summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/gcc/config/sparc/lb1spc.asm
blob: c74ef6a93a5cd4e2346a96ed9ed6fc95788b2a86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
/* This is an assembly language implementation of libgcc1.c for the sparc
   processor.

   These routines are derived from the Sparc Architecture Manual, version 8,
   slightly edited to match the desired calling convention, and also to
   optimize them for our purposes.  */

#ifdef L_mulsi3
.text
	.align 4
	.global .umul
	.proc 4
.umul:
	or	%o0, %o1, %o4	! logical or of multiplier and multiplicand
	mov	%o0, %y		! multiplier to Y register
	andncc	%o4, 0xfff, %o5	! mask out lower 12 bits
	be	mul_shortway	! can do it the short way
	andcc	%g0, %g0, %o4	! zero the partial product and clear NV cc
	!
	! long multiply
	!
	mulscc	%o4, %o1, %o4	! first iteration of 33
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4	! 32nd iteration
	mulscc	%o4, %g0, %o4	! last iteration only shifts
	! the upper 32 bits of product are wrong, but we do not care
	retl
	rd	%y, %o0
	!
	! short multiply
	!
mul_shortway:
	mulscc	%o4, %o1, %o4	! first iteration of 13
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4
	mulscc	%o4, %o1, %o4	! 12th iteration
	mulscc	%o4, %g0, %o4	! last iteration only shifts
	rd	%y, %o5
	sll	%o4, 12, %o4	! left shift partial product by 12 bits
	srl	%o5, 20, %o5	! right shift partial product by 20 bits
	retl
	or	%o5, %o4, %o0	! merge for true product
#endif

#ifdef L_divsi3
.text
	.align 4
	.global	.udiv
	.proc 4
.udiv:
	save	%sp, -64, %sp
	b	divide
	mov	0, %i2		! result always positive
	.global .div
	.proc 4
.div:
	save	%sp, -64, %sp
	orcc	%i1, %i0, %g0	! is either operand negative
	bge	divide		! if not, skip this junk
	xor	%i1, %i0, %i2	! record sign of result in sign of %i2
	tst	%i1
	bge	2f
	tst	%i0
	! %i1 < 0
	bge	divide
	neg	%i1
2:	! %i0 < 0
	neg	%i0
	!	FALL THROUGH
divide:
	! Compute size of quotient, scale comparand.
	orcc	%i1, %g0, %l1		! movcc %i1, %l1
	te	2			! if %i1 = 0
	mov	%i0, %i3
	mov	0, %i2
	sethi	%hi(1<<(32-2-1)), %l3
	cmp 	%i3, %l3
	blu	not_really_big
	mov	0, %l0
	!
	! Here, the %i0 is >= 2^(31-3) or so.  We must be careful here,
	! as our usual 3-at-a-shot divide step will cause overflow and havoc.
	! The total number of bits in the result here is 3*%l0+%l4, where
	! %l4 <= 3.
	! Compute %l0 in an unorthodox manner: know we need to Shift %l1 into
	! the top decade: so do not even bother to compare to %i3.
1:	cmp	%l1, %l3
	bgeu	3f
	mov	1, %l4
	sll	%l1, 3, %l1
	b	1b
	inc	%l0
	!
	! Now compute %l4
	!
2:	addcc	%l1, %l1, %l1
	bcc	not_too_big
	add	%l4, 1, %l4
	!
	! We are here if the %i1 overflowed when Shifting.
	! This means that %i3 has the high-order bit set.
	! Restore %l1 and subtract from %i3.
	sll	%l3, 2, %l3
	srl	%l1, 1, %l1
	add	%l1, %l3, %l1
	b	do_single_div
	dec	%l4
not_too_big:
3:	cmp	%l1, %i3
	blu	2b
	nop
	be	do_single_div
	nop
	! %l1 > %i3: went too far: back up 1 step
	! 	srl	%l1, 1, %l1
	!	dec	%l4
	! do single-bit divide steps
	!
	! We have to be careful here.  We know that %i3 >= %l1, so we can do the
	! first divide step without thinking.  BUT, the others are conditional,
	! and are only done if %i3 >= 0.  Because both %i3 and %l1 may have the
	! high-order bit set in the first step, just falling into the regular
	! division loop will mess up the first time around.
	! So we unroll slightly...
do_single_div:
	deccc	%l4
	bl	end_regular_divide
	nop
	sub	%i3, %l1, %i3
	mov	1, %i2
	b	end_single_divloop
	nop
single_divloop:
	sll	%i2, 1, %i2
	bl	1f
	srl	%l1, 1, %l1
	! %i3 >= 0
	sub	%i3, %l1, %i3
	b	2f
	inc	%i2
1:	! %i3 < 0
	add	%i3, %l1, %i3
	dec	%i2
end_single_divloop:
2:	deccc	%l4
	bge	single_divloop
	tst	%i3
	b	end_regular_divide
	nop
not_really_big:
1:	sll	%l1, 3, %l1
	cmp	%l1, %i3
	bleu	1b
	inccc	%l0
	be	got_result
	dec	%l0
do_regular_divide:
	! Do the main division iteration
	tst	%i3
	! Fall through into divide loop
divloop:
	sll	%i2, 3, %i2
	! depth 1, accumulated bits 0
	bl	L.1.8
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	! depth 2, accumulated bits 1
	bl	L.2.9
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	! depth 3, accumulated bits 3
	bl	L.3.11
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (3*2+1), %i2
L.3.11:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (3*2-1), %i2
L.2.9:	! remainder is negative
	addcc	%i3,%l1,%i3
	! depth 3, accumulated bits 1
	bl	L.3.9
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (1*2+1), %i2
L.3.9:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (1*2-1), %i2
L.1.8:	! remainder is negative
	addcc	%i3,%l1,%i3
	! depth 2, accumulated bits -1
	bl	L.2.7
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	! depth 3, accumulated bits -1
	bl	L.3.7
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-1*2+1), %i2
L.3.7:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-1*2-1), %i2
L.2.7:	! remainder is negative
	addcc	%i3,%l1,%i3
	! depth 3, accumulated bits -3
	bl	L.3.5
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-3*2+1), %i2
L.3.5:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-3*2-1), %i2
end_regular_divide:
9:	deccc	%l0
	bge	divloop
	tst	%i3
	bge	got_result
	nop
	! non-restoring fixup here
	dec	%i2
got_result:
	tst	%i2
	bge	1f
	restore
	! answer < 0
	retl		! leaf-routine return
	neg	%o2, %o0	! quotient <- -%i2
1:	retl		! leaf-routine return
	mov	%o2, %o0	! quotient <- %i2
#endif

#ifdef L_modsi3
.text
	.align 4
	.global	.urem
	.proc 4
.urem:
	save	%sp, -64, %sp
	b	divide
	mov	0, %i2		! result always positive
	.global .rem
	.proc 4
.rem:
	save	%sp, -64, %sp
	orcc	%i1, %i0, %g0	! is either operand negative
	bge	divide		! if not, skip this junk
	mov	%i0, %i2	! record sign of result in sign of %i2
	tst	%i1
	bge	2f
	tst	%i0
	! %i1 < 0
	bge	divide
	neg	%i1
2:	! %i0 < 0
	neg	%i0
	!	FALL THROUGH
divide:
	! Compute size of quotient, scale comparand.
	orcc	%i1, %g0, %l1		! movcc %i1, %l1
	te	2			! if %i1 = 0
	mov	%i0, %i3
	mov	0, %i2
	sethi	%hi(1<<(32-2-1)), %l3
	cmp 	%i3, %l3
	blu	not_really_big
	mov	0, %l0
	!
	! Here, the %i0 is >= 2^(31-3) or so.  We must be careful here,
	! as our usual 3-at-a-shot divide step will cause overflow and havoc.
	! The total number of bits in the result here is 3*%l0+%l4, where
	! %l4 <= 3.
	! Compute %l0 in an unorthodox manner: know we need to Shift %l1 into
	! the top decade: so do not even bother to compare to %i3.
1:	cmp	%l1, %l3
	bgeu	3f
	mov	1, %l4
	sll	%l1, 3, %l1
	b	1b
	inc	%l0
	!
	! Now compute %l4
	!
2:	addcc	%l1, %l1, %l1
	bcc	not_too_big
	add	%l4, 1, %l4
	!
	! We are here if the %i1 overflowed when Shifting.
	! This means that %i3 has the high-order bit set.
	! Restore %l1 and subtract from %i3.
	sll	%l3, 2, %l3
	srl	%l1, 1, %l1
	add	%l1, %l3, %l1
	b	do_single_div
	dec	%l4
not_too_big:
3:	cmp	%l1, %i3
	blu	2b
	nop
	be	do_single_div
	nop
	! %l1 > %i3: went too far: back up 1 step
	! 	srl	%l1, 1, %l1
	!	dec	%l4
	! do single-bit divide steps
	!
	! We have to be careful here.  We know that %i3 >= %l1, so we can do the
	! first divide step without thinking.  BUT, the others are conditional,
	! and are only done if %i3 >= 0.  Because both %i3 and %l1 may have the
	! high-order bit set in the first step, just falling into the regular
	! division loop will mess up the first time around.
	! So we unroll slightly...
do_single_div:
	deccc	%l4
	bl	end_regular_divide
	nop
	sub	%i3, %l1, %i3
	mov	1, %i2
	b	end_single_divloop
	nop
single_divloop:
	sll	%i2, 1, %i2
	bl	1f
	srl	%l1, 1, %l1
	! %i3 >= 0
	sub	%i3, %l1, %i3
	b	2f
	inc	%i2
1:	! %i3 < 0
	add	%i3, %l1, %i3
	dec	%i2
end_single_divloop:
2:	deccc	%l4
	bge	single_divloop
	tst	%i3
	b	end_regular_divide
	nop
not_really_big:
1:	sll	%l1, 3, %l1
	cmp	%l1, %i3
	bleu	1b
	inccc	%l0
	be	got_result
	dec	%l0
do_regular_divide:
	! Do the main division iteration
	tst	%i3
	! Fall through into divide loop
divloop:
	sll	%i2, 3, %i2
	! depth 1, accumulated bits 0
	bl	L.1.8
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	! depth 2, accumulated bits 1
	bl	L.2.9
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	! depth 3, accumulated bits 3
	bl	L.3.11
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (3*2+1), %i2
L.3.11:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (3*2-1), %i2
L.2.9:	! remainder is negative
	addcc	%i3,%l1,%i3
	! depth 3, accumulated bits 1
	bl	L.3.9
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (1*2+1), %i2
L.3.9:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (1*2-1), %i2
L.1.8:	! remainder is negative
	addcc	%i3,%l1,%i3
	! depth 2, accumulated bits -1
	bl	L.2.7
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	! depth 3, accumulated bits -1
	bl	L.3.7
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-1*2+1), %i2
L.3.7:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-1*2-1), %i2
L.2.7:	! remainder is negative
	addcc	%i3,%l1,%i3
	! depth 3, accumulated bits -3
	bl	L.3.5
	srl	%l1,1,%l1
	! remainder is positive
	subcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-3*2+1), %i2
L.3.5:	! remainder is negative
	addcc	%i3,%l1,%i3
	b	9f
	add	%i2, (-3*2-1), %i2
end_regular_divide:
9:	deccc	%l0
	bge	divloop
	tst	%i3
	bge	got_result
	nop
	! non-restoring fixup here
	add	%i3, %i1, %i3
got_result:
	tst	%i2
	bge	1f
	restore
	! answer < 0
	retl		! leaf-routine return
	neg	%o3, %o0	! remainder <- -%i3
1:	retl		! leaf-routine return
	mov	%o3, %o0	! remainder <- %i3
#endif