mode)
				     + (UNITS_PER_WORD - 1))
				    / UNITS_PER_WORD);
		    next_parm_info_bit -= 1;
		  }
	      }
	  }
      }

      /* Number of fixed point parameters.  */
      /* This is actually the number of words of fixed point parameters; thus
	 an 8 byte struct counts as 2; and thus the maximum value is 8.  */
      fprintf (file, "%d,", fixed_parms);

      /* 2 bitfields: number of floating point parameters (7 bits), parameters
	 all on stack.  */
      /* This is actually the number of fp registers that hold parameters;
	 and thus the maximum value is 13.  */
      /* Set parameters on stack bit if parameters are not in their original
	 registers, regardless of whether they are on the stack?  Xlc
	 seems to set the bit when not optimizing.  */
      fprintf (file, "%d\n", ((float_parms << 1) | (! optimize)));

      /* Optional fields follow.  Some are variable length.  */

      /* Parameter types, left adjusted bit fields: 0 fixed, 10 single float,
	 11 double float.  */
      /* There is an entry for each parameter in a register, in the order that
	 they occur in the parameter list.  Any intervening arguments on the
	 stack are ignored.  If the list overflows a long (max possible length
	 34 bits) then completely leave off all elements that don't fit.  */
      /* Only emit this long if there was at least one parameter.  */
      if (fixed_parms || float_parms)
	fprintf (file, "\t.long %d\n", parm_info);

      /* Offset from start of code to tb table.  */
      fprintf (file, "\t.long ");
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LT");
      RS6000_OUTPUT_BASENAME (file, fname);
      fprintf (file, "-.");
      RS6000_OUTPUT_BASENAME (file, fname);
      fprintf (file, "\n");

      /* Interrupt handler mask.  */
      /* Omit this long, since we never set the interrupt handler bit
	 above.  */

      /* Number of CTL (controlled storage) anchors.  */
      /* Omit this long, since the has_ctl bit is never set above.  */

      /* Displacement into stack of each CTL anchor.  */
      /* Omit this list of longs, because there are no CTL anchors.  */

      /* Length of function name.  */
      fprintf (file, "\t.short %d\n", strlen (fname));

      /* Function name.  */
      assemble_string (fname, strlen (fname));

      /* Register for alloca automatic storage; this is always reg 31.
	 Only emit this if the alloca bit was set above.  */
      if (frame_pointer_needed)
	fprintf (file, "\t.byte 31\n");
    }
#endif /* !USING_SVR4_H */

  /* Reset varargs indicator */
  rs6000_sysv_varargs_p = 0;
}

/* Output a TOC entry.  We derive the entry name from what is
   being written.  */

void
output_toc (file, x, labelno)
     FILE *file;
     rtx x;
     int labelno;
{
  char buf[256];
  char *name = buf;
  rtx base = x;
  int offset = 0;

  if (TARGET_NO_TOC)
    abort ();

  /* if we're going to put a double constant in the TOC, make sure it's
     aligned properly when strict alignment is on. */
  if (GET_CODE (x) == CONST_DOUBLE
      && STRICT_ALIGNMENT
      && GET_MODE (x) == DFmode
      && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC)) {
    ASM_OUTPUT_ALIGN (file, 3);
  }


#ifdef USING_SVR4_H
  if (TARGET_MINIMAL_TOC)
    {
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LC");
      fprintf (file, "%d = .-", labelno);
      ASM_OUTPUT_INTERNAL_LABEL_PREFIX (file, "LCTOC");
      fprintf (file, "1\n");
    }
  else
#endif /* USING_SVR4_H */
    ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

  /* Handle FP constants specially.  Note that if we have a minimal
     TOC, things we put here aren't actually in the TOC, so we can allow
     FP constants.  */
  if (GET_CODE (x) == CONST_DOUBLE
      && GET_MODE (x) == DFmode
      && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC))
    {
      REAL_VALUE_TYPE r;
      long l[2];

      REAL_VALUE_FROM_CONST_DOUBLE (r, x);
      REAL_VALUE_TO_TARGET_DOUBLE (r, l);
      if (TARGET_MINIMAL_TOC)
	fprintf (file, "\t.long %ld\n\t.long %ld\n", l[0], l[1]);
      else
	fprintf (file, "\t.tc FD_%lx_%lx[TC],%ld,%ld\n",
		 l[0], l[1], l[0], l[1]);
      return;
    }
  else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode
	   && ! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC))
    {
      rtx val = operand_subword (x, 0, 0, SFmode);

      if (val == 0 || GET_CODE (val) != CONST_INT)
	abort ();

      if (TARGET_MINIMAL_TOC)
	fprintf (file, "\t.long %d\n", INTVAL (val));
      else
	fprintf (file, "\t.tc FS_%x[TC],%d\n", INTVAL (val), INTVAL (val));
      return;
    }

  if (GET_CODE (x) == CONST)
    {
      base = XEXP (XEXP (x, 0), 0);
      offset = INTVAL (XEXP (XEXP (x, 0), 1));
    }
  
  if (GET_CODE (base) == SYMBOL_REF)
    name = XSTR (base, 0);
  else if (GET_CODE (base) == LABEL_REF)
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (base, 0)));
  else if (GET_CODE (base) == CODE_LABEL)
    ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (base));
  else
    abort ();

  if (TARGET_MINIMAL_TOC)
    fprintf (file, "\t.long ");
  else
    {
      fprintf (file, "\t.tc ");
      RS6000_OUTPUT_BASENAME (file, name);

      if (offset < 0)
	fprintf (file, ".N%d", - offset);
      else if (offset)
	fprintf (file, ".P%d", offset);

      fprintf (file, "[TC],");
    }
  output_addr_const (file, x);
  fprintf (file, "\n");
}

/* Output an assembler pseudo-op to write an ASCII string of N characters
   starting at P to FILE.

   On the RS/6000, we have to do this using the .byte operation and
   write out special characters outside the quoted string.
   Also, the assembler is broken; very long strings are truncated,
   so we must artificially break them up early. */

void
output_ascii (file, p, n)
     FILE *file;
     char *p;
     int n;
{
  char c;
  int i, count_string;
  char *for_string = "\t.byte \"";
  char *for_decimal = "\t.byte ";
  char *to_close = NULL;

  count_string = 0;
  for (i = 0; i < n; i++)
    {
      c = *p++;
      if (c >= ' ' && c < 0177)
	{
	  if (for_string)
	    fputs (for_string, file);
	  putc (c, file);

	  /* Write two quotes to get one.  */
	  if (c == '"')
	    {
	      putc (c, file);
	      ++count_string;
	    }

	  for_string = NULL;
	  for_decimal = "\"\n\t.byte ";
	  to_close = "\"\n";
	  ++count_string;

	  if (count_string >= 512)
	    {
	      fputs (to_close, file);

	      for_string = "\t.byte \"";
	      for_decimal = "\t.byte ";
	      to_close = NULL;
	      count_string = 0;
	    }
	}
      else
	{
	  if (for_decimal)
	    fputs (for_decimal, file);
	  fprintf (file, "%d", c);

	  for_string = "\n\t.byte \"";
	  for_decimal = ", ";
	  to_close = "\n";
	  count_string = 0;
	}
    }

  /* Now close the string if we have written one.  Then end the line.  */
  if (to_close)
    fprintf (file, to_close);
}

/* Generate a unique section name for FILENAME for a section type
   represented by SECTION_DESC.  Output goes into BUF.

   SECTION_DESC can be any string, as long as it is different for each
   possible section type.

   We name the section in the same manner as xlc.  The name begins with an
   underscore followed by the filename (after stripping any leading directory
   names) with the last period replaced by the string SECTION_DESC.  If
   FILENAME does not contain a period, SECTION_DESC is appended to the end of
   the name.  */

void
rs6000_gen_section_name (buf, filename, section_desc)
     char **buf;
     char *filename;
     char *section_desc;
{
  char *q, *after_last_slash, *last_period;
  char *p;
  int len;

  after_last_slash = filename;
  for (q = filename; *q; q++)
    {
      if (*q == '/')
	after_last_slash = q + 1;
      else if (*q == '.')
	last_period = q;
    }

  len = strlen (after_last_slash) + strlen (section_desc) + 2;
  *buf = (char *) permalloc (len);

  p = *buf;
  *p++ = '_';

  for (q = after_last_slash; *q; q++)
    {
      if (q == last_period)
        {
	  strcpy (p, section_desc);
	  p += strlen (section_desc);
        }

      else if (isalnum (*q))
        *p++ = *q;
    }

  if (last_period == 0)
    strcpy (p, section_desc);
  else
    *p = '\0';
}

/* Write function profiler code. */

void
output_function_profiler (file, labelno)
  FILE *file;
  int labelno;
{
#ifdef USING_SVR4_H
  abort ();
#else
  /* The last used parameter register.  */
  int last_parm_reg;
  int i, j;
  char buf[100];

  /* Set up a TOC entry for the profiler label.  */
  toc_section ();
  ASM_OUTPUT_INTERNAL_LABEL (file, "LPC", labelno);
  ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
  if (TARGET_MINIMAL_TOC)
    {
      fprintf (file, "\t.long ");
      assemble_name (file, buf);
      fprintf (file, "\n");
    }
  else
    {
      fprintf (file, "\t.tc\t");
      assemble_name (file, buf);
      fprintf (file, "[TC],");
      assemble_name (file, buf);
      fprintf (file, "\n");
    }
  text_section ();

  /* Figure out last used parameter register.  The proper thing to do is
     to walk incoming args of the function.  A function might have live
     parameter registers even if it has no incoming args.  */

  for (last_parm_reg = 10;
       last_parm_reg > 2 && ! regs_ever_live [last_parm_reg];
       last_parm_reg--)
    ;

  /* Save parameter registers in regs 23-30.  Don't overwrite reg 31, since
     it might be set up as the frame pointer.  */

  for (i = 3, j = 30; i <= last_parm_reg; i++, j--)
    fprintf (file, "\tai %d,%d,0\n", j, i);

  /* Load location address into r3, and call mcount.  */

  ASM_GENERATE_INTERNAL_LABEL (buf, "LPC", labelno);
  fprintf (file, "\tl 3,");
  assemble_name (file, buf);
  fprintf (file, "(2)\n\tbl .mcount\n");

  /* Restore parameter registers.  */

  for (i = 3, j = 30; i <= last_parm_reg; i++, j--)
    fprintf (file, "\tai %d,%d,0\n", i, j);
#endif
}

/* Adjust the cost of a scheduling dependency.  Return the new cost of
   a dependency LINK or INSN on DEP_INSN.  COST is the current cost.  */

int
rs6000_adjust_cost (insn, link, dep_insn, cost)
     rtx insn;
     rtx link;
     rtx dep_insn;
     int cost;
{
  if (! recog_memoized (insn))
    return 0;

  if (REG_NOTE_KIND (link) != 0)
    return 0;

  if (REG_NOTE_KIND (link) == 0)
    {
      /* Data dependency; DEP_INSN writes a register that INSN reads some
	 cycles later.  */

      /* Tell the first scheduling pass about the latency between a mtctr
	 and bctr (and mtlr and br/blr).  The first scheduling pass will not
	 know about this latency since the mtctr instruction, which has the
	 latency associated to it, will be generated by reload.  */
      if (get_attr_type (insn) == TYPE_JMPREG)
	return TARGET_POWER ? 5 : 4;

      /* Fall out to return default cost.  */
    }

  return cost;
}