1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
// -*- C++ -*-
/* Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
Written by James Clark (jjc@jclark.com)
This file is part of groff.
groff is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
groff is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License along
with groff; see the file COPYING. If not, write to the Free Software
Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "pic.h"
#include "common.h"
// output a dashed circle as a series of arcs
void common_output::dashed_circle(const position ¢, double rad,
const line_type <)
{
assert(lt.type == line_type::dashed);
line_type slt = lt;
slt.type = line_type::solid;
double dash_angle = lt.dash_width/rad;
int ndashes;
double gap_angle;
if (dash_angle >= M_PI/4.0) {
if (dash_angle < M_PI/2.0) {
gap_angle = M_PI/2.0 - dash_angle;
ndashes = 4;
}
else if (dash_angle < M_PI) {
gap_angle = M_PI - dash_angle;
ndashes = 2;
}
else {
circle(cent, rad, slt, -1.0);
return;
}
}
else {
ndashes = 4*int(ceil(M_PI/(4.0*dash_angle)));
gap_angle = (M_PI*2.0)/ndashes - dash_angle;
}
for (int i = 0; i < ndashes; i++) {
double start_angle = i*(dash_angle+gap_angle) - dash_angle/2.0;
solid_arc(cent, rad, start_angle, start_angle + dash_angle, lt);
}
}
// output a dotted circle as a series of dots
void common_output::dotted_circle(const position ¢, double rad,
const line_type <)
{
assert(lt.type == line_type::dotted);
double gap_angle = lt.dash_width/rad;
int ndots;
if (gap_angle >= M_PI/2.0) {
// always have at least 2 dots
gap_angle = M_PI;
ndots = 2;
}
else {
ndots = 4*int(M_PI/(2.0*gap_angle));
gap_angle = (M_PI*2.0)/ndots;
}
double ang = 0.0;
for (int i = 0; i < ndots; i++, ang += gap_angle)
dot(cent + position(cos(ang), sin(ang))*rad, lt);
}
// return non-zero iff we can compute a center
int compute_arc_center(const position &start, const position ¢,
const position &end, position *result)
{
// This finds the point along the vector from start to cent that
// is equidistant between start and end.
distance c = cent - start;
distance e = end - start;
double n = c*e;
if (n == 0.0)
return 0;
*result = start + c*((e*e)/(2.0*n));
return 1;
}
// output a dashed arc as a series of arcs
void common_output::dashed_arc(const position &start, const position ¢,
const position &end, const line_type <)
{
assert(lt.type == line_type::dashed);
position c;
if (!compute_arc_center(start, cent, end, &c)) {
line(start, &end, 1, lt);
return;
}
distance start_offset = start - c;
distance end_offset = end - c;
double start_angle = atan2(start_offset.y, start_offset.x);
double end_angle = atan2(end_offset.y, end_offset.x);
double rad = hypot(c - start);
double dash_angle = lt.dash_width/rad;
double total_angle = end_angle - start_angle;
while (total_angle < 0)
total_angle += M_PI + M_PI;
if (total_angle <= dash_angle*2.0) {
solid_arc(cent, rad, start_angle, end_angle, lt);
return;
}
int ndashes = int((total_angle - dash_angle)/(dash_angle*2.0) + .5);
double dash_and_gap_angle = (total_angle - dash_angle)/ndashes;
for (int i = 0; i <= ndashes; i++)
solid_arc(cent, rad, start_angle + i*dash_and_gap_angle,
start_angle + i*dash_and_gap_angle + dash_angle, lt);
}
// output a dotted arc as a series of dots
void common_output::dotted_arc(const position &start, const position ¢,
const position &end, const line_type <)
{
assert(lt.type == line_type::dotted);
position c;
if (!compute_arc_center(start, cent, end, &c)) {
line(start, &end, 1, lt);
return;
}
distance start_offset = start - c;
distance end_offset = end - c;
double start_angle = atan2(start_offset.y, start_offset.x);
double total_angle = atan2(end_offset.y, end_offset.x) - start_angle;
while (total_angle < 0)
total_angle += M_PI + M_PI;
double rad = hypot(c - start);
int ndots = int(total_angle/(lt.dash_width/rad) + .5);
if (ndots == 0)
dot(start, lt);
else {
for (int i = 0; i <= ndots; i++) {
double a = start_angle + (total_angle*i)/ndots;
dot(cent + position(cos(a), sin(a))*rad, lt);
}
}
}
void common_output::solid_arc(const position ¢, double rad,
double start_angle, double end_angle,
const line_type <)
{
line_type slt = lt;
slt.type = line_type::solid;
arc(cent + position(cos(start_angle), sin(start_angle))*rad,
cent,
cent + position(cos(end_angle), sin(end_angle))*rad,
slt);
}
void common_output::rounded_box(const position ¢, const distance &dim,
double rad, const line_type <, double fill)
{
if (fill >= 0.0)
filled_rounded_box(cent, dim, rad, fill);
switch (lt.type) {
case line_type::invisible:
break;
case line_type::dashed:
dashed_rounded_box(cent, dim, rad, lt);
break;
case line_type::dotted:
dotted_rounded_box(cent, dim, rad, lt);
break;
case line_type::solid:
solid_rounded_box(cent, dim, rad, lt);
break;
default:
assert(0);
}
}
void common_output::dashed_rounded_box(const position ¢,
const distance &dim, double rad,
const line_type <)
{
line_type slt = lt;
slt.type = line_type::solid;
double hor_length = dim.x + (M_PI/2.0 - 2.0)*rad;
int n_hor_dashes = int(hor_length/(lt.dash_width*2.0) + .5);
double hor_gap_width = (n_hor_dashes != 0
? hor_length/n_hor_dashes - lt.dash_width
: 0.0);
double vert_length = dim.y + (M_PI/2.0 - 2.0)*rad;
int n_vert_dashes = int(vert_length/(lt.dash_width*2.0) + .5);
double vert_gap_width = (n_vert_dashes != 0
? vert_length/n_vert_dashes - lt.dash_width
: 0.0);
// Note that each corner arc has to be split into two for dashing,
// because one part is dashed using vert_gap_width, and the other
// using hor_gap_width.
double offset = lt.dash_width/2.0;
dash_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
-M_PI/4.0, 0, slt, lt.dash_width, vert_gap_width, &offset);
dash_line(cent + position(dim.x/2.0, -dim.y/2.0 + rad),
cent + position(dim.x/2.0, dim.y/2.0 - rad),
slt, lt.dash_width, vert_gap_width, &offset);
dash_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
0, M_PI/4.0, slt, lt.dash_width, vert_gap_width, &offset);
offset = lt.dash_width/2.0;
dash_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
M_PI/4.0, M_PI/2, slt, lt.dash_width, hor_gap_width, &offset);
dash_line(cent + position(dim.x/2.0 - rad, dim.y/2.0),
cent + position(-dim.x/2.0 + rad, dim.y/2.0),
slt, lt.dash_width, hor_gap_width, &offset);
dash_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
M_PI/2, 3*M_PI/4.0, slt, lt.dash_width, hor_gap_width, &offset);
offset = lt.dash_width/2.0;
dash_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
3.0*M_PI/4.0, M_PI, slt, lt.dash_width, vert_gap_width, &offset);
dash_line(cent + position(-dim.x/2.0, dim.y/2.0 - rad),
cent + position(-dim.x/2.0, -dim.y/2.0 + rad),
slt, lt.dash_width, vert_gap_width, &offset);
dash_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
M_PI, 5.0*M_PI/4.0, slt, lt.dash_width, vert_gap_width, &offset);
offset = lt.dash_width/2.0;
dash_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
5*M_PI/4.0, 3*M_PI/2.0, slt, lt.dash_width, hor_gap_width, &offset);
dash_line(cent + position(-dim.x/2.0 + rad, -dim.y/2.0),
cent + position(dim.x/2.0 - rad, -dim.y/2.0),
slt, lt.dash_width, hor_gap_width, &offset);
dash_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
3*M_PI/2, 7*M_PI/4, slt, lt.dash_width, hor_gap_width, &offset);
}
// Used by dashed_rounded_box.
void common_output::dash_arc(const position ¢, double rad,
double start_angle, double end_angle,
const line_type <,
double dash_width, double gap_width,
double *offsetp)
{
double length = (end_angle - start_angle)*rad;
double pos = 0.0;
for (;;) {
if (*offsetp >= dash_width) {
double rem = dash_width + gap_width - *offsetp;
if (pos + rem > length) {
*offsetp += length - pos;
break;
}
else {
pos += rem;
*offsetp = 0.0;
}
}
else {
double rem = dash_width - *offsetp;
if (pos + rem > length) {
solid_arc(cent, rad, start_angle + pos/rad, end_angle, lt);
*offsetp += length - pos;
break;
}
else {
solid_arc(cent, rad, start_angle + pos/rad,
start_angle + (pos + rem)/rad, lt);
pos += rem;
*offsetp = dash_width;
}
}
}
}
// Used by dashed_rounded_box.
void common_output::dash_line(const position &start, const position &end,
const line_type <,
double dash_width, double gap_width,
double *offsetp)
{
distance dist = end - start;
double length = hypot(dist);
if (length == 0.0)
return;
double pos = 0.0;
for (;;) {
if (*offsetp >= dash_width) {
double rem = dash_width + gap_width - *offsetp;
if (pos + rem > length) {
*offsetp += length - pos;
break;
}
else {
pos += rem;
*offsetp = 0.0;
}
}
else {
double rem = dash_width - *offsetp;
if (pos + rem > length) {
line(start + dist*(pos/length), &end, 1, lt);
*offsetp += length - pos;
break;
}
else {
position p(start + dist*((pos + rem)/length));
line(start + dist*(pos/length), &p, 1, lt);
pos += rem;
*offsetp = dash_width;
}
}
}
}
void common_output::dotted_rounded_box(const position ¢,
const distance &dim, double rad,
const line_type <)
{
line_type slt = lt;
slt.type = line_type::solid;
double hor_length = dim.x + (M_PI/2.0 - 2.0)*rad;
int n_hor_dots = int(hor_length/lt.dash_width + .5);
double hor_gap_width = (n_hor_dots != 0
? hor_length/n_hor_dots
: lt.dash_width);
double vert_length = dim.y + (M_PI/2.0 - 2.0)*rad;
int n_vert_dots = int(vert_length/lt.dash_width + .5);
double vert_gap_width = (n_vert_dots != 0
? vert_length/n_vert_dots
: lt.dash_width);
double epsilon = lt.dash_width/(rad*100.0);
double offset = 0.0;
dot_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
-M_PI/4.0, 0, slt, vert_gap_width, &offset);
dot_line(cent + position(dim.x/2.0, -dim.y/2.0 + rad),
cent + position(dim.x/2.0, dim.y/2.0 - rad),
slt, vert_gap_width, &offset);
dot_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
0, M_PI/4.0 - epsilon, slt, vert_gap_width, &offset);
offset = 0.0;
dot_arc(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad,
M_PI/4.0, M_PI/2, slt, hor_gap_width, &offset);
dot_line(cent + position(dim.x/2.0 - rad, dim.y/2.0),
cent + position(-dim.x/2.0 + rad, dim.y/2.0),
slt, hor_gap_width, &offset);
dot_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
M_PI/2, 3*M_PI/4.0 - epsilon, slt, hor_gap_width, &offset);
offset = 0.0;
dot_arc(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad,
3.0*M_PI/4.0, M_PI, slt, vert_gap_width, &offset);
dot_line(cent + position(-dim.x/2.0, dim.y/2.0 - rad),
cent + position(-dim.x/2.0, -dim.y/2.0 + rad),
slt, vert_gap_width, &offset);
dot_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
M_PI, 5.0*M_PI/4.0 - epsilon, slt, vert_gap_width, &offset);
offset = 0.0;
dot_arc(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad,
5*M_PI/4.0, 3*M_PI/2.0, slt, hor_gap_width, &offset);
dot_line(cent + position(-dim.x/2.0 + rad, -dim.y/2.0),
cent + position(dim.x/2.0 - rad, -dim.y/2.0),
slt, hor_gap_width, &offset);
dot_arc(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad,
3*M_PI/2, 7*M_PI/4 - epsilon, slt, hor_gap_width, &offset);
}
// Used by dotted_rounded_box.
void common_output::dot_arc(const position ¢, double rad,
double start_angle, double end_angle,
const line_type <, double gap_width,
double *offsetp)
{
double length = (end_angle - start_angle)*rad;
double pos = 0.0;
for (;;) {
if (*offsetp == 0.0) {
double ang = start_angle + pos/rad;
dot(cent + position(cos(ang), sin(ang))*rad, lt);
}
double rem = gap_width - *offsetp;
if (pos + rem > length) {
*offsetp += length - pos;
break;
}
else {
pos += rem;
*offsetp = 0.0;
}
}
}
// Used by dotted_rounded_box.
void common_output::dot_line(const position &start, const position &end,
const line_type <, double gap_width,
double *offsetp)
{
distance dist = end - start;
double length = hypot(dist);
if (length == 0.0)
return;
double pos = 0.0;
for (;;) {
if (*offsetp == 0.0)
dot(start + dist*(pos/length), lt);
double rem = gap_width - *offsetp;
if (pos + rem > length) {
*offsetp += length - pos;
break;
}
else {
pos += rem;
*offsetp = 0.0;
}
}
}
void common_output::solid_rounded_box(const position ¢,
const distance &dim, double rad,
const line_type <)
{
position tem = cent - dim/2.0;
arc(tem + position(0.0, rad),
tem + position(rad, rad),
tem + position(rad, 0.0),
lt);
tem = cent + position(-dim.x/2.0, dim.y/2.0);
arc(tem + position(rad, 0.0),
tem + position(rad, -rad),
tem + position(0.0, -rad),
lt);
tem = cent + dim/2.0;
arc(tem + position(0.0, -rad),
tem + position(-rad, -rad),
tem + position(-rad, 0.0),
lt);
tem = cent + position(dim.x/2.0, -dim.y/2.0);
arc(tem + position(-rad, 0.0),
tem + position(-rad, rad),
tem + position(0.0, rad),
lt);
position end;
end = cent + position(-dim.x/2.0, dim.y/2.0 - rad);
line(cent - dim/2.0 + position(0.0, rad), &end, 1, lt);
end = cent + position(dim.x/2.0 - rad, dim.y/2.0);
line(cent + position(-dim.x/2.0 + rad, dim.y/2.0), &end, 1, lt);
end = cent + position(dim.x/2.0, -dim.y/2.0 + rad);
line(cent + position(dim.x/2.0, dim.y/2.0 - rad), &end, 1, lt);
end = cent + position(-dim.x/2.0 + rad, -dim.y/2.0);
line(cent + position(dim.x/2.0 - rad, -dim.y/2.0), &end, 1, lt);
}
void common_output::filled_rounded_box(const position ¢,
const distance &dim, double rad,
double fill)
{
line_type ilt;
ilt.type = line_type::invisible;
circle(cent + position(dim.x/2.0 - rad, dim.y/2.0 - rad), rad, ilt, fill);
circle(cent + position(-dim.x/2.0 + rad, dim.y/2.0 - rad), rad, ilt, fill);
circle(cent + position(-dim.x/2.0 + rad, -dim.y/2.0 + rad), rad, ilt, fill);
circle(cent + position(dim.x/2.0 - rad, -dim.y/2.0 + rad), rad, ilt, fill);
position vec[4];
vec[0] = cent + position(dim.x/2.0, dim.y/2.0 - rad);
vec[1] = cent + position(-dim.x/2.0, dim.y/2.0 - rad);
vec[2] = cent + position(-dim.x/2.0, -dim.y/2.0 + rad);
vec[3] = cent + position(dim.x/2.0, -dim.y/2.0 + rad);
polygon(vec, 4, ilt, fill);
vec[0] = cent + position(dim.x/2.0 - rad, dim.y/2.0);
vec[1] = cent + position(-dim.x/2.0 + rad, dim.y/2.0);
vec[2] = cent + position(-dim.x/2.0 + rad, -dim.y/2.0);
vec[3] = cent + position(dim.x/2.0 - rad, -dim.y/2.0);
polygon(vec, 4, ilt, fill);
}
|