1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
|
package Math::BigInt;
#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#
# The following hash values are used:
# value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
# sign : +,-,NaN,+inf,-inf
# _a : accuracy
# _p : precision
# _f : flags, used by MBF to flag parts of a float as untouchable
# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!
my $class = "Math::BigInt";
require 5.005;
$VERSION = '1.73';
use Exporter;
@ISA = qw( Exporter );
@EXPORT_OK = qw( objectify bgcd blcm);
# _trap_inf and _trap_nan are internal and should never be accessed from the
# outside
use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode
$upgrade $downgrade $_trap_nan $_trap_inf/;
use strict;
# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third paramater is true.
# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
# no difference, but in some cases it does.
# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.
# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.
use overload
'=' => sub { $_[0]->copy(); },
# some shortcuts for speed (assumes that reversed order of arguments is routed
# to normal '+' and we thus can always modify first arg. If this is changed,
# this breaks and must be adjusted.)
'+=' => sub { $_[0]->badd($_[1]); },
'-=' => sub { $_[0]->bsub($_[1]); },
'*=' => sub { $_[0]->bmul($_[1]); },
'/=' => sub { scalar $_[0]->bdiv($_[1]); },
'%=' => sub { $_[0]->bmod($_[1]); },
'^=' => sub { $_[0]->bxor($_[1]); },
'&=' => sub { $_[0]->band($_[1]); },
'|=' => sub { $_[0]->bior($_[1]); },
'**=' => sub { $_[0]->bpow($_[1]); },
'<<=' => sub { $_[0]->blsft($_[1]); },
'>>=' => sub { $_[0]->brsft($_[1]); },
# not supported by Perl yet
'..' => \&_pointpoint,
'<=>' => sub { $_[2] ?
ref($_[0])->bcmp($_[1],$_[0]) :
$_[0]->bcmp($_[1])},
'cmp' => sub {
$_[2] ?
"$_[1]" cmp $_[0]->bstr() :
$_[0]->bstr() cmp "$_[1]" },
# make cos()/sin()/exp() "work" with BigInt's or subclasses
'cos' => sub { cos($_[0]->numify()) },
'sin' => sub { sin($_[0]->numify()) },
'exp' => sub { exp($_[0]->numify()) },
'atan2' => sub { atan2($_[0]->numify(),$_[1]) },
'log' => sub { $_[0]->copy()->blog($_[1]); },
'int' => sub { $_[0]->copy(); },
'neg' => sub { $_[0]->copy()->bneg(); },
'abs' => sub { $_[0]->copy()->babs(); },
'sqrt' => sub { $_[0]->copy()->bsqrt(); },
'~' => sub { $_[0]->copy()->bnot(); },
# for subtract it's a bit tricky to not modify b: b-a => -a+b
'-' => sub { my $c = $_[0]->copy; $_[2] ?
$c->bneg()->badd( $_[1]) :
$c->bsub( $_[1]) },
'+' => sub { $_[0]->copy()->badd($_[1]); },
'*' => sub { $_[0]->copy()->bmul($_[1]); },
'/' => sub {
$_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
},
'%' => sub {
$_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
},
'**' => sub {
$_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
},
'<<' => sub {
$_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
},
'>>' => sub {
$_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
},
'&' => sub {
$_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
},
'|' => sub {
$_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
},
'^' => sub {
$_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
},
# can modify arg of ++ and --, so avoid a copy() for speed, but don't
# use $_[0]->bone(), it would modify $_[0] to be 1!
'++' => sub { $_[0]->binc() },
'--' => sub { $_[0]->bdec() },
# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
'bool' => sub {
# this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
# v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-(
my $t = undef;
$t = 1 if !$_[0]->is_zero();
$t;
},
# the original qw() does not work with the TIESCALAR below, why?
# Order of arguments unsignificant
'""' => sub { $_[0]->bstr(); },
'0+' => sub { $_[0]->numify(); }
;
##############################################################################
# global constants, flags and accessory
# these are public, but their usage is not recommended, use the accessor
# methods instead
$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
$accuracy = undef;
$precision = undef;
$div_scale = 40;
$upgrade = undef; # default is no upgrade
$downgrade = undef; # default is no downgrade
# these are internally, and not to be used from the outside
sub MB_NEVER_ROUND () { 0x0001; }
$_trap_nan = 0; # are NaNs ok? set w/ config()
$_trap_inf = 0; # are infs ok? set w/ config()
my $nan = 'NaN'; # constants for easier life
my $CALC = 'Math::BigInt::Calc'; # module to do the low level math
# default is Calc.pm
my $IMPORT = 0; # was import() called yet?
# used to make require work
my %WARN; # warn only once for low-level libs
my %CAN; # cache for $CALC->can(...)
my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
$rnd_mode = 'even';
sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
sub FETCH { return $round_mode; }
sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
BEGIN
{
# tie to enable $rnd_mode to work transparently
tie $rnd_mode, 'Math::BigInt';
# set up some handy alias names
*as_int = \&as_number;
*is_pos = \&is_positive;
*is_neg = \&is_negative;
}
##############################################################################
sub round_mode
{
no strict 'refs';
# make Class->round_mode() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0])
{
my $m = shift;
if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
{
require Carp; Carp::croak ("Unknown round mode '$m'");
}
return ${"${class}::round_mode"} = $m;
}
${"${class}::round_mode"};
}
sub upgrade
{
no strict 'refs';
# make Class->upgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0)
{
my $u = shift;
return ${"${class}::upgrade"} = $u;
}
${"${class}::upgrade"};
}
sub downgrade
{
no strict 'refs';
# make Class->downgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0)
{
my $u = shift;
return ${"${class}::downgrade"} = $u;
}
${"${class}::downgrade"};
}
sub div_scale
{
no strict 'refs';
# make Class->div_scale() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0])
{
if ($_[0] < 0)
{
require Carp; Carp::croak ('div_scale must be greater than zero');
}
${"${class}::div_scale"} = shift;
}
${"${class}::div_scale"};
}
sub accuracy
{
# $x->accuracy($a); ref($x) $a
# $x->accuracy(); ref($x)
# Class->accuracy(); class
# Class->accuracy($a); class $a
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
# need to set new value?
if (@_ > 0)
{
my $a = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$a = $a->numify() if ref($a) && $a->can('numify');
if (defined $a)
{
# also croak on non-numerical
if (!$a || $a <= 0)
{
require Carp;
Carp::croak ('Argument to accuracy must be greater than zero');
}
if (int($a) != $a)
{
require Carp; Carp::croak ('Argument to accuracy must be an integer');
}
}
if (ref($x))
{
# $object->accuracy() or fallback to global
$x->bround($a) if $a; # not for undef, 0
$x->{_a} = $a; # set/overwrite, even if not rounded
delete $x->{_p}; # clear P
$a = ${"${class}::accuracy"} unless defined $a; # proper return value
}
else
{
${"${class}::accuracy"} = $a; # set global A
${"${class}::precision"} = undef; # clear global P
}
return $a; # shortcut
}
my $r;
# $object->accuracy() or fallback to global
$r = $x->{_a} if ref($x);
# but don't return global undef, when $x's accuracy is 0!
$r = ${"${class}::accuracy"} if !defined $r;
$r;
}
sub precision
{
# $x->precision($p); ref($x) $p
# $x->precision(); ref($x)
# Class->precision(); class
# Class->precision($p); class $p
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
if (@_ > 0)
{
my $p = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$p = $p->numify() if ref($p) && $p->can('numify');
if ((defined $p) && (int($p) != $p))
{
require Carp; Carp::croak ('Argument to precision must be an integer');
}
if (ref($x))
{
# $object->precision() or fallback to global
$x->bfround($p) if $p; # not for undef, 0
$x->{_p} = $p; # set/overwrite, even if not rounded
delete $x->{_a}; # clear A
$p = ${"${class}::precision"} unless defined $p; # proper return value
}
else
{
${"${class}::precision"} = $p; # set global P
${"${class}::accuracy"} = undef; # clear global A
}
return $p; # shortcut
}
my $r;
# $object->precision() or fallback to global
$r = $x->{_p} if ref($x);
# but don't return global undef, when $x's precision is 0!
$r = ${"${class}::precision"} if !defined $r;
$r;
}
sub config
{
# return (or set) configuration data as hash ref
my $class = shift || 'Math::BigInt';
no strict 'refs';
if (@_ > 0)
{
# try to set given options as arguments from hash
my $args = $_[0];
if (ref($args) ne 'HASH')
{
$args = { @_ };
}
# these values can be "set"
my $set_args = {};
foreach my $key (
qw/trap_inf trap_nan
upgrade downgrade precision accuracy round_mode div_scale/
)
{
$set_args->{$key} = $args->{$key} if exists $args->{$key};
delete $args->{$key};
}
if (keys %$args > 0)
{
require Carp;
Carp::croak ("Illegal key(s) '",
join("','",keys %$args),"' passed to $class\->config()");
}
foreach my $key (keys %$set_args)
{
if ($key =~ /^trap_(inf|nan)\z/)
{
${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
next;
}
# use a call instead of just setting the $variable to check argument
$class->$key($set_args->{$key});
}
}
# now return actual configuration
my $cfg = {
lib => $CALC,
lib_version => ${"${CALC}::VERSION"},
class => $class,
trap_nan => ${"${class}::_trap_nan"},
trap_inf => ${"${class}::_trap_inf"},
version => ${"${class}::VERSION"},
};
foreach my $key (qw/
upgrade downgrade precision accuracy round_mode div_scale
/)
{
$cfg->{$key} = ${"${class}::$key"};
};
$cfg;
}
sub _scale_a
{
# select accuracy parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x,$s,$m,$scale,$mode) = @_;
$scale = $x->{_a} if !defined $scale;
$scale = $s if (!defined $scale);
$mode = $m if !defined $mode;
return ($scale,$mode);
}
sub _scale_p
{
# select precision parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x,$s,$m,$scale,$mode) = @_;
$scale = $x->{_p} if !defined $scale;
$scale = $s if (!defined $scale);
$mode = $m if !defined $mode;
return ($scale,$mode);
}
##############################################################################
# constructors
sub copy
{
my ($c,$x);
if (@_ > 1)
{
# if two arguments, the first one is the class to "swallow" subclasses
($c,$x) = @_;
}
else
{
$x = shift;
$c = ref($x);
}
return unless ref($x); # only for objects
my $self = {}; bless $self,$c;
$self->{sign} = $x->{sign};
$self->{value} = $CALC->_copy($x->{value});
$self->{_a} = $x->{_a} if defined $x->{_a};
$self->{_p} = $x->{_p} if defined $x->{_p};
$self;
}
sub new
{
# create a new BigInt object from a string or another BigInt object.
# see hash keys documented at top
# the argument could be an object, so avoid ||, && etc on it, this would
# cause costly overloaded code to be called. The only allowed ops are
# ref() and defined.
my ($class,$wanted,$a,$p,$r) = @_;
# avoid numify-calls by not using || on $wanted!
return $class->bzero($a,$p) if !defined $wanted; # default to 0
return $class->copy($wanted,$a,$p,$r)
if ref($wanted) && $wanted->isa($class); # MBI or subclass
$class->import() if $IMPORT == 0; # make require work
my $self = bless {}, $class;
# shortcut for "normal" numbers
if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
{
$self->{sign} = $1 || '+';
if ($wanted =~ /^[+-]/)
{
# remove sign without touching wanted to make it work with constants
my $t = $wanted; $t =~ s/^[+-]//;
$self->{value} = $CALC->_new($t);
}
else
{
$self->{value} = $CALC->_new($wanted);
}
no strict 'refs';
if ( (defined $a) || (defined $p)
|| (defined ${"${class}::precision"})
|| (defined ${"${class}::accuracy"})
)
{
$self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
}
return $self;
}
# handle '+inf', '-inf' first
if ($wanted =~ /^[+-]?inf$/)
{
$self->{value} = $CALC->_zero();
$self->{sign} = $wanted; $self->{sign} = '+inf' if $self->{sign} eq 'inf';
return $self;
}
# split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
if (!ref $mis)
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted is not a number in $class");
}
$self->{value} = $CALC->_zero();
$self->{sign} = $nan;
return $self;
}
if (!ref $miv)
{
# _from_hex or _from_bin
$self->{value} = $mis->{value};
$self->{sign} = $mis->{sign};
return $self; # throw away $mis
}
# make integer from mantissa by adjusting exp, then convert to bigint
$self->{sign} = $$mis; # store sign
$self->{value} = $CALC->_zero(); # for all the NaN cases
my $e = int("$$es$$ev"); # exponent (avoid recursion)
if ($e > 0)
{
my $diff = $e - CORE::length($$mfv);
if ($diff < 0) # Not integer
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 1\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
else # diff >= 0
{
# adjust fraction and add it to value
#print "diff > 0 $$miv\n";
$$miv = $$miv . ($$mfv . '0' x $diff);
}
}
else
{
if ($$mfv ne '') # e <= 0
{
# fraction and negative/zero E => NOI
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 2 \$\$mfv '$$mfv'\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
elsif ($e < 0)
{
# xE-y, and empty mfv
#print "xE-y\n";
$e = abs($e);
if ($$miv !~ s/0{$e}$//) # can strip so many zero's?
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 3\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
}
}
$self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0
$self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
# if any of the globals is set, use them to round and store them inside $self
# do not round for new($x,undef,undef) since that is used by MBF to signal
# no rounding
$self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
$self;
}
sub bnan
{
# create a bigint 'NaN', if given a BigInt, set it to 'NaN'
my $self = shift;
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
no strict 'refs';
if (${"${class}::_trap_nan"})
{
require Carp;
Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bnan');
if ($self->can('_bnan'))
{
# use subclass to initialize
$self->_bnan();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$self->{sign} = $nan;
delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly
$self;
}
sub binf
{
# create a bigint '+-inf', if given a BigInt, set it to '+-inf'
# the sign is either '+', or if given, used from there
my $self = shift;
my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
no strict 'refs';
if (${"${class}::_trap_inf"})
{
require Carp;
Carp::croak ("Tried to set $self to +-inf in $class\::binfn()");
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('binf');
if ($self->can('_binf'))
{
# use subclass to initialize
$self->_binf();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf
$self->{sign} = $sign;
($self->{_a},$self->{_p}) = @_; # take over requested rounding
$self;
}
sub bzero
{
# create a bigint '+0', if given a BigInt, set it to 0
my $self = shift;
$self = __PACKAGE__ if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bzero');
if ($self->can('_bzero'))
{
# use subclass to initialize
$self->_bzero();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$self->{sign} = '+';
if (@_ > 0)
{
if (@_ > 3)
{
# call like: $x->bzero($a,$p,$r,$y);
($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
}
else
{
$self->{_a} = $_[0]
if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
$self->{_p} = $_[1]
if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
}
}
$self;
}
sub bone
{
# create a bigint '+1' (or -1 if given sign '-'),
# if given a BigInt, set it to +1 or -1, respecively
my $self = shift;
my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bone');
if ($self->can('_bone'))
{
# use subclass to initialize
$self->_bone();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_one();
}
$self->{sign} = $sign;
if (@_ > 0)
{
if (@_ > 3)
{
# call like: $x->bone($sign,$a,$p,$r,$y);
($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
}
else
{
# call like: $x->bone($sign,$a,$p,$r);
$self->{_a} = $_[0]
if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
$self->{_p} = $_[1]
if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
}
}
$self;
}
##############################################################################
# string conversation
sub bsstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to scientific string format.
# internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
my $x = shift; my $class = ref($x) || $x; $x = $class->new(shift) if !ref($x);
# my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($m,$e) = $x->parts();
#$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt
# 'e+' because E can only be positive in BigInt
$m->bstr() . 'e+' . $CALC->_str($e->{value});
}
sub bstr
{
# make a string from bigint object
my $x = shift; my $class = ref($x) || $x; $x = $class->new(shift) if !ref($x);
# my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
$es.$CALC->_str($x->{value});
}
sub numify
{
# Make a "normal" scalar from a BigInt object
my $x = shift; $x = $class->new($x) unless ref $x;
return $x->bstr() if $x->{sign} !~ /^[+-]$/;
my $num = $CALC->_num($x->{value});
return -$num if $x->{sign} eq '-';
$num;
}
##############################################################################
# public stuff (usually prefixed with "b")
sub sign
{
# return the sign of the number: +/-/-inf/+inf/NaN
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign};
}
sub _find_round_parameters
{
# After any operation or when calling round(), the result is rounded by
# regarding the A & P from arguments, local parameters, or globals.
# !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
# This procedure finds the round parameters, but it is for speed reasons
# duplicated in round. Otherwise, it is tested by the testsuite and used
# by fdiv().
# returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
# were requested/defined (locally or globally or both)
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
# leave bigfloat parts alone
return ($self) if exists $self->{_f} && ($self->{_f} & MB_NEVER_ROUND) != 0;
my $c = ref($self); # find out class of argument(s)
no strict 'refs';
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a)
{
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p)
{
# even if $a is defined, take $p, to signal error for both defined
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$c\::accuracy"} unless defined $a;
$p = ${"$c\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return ($self) unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return ($self->bnan()) if defined $a && defined $p; # error
$r = ${"$c\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
{
require Carp; Carp::croak ("Unknown round mode '$r'");
}
($self,$a,$p,$r);
}
sub round
{
# Round $self according to given parameters, or given second argument's
# parameters or global defaults
# for speed reasons, _find_round_parameters is embeded here:
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
# leave bigfloat parts alone (that is only used in BigRat for now and can be
# removed once we rewrote BigRat))
return ($self) if exists $self->{_f} && ($self->{_f} & MB_NEVER_ROUND) != 0;
my $c = ref($self); # find out class of argument(s)
no strict 'refs';
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a)
{
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p)
{
# even if $a is defined, take $p, to signal error for both defined
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$c\::accuracy"} unless defined $a;
$p = ${"$c\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return $self unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return $self->bnan() if defined $a && defined $p;
$r = ${"$c\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc)$/)
{
require Carp; Carp::croak ("Unknown round mode '$r'");
}
# now round, by calling either fround or ffround:
if (defined $a)
{
$self->bround($a,$r) if !defined $self->{_a} || $self->{_a} >= $a;
}
else # both can't be undefined due to early out
{
$self->bfround($p,$r) if !defined $self->{_p} || $self->{_p} <= $p;
}
# bround() or bfround() already callled bnorm() if necc.
$self;
}
sub bnorm
{
# (numstr or BINT) return BINT
# Normalize number -- no-op here
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x;
}
sub babs
{
# (BINT or num_str) return BINT
# make number absolute, or return absolute BINT from string
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x if $x->modify('babs');
# post-normalized abs for internal use (does nothing for NaN)
$x->{sign} =~ s/^-/+/;
$x;
}
sub bneg
{
# (BINT or num_str) return BINT
# negate number or make a negated number from string
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x if $x->modify('bneg');
# for +0 dont negate (to have always normalized)
$x->{sign} =~ tr/+-/-+/ if !$x->is_zero(); # does nothing for NaN
$x;
}
sub bcmp
{
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT or num_str, BINT or num_str) return cond_code
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bcmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# have same sign, so compare absolute values. Don't make tests for zero here
# because it's actually slower than testin in Calc (especially w/ Pari et al)
# post-normalized compare for internal use (honors signs)
if ($x->{sign} eq '+')
{
# $x and $y both > 0
return $CALC->_acmp($x->{value},$y->{value});
}
# $x && $y both < 0
$CALC->_acmp($y->{value},$x->{value}); # swaped acmp (lib returns 0,1,-1)
}
sub bacmp
{
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT, BINT) return cond_code
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bacmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
return -1;
}
$CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1
}
sub badd
{
# add second arg (BINT or string) to first (BINT) (modifies first)
# return result as BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('badd');
return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
$r[3] = $y; # no push!
# inf and NaN handling
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# NaN first
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +inf++inf or -inf+-inf => same, rest is NaN
return $x if $x->{sign} eq $y->{sign};
return $x->bnan();
}
# +-inf + something => +inf
# something +-inf => +-inf
$x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
return $x;
}
my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs
if ($sx eq $sy)
{
$x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add
}
else
{
my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare
if ($a > 0)
{
$x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
$x->{sign} = $sy;
}
elsif ($a == 0)
{
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
}
else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
}
}
$x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
$x;
}
sub bsub
{
# (BINT or num_str, BINT or num_str) return BINT
# subtract second arg from first, modify first
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bsub');
return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if ($y->is_zero())
{
$x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
return $x;
}
require Scalar::Util;
if (Scalar::Util::refaddr($x) == Scalar::Util::refaddr($y))
{
# if we get the same variable twice, the result must be zero (the code
# below fails in that case)
return $x->bzero(@r) if $x->{sign} =~ /^[+-]$/;
return $x->bnan(); # NaN, -inf, +inf
}
$y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
$x->badd($y,@r); # badd does not leave internal zeros
$y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd() or no round necc.
}
sub binc
{
# increment arg by one
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('binc');
if ($x->{sign} eq '+')
{
$x->{value} = $CALC->_inc($x->{value});
$x->round($a,$p,$r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
return $x;
}
elsif ($x->{sign} eq '-')
{
$x->{value} = $CALC->_dec($x->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
$x->round($a,$p,$r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
return $x;
}
# inf, nan handling etc
$x->badd($self->bone(),$a,$p,$r); # badd does round
}
sub bdec
{
# decrement arg by one
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bdec');
if ($x->{sign} eq '-')
{
# < 0
$x->{value} = $CALC->_inc($x->{value});
}
else
{
return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf/NaN
# >= 0
if ($CALC->_is_zero($x->{value}))
{
# == 0
$x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1
}
else
{
# > 0
$x->{value} = $CALC->_dec($x->{value});
}
}
$x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
$x;
}
sub blog
{
# calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
# $base of $x)
# set up parameters
my ($self,$x,$base,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$base,@r) = objectify(1,$class,@_);
}
return $x if $x->modify('blog');
# inf, -inf, NaN, <0 => NaN
return $x->bnan()
if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');
return $upgrade->blog($upgrade->new($x),$base,@r) if
defined $upgrade;
my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
return $x->bnan() unless defined $rc; # not possible to take log?
$x->{value} = $rc;
$x->round(@r);
}
sub blcm
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# Lowest Common Multiplicator
my $y = shift; my ($x);
if (ref($y))
{
$x = $y->copy();
}
else
{
$x = $class->new($y);
}
my $self = ref($x);
while (@_)
{
my $y = shift; $y = $self->new($y) if !ref ($y);
$x = __lcm($x,$y);
}
$x;
}
sub bgcd
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# GCD -- Euclids algorithm, variant C (Knuth Vol 3, pg 341 ff)
my $y = shift;
$y = $class->new($y) if !ref($y);
my $self = ref($y);
my $x = $y->copy()->babs(); # keep arguments
return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@_)
{
$y = shift; $y = $self->new($y) if !ref($y);
next if $y->is_zero();
return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN?
$x->{value} = $CALC->_gcd($x->{value},$y->{value}); last if $x->is_one();
}
$x;
}
sub bnot
{
# (num_str or BINT) return BINT
# represent ~x as twos-complement number
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bnot');
$x->binc()->bneg(); # binc already does round
}
##############################################################################
# is_foo test routines
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
sub is_zero
{
# return true if arg (BINT or num_str) is zero (array '+', '0')
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't
$CALC->_is_zero($x->{value});
}
sub is_nan
{
# return true if arg (BINT or num_str) is NaN
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} eq $nan ? 1 : 0;
}
sub is_inf
{
# return true if arg (BINT or num_str) is +-inf
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
if (defined $sign)
{
$sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf
$sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-'
return $x->{sign} =~ /^$sign$/ ? 1 : 0;
}
$x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity
}
sub is_one
{
# return true if arg (BINT or num_str) is +1, or -1 if sign is given
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$sign = '+' if !defined $sign || $sign ne '-';
return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either
$CALC->_is_one($x->{value});
}
sub is_odd
{
# return true when arg (BINT or num_str) is odd, false for even
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_odd($x->{value});
}
sub is_even
{
# return true when arg (BINT or num_str) is even, false for odd
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_even($x->{value});
}
sub is_positive
{
# return true when arg (BINT or num_str) is positive (>= 0)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^\+/ ? 1 : 0; # +inf is also positive, but NaN not
}
sub is_negative
{
# return true when arg (BINT or num_str) is negative (< 0)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^-/ ? 1 : 0; # -inf is also negative, but NaN not
}
sub is_int
{
# return true when arg (BINT or num_str) is an integer
# always true for BigInt, but different for BigFloats
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
}
###############################################################################
sub bmul
{
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmul');
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
return $upgrade->bmul($x,$upgrade->new($y),@r)
if defined $upgrade && !$y->isa($self);
$r[3] = $y; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
$x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
$x;
}
sub _div_inf
{
# helper function that handles +-inf cases for bdiv()/bmod() to reuse code
my ($self,$x,$y) = @_;
# NaN if x == NaN or y == NaN or x==y==0
return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
if (($x->is_nan() || $y->is_nan()) ||
($x->is_zero() && $y->is_zero()));
# +-inf / +-inf == NaN, reminder also NaN
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
}
# x / +-inf => 0, remainder x (works even if x == 0)
if ($y->{sign} =~ /^[+-]inf$/)
{
my $t = $x->copy(); # bzero clobbers up $x
return wantarray ? ($x->bzero(),$t) : $x->bzero()
}
# 5 / 0 => +inf, -6 / 0 => -inf
# +inf / 0 = inf, inf, and -inf / 0 => -inf, -inf
# exception: -8 / 0 has remainder -8, not 8
# exception: -inf / 0 has remainder -inf, not inf
if ($y->is_zero())
{
# +-inf / 0 => special case for -inf
return wantarray ? ($x,$x->copy()) : $x if $x->is_inf();
if (!$x->is_zero() && !$x->is_inf())
{
my $t = $x->copy(); # binf clobbers up $x
return wantarray ?
($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
}
}
# last case: +-inf / ordinary number
my $sign = '+inf';
$sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
$x->{sign} = $sign;
return wantarray ? ($x,$self->bzero()) : $x;
}
sub bdiv
{
# (dividend: BINT or num_str, divisor: BINT or num_str) return
# (BINT,BINT) (quo,rem) or BINT (only rem)
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bdiv');
return $self->_div_inf($x,$y)
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
if defined $upgrade;
$r[3] = $y; # no push!
# calc new sign and in case $y == +/- 1, return $x
my $xsign = $x->{sign}; # keep
$x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+');
if (wantarray)
{
my $rem = $self->bzero();
($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value});
$rem->{_a} = $x->{_a};
$rem->{_p} = $x->{_p};
$x->round(@r) if !exists $x->{_f} || ($x->{_f} & MB_NEVER_ROUND) == 0;
if (! $CALC->_is_zero($rem->{value}))
{
$rem->{sign} = $y->{sign};
$rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
}
else
{
$rem->{sign} = '+'; # dont leave -0
}
$rem->round(@r) if !exists $rem->{_f} || ($rem->{_f} & MB_NEVER_ROUND) == 0;
return ($x,$rem);
}
$x->{value} = $CALC->_div($x->{value},$y->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value});
$x->round(@r) if !exists $x->{_f} || ($x->{_f} & MB_NEVER_ROUND) == 0;
$x;
}
###############################################################################
# modulus functions
sub bmod
{
# modulus (or remainder)
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmod');
$r[3] = $y; # no push!
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
{
my ($d,$r) = $self->_div_inf($x,$y);
$x->{sign} = $r->{sign};
$x->{value} = $r->{value};
return $x->round(@r);
}
# calc new sign and in case $y == +/- 1, return $x
$x->{value} = $CALC->_mod($x->{value},$y->{value});
if (!$CALC->_is_zero($x->{value}))
{
my $xsign = $x->{sign};
$x->{sign} = $y->{sign};
if ($xsign ne $y->{sign})
{
my $t = $CALC->_copy($x->{value}); # copy $x
$x->{value} = $CALC->_sub($y->{value},$t,1); # $y-$x
}
}
else
{
$x->{sign} = '+'; # dont leave -0
}
$x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
$x;
}
sub bmodinv
{
# Modular inverse. given a number which is (hopefully) relatively
# prime to the modulus, calculate its inverse using Euclid's
# alogrithm. If the number is not relatively prime to the modulus
# (i.e. their gcd is not one) then NaN is returned.
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmodinv');
return $x->bnan()
if ($y->{sign} ne '+' # -, NaN, +inf, -inf
|| $x->is_zero() # or num == 0
|| $x->{sign} !~ /^[+-]$/ # or num NaN, inf, -inf
);
# put least residue into $x if $x was negative, and thus make it positive
$x->bmod($y) if $x->{sign} eq '-';
my $sign;
($x->{value},$sign) = $CALC->_modinv($x->{value},$y->{value});
return $x->bnan() if !defined $x->{value}; # in case no GCD found
return $x if !defined $sign; # already real result
$x->{sign} = $sign; # flip/flop see below
$x->bmod($y); # calc real result
$x;
}
sub bmodpow
{
# takes a very large number to a very large exponent in a given very
# large modulus, quickly, thanks to binary exponentation. supports
# negative exponents.
my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
return $num if $num->modify('bmodpow');
# check modulus for valid values
return $num->bnan() if ($mod->{sign} ne '+' # NaN, - , -inf, +inf
|| $mod->is_zero());
# check exponent for valid values
if ($exp->{sign} =~ /\w/)
{
# i.e., if it's NaN, +inf, or -inf...
return $num->bnan();
}
$num->bmodinv ($mod) if ($exp->{sign} eq '-');
# check num for valid values (also NaN if there was no inverse but $exp < 0)
return $num->bnan() if $num->{sign} !~ /^[+-]$/;
# $mod is positive, sign on $exp is ignored, result also positive
$num->{value} = $CALC->_modpow($num->{value},$exp->{value},$mod->{value});
$num;
}
###############################################################################
sub bfac
{
# (BINT or num_str, BINT or num_str) return BINT
# compute factorial number from $x, modify $x in place
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bfac');
return $x if $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
$x->{value} = $CALC->_fac($x->{value});
$x->round(@r);
}
sub bpow
{
# (BINT or num_str, BINT or num_str) return BINT
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
# modifies first argument
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bpow');
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +-inf ** +-inf
return $x->bnan();
}
# +-inf ** Y
if ($x->{sign} =~ /^[+-]inf/)
{
# +inf ** 0 => NaN
return $x->bnan() if $y->is_zero();
# -inf ** -1 => 1/inf => 0
return $x->bzero() if $y->is_one('-') && $x->is_negative();
# +inf ** Y => inf
return $x if $x->{sign} eq '+inf';
# -inf ** Y => -inf if Y is odd
return $x if $y->is_odd();
return $x->babs();
}
# X ** +-inf
# 1 ** +inf => 1
return $x if $x->is_one();
# 0 ** inf => 0
return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
# 0 ** -inf => inf
return $x->binf() if $x->is_zero();
# -1 ** -inf => NaN
return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
# -X ** -inf => 0
return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
# -1 ** inf => NaN
return $x->bnan() if $x->{sign} eq '-';
# X ** inf => inf
return $x->binf() if $y->{sign} =~ /^[+]/;
# X ** -inf => 0
return $x->bzero();
}
return $upgrade->bpow($upgrade->new($x),$y,@r)
if defined $upgrade && !$y->isa($self);
$r[3] = $y; # no push!
# cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
my $new_sign = '+';
$new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
# 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
return $x->binf()
if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
# 1 ** -y => 1 / (1 ** |y|)
# so do test for negative $y after above's clause
return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
$x->{value} = $CALC->_pow($x->{value},$y->{value});
$x->{sign} = $new_sign;
$x->{sign} = '+' if $CALC->_is_zero($y->{value});
$x->round(@r) if !exists $x->{_f} || $x->{_f} & MB_NEVER_ROUND == 0;
$x;
}
sub blsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x << y, base n, y >= 0
# set up parameters
my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,@r) = objectify(2,@_);
}
return $x if $x->modify('blsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->round(@r) if $y->is_zero();
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
$x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
$x->round(@r);
}
sub brsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x >> y, base n, y >= 0
# set up parameters
my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,@r) = objectify(2,@_);
}
return $x if $x->modify('brsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->round(@r) if $y->is_zero();
return $x->bzero(@r) if $x->is_zero(); # 0 => 0
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
# this only works for negative numbers when shifting in base 2
if (($x->{sign} eq '-') && ($n == 2))
{
return $x->round(@r) if $x->is_one('-'); # -1 => -1
if (!$y->is_one())
{
# although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
# but perhaps there is a better emulation for two's complement shift...
# if $y != 1, we must simulate it by doing:
# convert to bin, flip all bits, shift, and be done
$x->binc(); # -3 => -2
my $bin = $x->as_bin();
$bin =~ s/^-0b//; # strip '-0b' prefix
$bin =~ tr/10/01/; # flip bits
# now shift
if (CORE::length($bin) <= $y)
{
$bin = '0'; # shifting to far right creates -1
# 0, because later increment makes
# that 1, attached '-' makes it '-1'
# because -1 >> x == -1 !
}
else
{
$bin =~ s/.{$y}$//; # cut off at the right side
$bin = '1' . $bin; # extend left side by one dummy '1'
$bin =~ tr/10/01/; # flip bits back
}
my $res = $self->new('0b'.$bin); # add prefix and convert back
$res->binc(); # remember to increment
$x->{value} = $res->{value}; # take over value
return $x->round(@r); # we are done now, magic, isn't?
}
# x < 0, n == 2, y == 1
$x->bdec(); # n == 2, but $y == 1: this fixes it
}
$x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
$x->round(@r);
}
sub band
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x & y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('band');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_and($x->{value},$y->{value});
return $x->round(@r);
}
if ($CAN{signed_and})
{
$x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_band($self,$x,$y,$sx,$sy,@r);
}
sub bior
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x | y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bior');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
# don't use lib for negative values
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_or($x->{value},$y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_or})
{
$x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bior($self,$x,$y,$sx,$sy,@r);
}
sub bxor
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x ^ y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bxor');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# don't use lib for negative values
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_xor($x->{value},$y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_xor})
{
$x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bxor($self,$x,$y,$sx,$sy,@r);
}
sub length
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
my $e = $CALC->_len($x->{value});
wantarray ? ($e,0) : $e;
}
sub digit
{
# return the nth decimal digit, negative values count backward, 0 is right
my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$n = $n->numify() if ref($n);
$CALC->_digit($x->{value},$n||0);
}
sub _trailing_zeros
{
# return the amount of trailing zeros in $x (as scalar)
my $x = shift;
$x = $class->new($x) unless ref $x;
return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc
$CALC->_zeros($x->{value}); # must handle odd values, 0 etc
}
sub bsqrt
{
# calculate square root of $x
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bsqrt');
return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN
return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf
return $upgrade->bsqrt($x,@r) if defined $upgrade;
$x->{value} = $CALC->_sqrt($x->{value});
$x->round(@r);
}
sub broot
{
# calculate $y'th root of $x
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
$y = $self->new(2) unless defined $y;
# objectify is costly, so avoid it
if ((!ref($x)) || (ref($x) ne ref($y)))
{
($self,$x,$y,@r) = objectify(2,$self || $class,@_);
}
return $x if $x->modify('broot');
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
$y->{sign} !~ /^\+$/;
return $x->round(@r)
if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;
$x->{value} = $CALC->_root($x->{value},$y->{value});
$x->round(@r);
}
sub exponent
{
# return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf
return $self->new($s);
}
return $self->bone() if $x->is_zero();
$self->new($x->_trailing_zeros());
}
sub mantissa
{
# return the mantissa (compatible to Math::BigFloat, e.g. reduced)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
# for NaN, +inf, -inf: keep the sign
return $self->new($x->{sign});
}
my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};
# that's a bit inefficient:
my $zeros = $m->_trailing_zeros();
$m->brsft($zeros,10) if $zeros != 0;
$m;
}
sub parts
{
# return a copy of both the exponent and the mantissa
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
($x->mantissa(),$x->exponent());
}
##############################################################################
# rounding functions
sub bfround
{
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 || $n == 1 => round to integer
my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_p($x->precision(),$x->round_mode(),@_);
return $x if !defined $scale || $x->modify('bfround'); # no-op
# no-op for BigInts if $n <= 0
$x->bround( $x->length()-$scale, $mode) if $scale > 0;
delete $x->{_a}; # delete to save memory
$x->{_p} = $scale; # store new _p
$x;
}
sub _scan_for_nonzero
{
# internal, used by bround() to scan for non-zeros after a '5'
my ($x,$pad,$xs,$len) = @_;
return 0 if $len == 1; # "5" is trailed by invisible zeros
my $follow = $pad - 1;
return 0 if $follow > $len || $follow < 1;
# use the string form to check whether only '0's follow or not
substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0;
}
sub fround
{
# Exists to make life easier for switch between MBF and MBI (should we
# autoload fxxx() like MBF does for bxxx()?)
my $x = shift;
$x->bround(@_);
}
sub bround
{
# accuracy: +$n preserve $n digits from left,
# -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
# no-op for $n == 0
# and overwrite the rest with 0's, return normalized number
# do not return $x->bnorm(), but $x
my $x = shift; $x = $class->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_a($x->accuracy(),$x->round_mode(),@_);
return $x if !defined $scale; # no-op
return $x if $x->modify('bround');
if ($x->is_zero() || $scale == 0)
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN
# we have fewer digits than we want to scale to
my $len = $x->length();
# convert $scale to a scalar in case it is an object (put's a limit on the
# number length, but this would already limited by memory constraints), makes
# it faster
$scale = $scale->numify() if ref ($scale);
# scale < 0, but > -len (not >=!)
if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
# count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
my ($pad,$digit_round,$digit_after);
$pad = $len - $scale;
$pad = abs($scale-1) if $scale < 0;
# do not use digit(), it is very costly for binary => decimal
# getting the entire string is also costly, but we need to do it only once
my $xs = $CALC->_str($x->{value});
my $pl = -$pad-1;
# pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
# pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3
$digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
$pl++; $pl ++ if $pad >= $len;
$digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;
# in case of 01234 we round down, for 6789 up, and only in case 5 we look
# closer at the remaining digits of the original $x, remember decision
my $round_up = 1; # default round up
$round_up -- if
($mode eq 'trunc') || # trunc by round down
($digit_after =~ /[01234]/) || # round down anyway,
# 6789 => round up
($digit_after eq '5') && # not 5000...0000
($x->_scan_for_nonzero($pad,$xs,$len) == 0) &&
(
($mode eq 'even') && ($digit_round =~ /[24680]/) ||
($mode eq 'odd') && ($digit_round =~ /[13579]/) ||
($mode eq '+inf') && ($x->{sign} eq '-') ||
($mode eq '-inf') && ($x->{sign} eq '+') ||
($mode eq 'zero') # round down if zero, sign adjusted below
);
my $put_back = 0; # not yet modified
if (($pad > 0) && ($pad <= $len))
{
substr($xs,-$pad,$pad) = '0' x $pad; # replace with '00...'
$put_back = 1; # need to put back
}
elsif ($pad > $len)
{
$x->bzero(); # round to '0'
}
if ($round_up) # what gave test above?
{
$put_back = 1; # need to put back
$pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0
# we modify directly the string variant instead of creating a number and
# adding it, since that is faster (we already have the string)
my $c = 0; $pad ++; # for $pad == $len case
while ($pad <= $len)
{
$c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
substr($xs,-$pad,1) = $c; $pad++;
last if $c != 0; # no overflow => early out
}
$xs = '1'.$xs if $c == 0;
}
$x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed
$x->{_a} = $scale if $scale >= 0;
if ($scale < 0)
{
$x->{_a} = $len+$scale;
$x->{_a} = 0 if $scale < -$len;
}
$x;
}
sub bfloor
{
# return integer less or equal then number; no-op since it's already integer
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub bceil
{
# return integer greater or equal then number; no-op since it's already int
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub as_number
{
# An object might be asked to return itself as bigint on certain overloaded
# operations, this does exactly this, so that sub classes can simple inherit
# it or override with their own integer conversion routine.
$_[0]->copy();
}
sub as_hex
{
# return as hex string, with prefixed 0x
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = '';
$s = $x->{sign} if $x->{sign} eq '-';
$s . $CALC->_as_hex($x->{value});
}
sub as_bin
{
# return as binary string, with prefixed 0b
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
return $s . $CALC->_as_bin($x->{value});
}
##############################################################################
# private stuff (internal use only)
sub objectify
{
# check for strings, if yes, return objects instead
# the first argument is number of args objectify() should look at it will
# return $count+1 elements, the first will be a classname. This is because
# overloaded '""' calls bstr($object,undef,undef) and this would result in
# useless objects beeing created and thrown away. So we cannot simple loop
# over @_. If the given count is 0, all arguments will be used.
# If the second arg is a ref, use it as class.
# If not, try to use it as classname, unless undef, then use $class
# (aka Math::BigInt). The latter shouldn't happen,though.
# caller: gives us:
# $x->badd(1); => ref x, scalar y
# Class->badd(1,2); => classname x (scalar), scalar x, scalar y
# Class->badd( Class->(1),2); => classname x (scalar), ref x, scalar y
# Math::BigInt::badd(1,2); => scalar x, scalar y
# In the last case we check number of arguments to turn it silently into
# $class,1,2. (We can not take '1' as class ;o)
# badd($class,1) is not supported (it should, eventually, try to add undef)
# currently it tries 'Math::BigInt' + 1, which will not work.
# some shortcut for the common cases
# $x->unary_op();
return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
my $count = abs(shift || 0);
my (@a,$k,$d); # resulting array, temp, and downgrade
if (ref $_[0])
{
# okay, got object as first
$a[0] = ref $_[0];
}
else
{
# nope, got 1,2 (Class->xxx(1) => Class,1 and not supported)
$a[0] = $class;
$a[0] = shift if $_[0] =~ /^[A-Z].*::/; # classname as first?
}
no strict 'refs';
# disable downgrading, because Math::BigFLoat->foo('1.0','2.0') needs floats
if (defined ${"$a[0]::downgrade"})
{
$d = ${"$a[0]::downgrade"};
${"$a[0]::downgrade"} = undef;
}
my $up = ${"$a[0]::upgrade"};
#print "Now in objectify, my class is today $a[0], count = $count\n";
if ($count == 0)
{
while (@_)
{
$k = shift;
if (!ref($k))
{
$k = $a[0]->new($k);
}
elsif (!defined $up && ref($k) ne $a[0])
{
# foreign object, try to convert to integer
$k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k);
}
push @a,$k;
}
}
else
{
while ($count > 0)
{
$count--;
$k = shift;
if (!ref($k))
{
$k = $a[0]->new($k);
}
elsif (!defined $up && ref($k) ne $a[0])
{
# foreign object, try to convert to integer
$k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k);
}
push @a,$k;
}
push @a,@_; # return other params, too
}
if (! wantarray)
{
require Carp; Carp::croak ("$class objectify needs list context");
}
${"$a[0]::downgrade"} = $d;
@a;
}
sub import
{
my $self = shift;
$IMPORT++; # remember we did import()
my @a; my $l = scalar @_;
for ( my $i = 0; $i < $l ; $i++ )
{
if ($_[$i] eq ':constant')
{
# this causes overlord er load to step in
overload::constant
integer => sub { $self->new(shift) },
binary => sub { $self->new(shift) };
}
elsif ($_[$i] eq 'upgrade')
{
# this causes upgrading
$upgrade = $_[$i+1]; # or undef to disable
$i++;
}
elsif ($_[$i] =~ /^lib$/i)
{
# this causes a different low lib to take care...
$CALC = $_[$i+1] || '';
$i++;
}
else
{
push @a, $_[$i];
}
}
# any non :constant stuff is handled by our parent, Exporter
# even if @_ is empty, to give it a chance
$self->SUPER::import(@a); # need it for subclasses
$self->export_to_level(1,$self,@a); # need it for MBF
# try to load core math lib
my @c = split /\s*,\s*/,$CALC;
push @c,'Calc'; # if all fail, try this
$CALC = ''; # signal error
foreach my $lib (@c)
{
next if ($lib || '') eq '';
$lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
$lib =~ s/\.pm$//;
if ($] < 5.006)
{
# Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
# used in the same script, or eval inside import().
my @parts = split /::/, $lib; # Math::BigInt => Math BigInt
my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm
require File::Spec;
$file = File::Spec->catfile (@parts, $file);
eval { require "$file"; $lib->import( @c ); }
}
else
{
eval "use $lib qw/@c/;";
}
if ($@ eq '')
{
my $ok = 1;
# loaded it ok, see if the api_version() is high enough
if ($lib->can('api_version') && $lib->api_version() >= 1.0)
{
$ok = 0;
# api_version matches, check if it really provides anything we need
for my $method (qw/
one two ten
str num
add mul div sub dec inc
acmp len digit is_one is_zero is_even is_odd
is_two is_ten
new copy check from_hex from_bin as_hex as_bin zeros
rsft lsft xor and or
mod sqrt root fac pow modinv modpow log_int gcd
/)
{
if (!$lib->can("_$method"))
{
if (($WARN{$lib}||0) < 2)
{
require Carp;
Carp::carp ("$lib is missing method '_$method'");
$WARN{$lib} = 1; # still warn about the lib
}
$ok++; last;
}
}
}
if ($ok == 0)
{
$CALC = $lib;
last; # found a usable one, break
}
else
{
if (($WARN{$lib}||0) < 2)
{
my $ver = eval "\$$lib\::VERSION";
require Carp;
Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
$WARN{$lib} = 2; # never warn again
}
}
}
}
if ($CALC eq '')
{
require Carp;
Carp::croak ("Couldn't load any math lib, not even 'Calc.pm'");
}
_fill_can_cache(); # for emulating lower math lib functions
}
sub _fill_can_cache
{
# fill $CAN with the results of $CALC->can(...)
%CAN = ();
for my $method (qw/ signed_and or signed_or xor signed_xor /)
{
$CAN{$method} = $CALC->can("_$method") ? 1 : 0;
}
}
sub __from_hex
{
# convert a (ref to) big hex string to BigInt, return undef for error
my $hs = shift;
my $x = Math::BigInt->bzero();
# strip underscores
$hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g;
$hs =~ s/([0-9a-fA-F])_([0-9a-fA-F])/$1$2/g;
return $x->bnan() if $hs !~ /^[\-\+]?0x[0-9A-Fa-f]+$/;
my $sign = '+'; $sign = '-' if $hs =~ /^-/;
$hs =~ s/^[+-]//; # strip sign
$x->{value} = $CALC->_from_hex($hs);
$x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0'
$x;
}
sub __from_bin
{
# convert a (ref to) big binary string to BigInt, return undef for error
my $bs = shift;
my $x = Math::BigInt->bzero();
# strip underscores
$bs =~ s/([01])_([01])/$1$2/g;
$bs =~ s/([01])_([01])/$1$2/g;
return $x->bnan() if $bs !~ /^[+-]?0b[01]+$/;
my $sign = '+'; $sign = '-' if $bs =~ /^\-/;
$bs =~ s/^[+-]//; # strip sign
$x->{value} = $CALC->_from_bin($bs);
$x->{sign} = $sign unless $CALC->_is_zero($x->{value}); # no '-0'
$x;
}
sub _split
{
# (ref to num_str) return num_str
# internal, take apart a string and return the pieces
# strip leading/trailing whitespace, leading zeros, underscore and reject
# invalid input
my $x = shift;
# strip white space at front, also extranous leading zeros
$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
$x =~ s/^\s+//; # but this will
$x =~ s/\s+$//g; # strip white space at end
# shortcut, if nothing to split, return early
if ($x =~ /^[+-]?\d+\z/)
{
$x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
return (\$sign, \$x, \'', \'', \0);
}
# invalid starting char?
return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
return __from_hex($x) if $x =~ /^[\-\+]?0x/; # hex string
return __from_bin($x) if $x =~ /^[\-\+]?0b/; # binary string
# strip underscores between digits
$x =~ s/(\d)_(\d)/$1$2/g;
$x =~ s/(\d)_(\d)/$1$2/g; # do twice for 1_2_3
# some possible inputs:
# 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
# .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999
my ($m,$e,$last) = split /[Ee]/,$x;
return if defined $last; # last defined => 1e2E3 or others
$e = '0' if !defined $e || $e eq "";
# sign,value for exponent,mantint,mantfrac
my ($es,$ev,$mis,$miv,$mfv);
# valid exponent?
if ($e =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
{
$es = $1; $ev = $2;
# valid mantissa?
return if $m eq '.' || $m eq '';
my ($mi,$mf,$lastf) = split /\./,$m;
return if defined $lastf; # lastf defined => 1.2.3 or others
$mi = '0' if !defined $mi;
$mi .= '0' if $mi =~ /^[\-\+]?$/;
$mf = '0' if !defined $mf || $mf eq '';
if ($mi =~ /^([+-]?)0*(\d+)$/) # strip leading zeros
{
$mis = $1||'+'; $miv = $2;
return unless ($mf =~ /^(\d*?)0*$/); # strip trailing zeros
$mfv = $1;
# handle the 0e999 case here
$ev = 0 if $miv eq '0' && $mfv eq '';
return (\$mis,\$miv,\$mfv,\$es,\$ev);
}
}
return; # NaN, not a number
}
##############################################################################
# internal calculation routines (others are in Math::BigInt::Calc etc)
sub __lcm
{
# (BINT or num_str, BINT or num_str) return BINT
# does modify first argument
# LCM
my $x = shift; my $ty = shift;
return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
$x * $ty / bgcd($x,$ty);
}
###############################################################################
# this method return 0 if the object can be modified, or 1 for not
# We use a fast constant sub() here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)
sub modify () { 0; }
1;
__END__
=head1 NAME
Math::BigInt - Arbitrary size integer math package
=head1 SYNOPSIS
use Math::BigInt;
# or make it faster: install (optional) Math::BigInt::GMP
# and always use (it will fall back to pure Perl if the
# GMP library is not installed):
use Math::BigInt lib => 'GMP';
my $str = '1234567890';
my @values = (64,74,18);
my $n = 1; my $sign = '-';
# Number creation
$x = Math::BigInt->new($str); # defaults to 0
$y = $x->copy(); # make a true copy
$nan = Math::BigInt->bnan(); # create a NotANumber
$zero = Math::BigInt->bzero(); # create a +0
$inf = Math::BigInt->binf(); # create a +inf
$inf = Math::BigInt->binf('-'); # create a -inf
$one = Math::BigInt->bone(); # create a +1
$one = Math::BigInt->bone('-'); # create a -1
# Testing (don't modify their arguments)
# (return true if the condition is met, otherwise false)
$x->is_zero(); # if $x is +0
$x->is_nan(); # if $x is NaN
$x->is_one(); # if $x is +1
$x->is_one('-'); # if $x is -1
$x->is_odd(); # if $x is odd
$x->is_even(); # if $x is even
$x->is_pos(); # if $x >= 0
$x->is_neg(); # if $x < 0
$x->is_inf($sign); # if $x is +inf, or -inf (sign is default '+')
$x->is_int(); # if $x is an integer (not a float)
# comparing and digit/sign extration
$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
$x->sign(); # return the sign, either +,- or NaN
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left
# The following all modify their first argument. If you want to preserve
# $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
# neccessary when mixing $a = $b assigments with non-overloaded math.
$x->bzero(); # set $x to 0
$x->bnan(); # set $x to NaN
$x->bone(); # set $x to +1
$x->bone('-'); # set $x to -1
$x->binf(); # set $x to inf
$x->binf('-'); # set $x to -inf
$x->bneg(); # negation
$x->babs(); # absolute value
$x->bnorm(); # normalize (no-op in BigInt)
$x->bnot(); # two's complement (bit wise not)
$x->binc(); # increment $x by 1
$x->bdec(); # decrement $x by 1
$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bdiv($y); # divide, set $x to quotient
# return (quo,rem) or quo if scalar
$x->bmod($y); # modulus (x % y)
$x->bmodpow($exp,$mod); # modular exponentation (($num**$exp) % $mod))
$x->bmodinv($mod); # the inverse of $x in the given modulus $mod
$x->bpow($y); # power of arguments (x ** y)
$x->blsft($y); # left shift
$x->brsft($y); # right shift
$x->blsft($y,$n); # left shift, by base $n (like 10)
$x->brsft($y,$n); # right shift, by base $n (like 10)
$x->band($y); # bitwise and
$x->bior($y); # bitwise inclusive or
$x->bxor($y); # bitwise exclusive or
$x->bnot(); # bitwise not (two's complement)
$x->bsqrt(); # calculate square-root
$x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->round($A,$P,$mode); # round to accuracy or precision using mode $mode
$x->bround($n); # accuracy: preserve $n digits
$x->bfround($n); # round to $nth digit, no-op for BigInts
# The following do not modify their arguments in BigInt (are no-ops),
# but do so in BigFloat:
$x->bfloor(); # return integer less or equal than $x
$x->bceil(); # return integer greater or equal than $x
# The following do not modify their arguments:
# greatest common divisor (no OO style)
my $gcd = Math::BigInt::bgcd(@values);
# lowest common multiplicator (no OO style)
my $lcm = Math::BigInt::blcm(@values);
$x->length(); # return number of digits in number
($xl,$f) = $x->length(); # length of number and length of fraction part,
# latter is always 0 digits long for BigInt's
$x->exponent(); # return exponent as BigInt
$x->mantissa(); # return (signed) mantissa as BigInt
$x->parts(); # return (mantissa,exponent) as BigInt
$x->copy(); # make a true copy of $x (unlike $y = $x;)
$x->as_int(); # return as BigInt (in BigInt: same as copy())
$x->numify(); # return as scalar (might overflow!)
# conversation to string (do not modify their argument)
$x->bstr(); # normalized string
$x->bsstr(); # normalized string in scientific notation
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
$x->as_bin(); # as signed binary string with prefixed 0b
# precision and accuracy (see section about rounding for more)
$x->precision(); # return P of $x (or global, if P of $x undef)
$x->precision($n); # set P of $x to $n
$x->accuracy(); # return A of $x (or global, if A of $x undef)
$x->accuracy($n); # set A $x to $n
# Global methods
Math::BigInt->precision(); # get/set global P for all BigInt objects
Math::BigInt->accuracy(); # get/set global A for all BigInt objects
Math::BigInt->config(); # return hash containing configuration
=head1 DESCRIPTION
All operators (inlcuding basic math operations) are overloaded if you
declare your big integers as
$i = new Math::BigInt '123_456_789_123_456_789';
Operations with overloaded operators preserve the arguments which is
exactly what you expect.
=over 2
=item Input
Input values to these routines may be any string, that looks like a number
and results in an integer, including hexadecimal and binary numbers.
Scalars holding numbers may also be passed, but note that non-integer numbers
may already have lost precision due to the conversation to float. Quote
your input if you want BigInt to see all the digits:
$x = Math::BigInt->new(12345678890123456789); # bad
$x = Math::BigInt->new('12345678901234567890'); # good
You can include one underscore between any two digits.
This means integer values like 1.01E2 or even 1000E-2 are also accepted.
Non-integer values result in NaN.
Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
results in 'NaN'. This might change in the future, so use always the following
explicit forms to get a zero or NaN:
$zero = Math::BigInt->bzero();
$nan = Math::BigInt->bnan();
C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers
are always stored in normalized form. If passed a string, creates a BigInt
object from the input.
=item Output
Output values are BigInt objects (normalized), except for bstr(), which
returns a string in normalized form.
Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
return either undef, <0, 0 or >0 and are suited for sort.
=back
=head1 METHODS
Each of the methods below (except config(), accuracy() and precision())
accepts three additional parameters. These arguments $A, $P and $R are
accuracy, precision and round_mode. Please see the section about
L<ACCURACY and PRECISION> for more information.
=head2 config
use Data::Dumper;
print Dumper ( Math::BigInt->config() );
print Math::BigInt->config()->{lib},"\n";
Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
key Description
Example
============================================================
lib Name of the low-level math library
Math::BigInt::Calc
lib_version Version of low-level math library (see 'lib')
0.30
class The class name of config() you just called
Math::BigInt
upgrade To which class math operations might be upgraded
Math::BigFloat
downgrade To which class math operations might be downgraded
undef
precision Global precision
undef
accuracy Global accuracy
undef
round_mode Global round mode
even
version version number of the class you used
1.61
div_scale Fallback acccuracy for div
40
trap_nan If true, traps creation of NaN via croak()
1
trap_inf If true, traps creation of +inf/-inf via croak()
1
The following values can be set by passing C<config()> a reference to a hash:
trap_inf trap_nan
upgrade downgrade precision accuracy round_mode div_scale
Example:
$new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } );
=head2 accuracy
$x->accuracy(5); # local for $x
CLASS->accuracy(5); # global for all members of CLASS
$A = $x->accuracy(); # read out
$A = CLASS->accuracy(); # read out
Set or get the global or local accuracy, aka how many significant digits the
results have.
Please see the section about L<ACCURACY AND PRECISION> for further details.
Value must be greater than zero. Pass an undef value to disable it:
$x->accuracy(undef);
Math::BigInt->accuracy(undef);
Returns the current accuracy. For C<$x->accuracy()> it will return either the
local accuracy, or if not defined, the global. This means the return value
represents the accuracy that will be in effect for $x:
$y = Math::BigInt->new(1234567); # unrounded
print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
$x = Math::BigInt->new(123456); # will be automatically rounded
print "$x $y\n"; # '123500 1234567'
print $x->accuracy(),"\n"; # will be 4
print $y->accuracy(),"\n"; # also 4, since global is 4
print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
print $x->accuracy(),"\n"; # still 4
print $y->accuracy(),"\n"; # 5, since global is 5
Note: Works also for subclasses like Math::BigFloat. Each class has it's own
globals separated from Math::BigInt, but it is possible to subclass
Math::BigInt and make the globals of the subclass aliases to the ones from
Math::BigInt.
=head2 precision
$x->precision(-2); # local for $x, round right of the dot
$x->precision(2); # ditto, but round left of the dot
CLASS->accuracy(5); # global for all members of CLASS
CLASS->precision(-5); # ditto
$P = CLASS->precision(); # read out
$P = $x->precision(); # read out
Set or get the global or local precision, aka how many digits the result has
after the dot (or where to round it when passing a positive number). In
Math::BigInt, passing a negative number precision has no effect since no
numbers have digits after the dot.
Please see the section about L<ACCURACY AND PRECISION> for further details.
Value must be greater than zero. Pass an undef value to disable it:
$x->precision(undef);
Math::BigInt->precision(undef);
Returns the current precision. For C<$x->precision()> it will return either the
local precision of $x, or if not defined, the global. This means the return
value represents the accuracy that will be in effect for $x:
$y = Math::BigInt->new(1234567); # unrounded
print Math::BigInt->precision(4),"\n"; # set 4, print 4
$x = Math::BigInt->new(123456); # will be automatically rounded
Note: Works also for subclasses like Math::BigFloat. Each class has it's own
globals separated from Math::BigInt, but it is possible to subclass
Math::BigInt and make the globals of the subclass aliases to the ones from
Math::BigInt.
=head2 brsft
$x->brsft($y,$n);
Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
2, but others work, too.
Right shifting usually amounts to dividing $x by $n ** $y and truncating the
result:
$x = Math::BigInt->new(10);
$x->brsft(1); # same as $x >> 1: 5
$x = Math::BigInt->new(1234);
$x->brsft(2,10); # result 12
There is one exception, and that is base 2 with negative $x:
$x = Math::BigInt->new(-5);
print $x->brsft(1);
This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
result).
=head2 new
$x = Math::BigInt->new($str,$A,$P,$R);
Creates a new BigInt object from a scalar or another BigInt object. The
input is accepted as decimal, hex (with leading '0x') or binary (with leading
'0b').
See L<Input> for more info on accepted input formats.
=head2 bnan
$x = Math::BigInt->bnan();
Creates a new BigInt object representing NaN (Not A Number).
If used on an object, it will set it to NaN:
$x->bnan();
=head2 bzero
$x = Math::BigInt->bzero();
Creates a new BigInt object representing zero.
If used on an object, it will set it to zero:
$x->bzero();
=head2 binf
$x = Math::BigInt->binf($sign);
Creates a new BigInt object representing infinity. The optional argument is
either '-' or '+', indicating whether you want infinity or minus infinity.
If used on an object, it will set it to infinity:
$x->binf();
$x->binf('-');
=head2 bone
$x = Math::BigInt->binf($sign);
Creates a new BigInt object representing one. The optional argument is
either '-' or '+', indicating whether you want one or minus one.
If used on an object, it will set it to one:
$x->bone(); # +1
$x->bone('-'); # -1
=head2 is_one()/is_zero()/is_nan()/is_inf()
$x->is_zero(); # true if arg is +0
$x->is_nan(); # true if arg is NaN
$x->is_one(); # true if arg is +1
$x->is_one('-'); # true if arg is -1
$x->is_inf(); # true if +inf
$x->is_inf('-'); # true if -inf (sign is default '+')
These methods all test the BigInt for beeing one specific value and return
true or false depending on the input. These are faster than doing something
like:
if ($x == 0)
=head2 is_pos()/is_neg()
$x->is_pos(); # true if >= 0
$x->is_neg(); # true if < 0
The methods return true if the argument is positive or negative, respectively.
C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and
C<-inf> is negative. A C<zero> is positive.
These methods are only testing the sign, and not the value.
C<is_positive()> and C<is_negative()> are aliase to C<is_pos()> and
C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were
introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced
in v1.68.
=head2 is_odd()/is_even()/is_int()
$x->is_odd(); # true if odd, false for even
$x->is_even(); # true if even, false for odd
$x->is_int(); # true if $x is an integer
The return true when the argument satisfies the condition. C<NaN>, C<+inf>,
C<-inf> are not integers and are neither odd nor even.
In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers.
=head2 bcmp
$x->bcmp($y);
Compares $x with $y and takes the sign into account.
Returns -1, 0, 1 or undef.
=head2 bacmp
$x->bacmp($y);
Compares $x with $y while ignoring their. Returns -1, 0, 1 or undef.
=head2 sign
$x->sign();
Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
=head2 digit
$x->digit($n); # return the nth digit, counting from right
If C<$n> is negative, returns the digit counting from left.
=head2 bneg
$x->bneg();
Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
and '-inf', respectively. Does nothing for NaN or zero.
=head2 babs
$x->babs();
Set the number to it's absolute value, e.g. change the sign from '-' to '+'
and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
numbers.
=head2 bnorm
$x->bnorm(); # normalize (no-op)
=head2 bnot
$x->bnot();
Two's complement (bit wise not). This is equivalent to
$x->binc()->bneg();
but faster.
=head2 binc
$x->binc(); # increment x by 1
=head2 bdec
$x->bdec(); # decrement x by 1
=head2 badd
$x->badd($y); # addition (add $y to $x)
=head2 bsub
$x->bsub($y); # subtraction (subtract $y from $x)
=head2 bmul
$x->bmul($y); # multiplication (multiply $x by $y)
=head2 bdiv
$x->bdiv($y); # divide, set $x to quotient
# return (quo,rem) or quo if scalar
=head2 bmod
$x->bmod($y); # modulus (x % y)
=head2 bmodinv
num->bmodinv($mod); # modular inverse
Returns the inverse of C<$num> in the given modulus C<$mod>. 'C<NaN>' is
returned unless C<$num> is relatively prime to C<$mod>, i.e. unless
C<bgcd($num, $mod)==1>.
=head2 bmodpow
$num->bmodpow($exp,$mod); # modular exponentation
# ($num**$exp % $mod)
Returns the value of C<$num> taken to the power C<$exp> in the modulus
C<$mod> using binary exponentation. C<bmodpow> is far superior to
writing
$num ** $exp % $mod
because it is much faster - it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
C<bmodpow> also supports negative exponents.
bmodpow($num, -1, $mod)
is exactly equivalent to
bmodinv($num, $mod)
=head2 bpow
$x->bpow($y); # power of arguments (x ** y)
=head2 blsft
$x->blsft($y); # left shift
$x->blsft($y,$n); # left shift, in base $n (like 10)
=head2 brsft
$x->brsft($y); # right shift
$x->brsft($y,$n); # right shift, in base $n (like 10)
=head2 band
$x->band($y); # bitwise and
=head2 bior
$x->bior($y); # bitwise inclusive or
=head2 bxor
$x->bxor($y); # bitwise exclusive or
=head2 bnot
$x->bnot(); # bitwise not (two's complement)
=head2 bsqrt
$x->bsqrt(); # calculate square-root
=head2 bfac
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
=head2 round
$x->round($A,$P,$round_mode);
Round $x to accuracy C<$A> or precision C<$P> using the round mode
C<$round_mode>.
=head2 bround
$x->bround($N); # accuracy: preserve $N digits
=head2 bfround
$x->bfround($N); # round to $Nth digit, no-op for BigInts
=head2 bfloor
$x->bfloor();
Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
does change $x in BigFloat.
=head2 bceil
$x->bceil();
Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
does change $x in BigFloat.
=head2 bgcd
bgcd(@values); # greatest common divisor (no OO style)
=head2 blcm
blcm(@values); # lowest common multiplicator (no OO style)
head2 length
$x->length();
($xl,$fl) = $x->length();
Returns the number of digits in the decimal representation of the number.
In list context, returns the length of the integer and fraction part. For
BigInt's, the length of the fraction part will always be 0.
=head2 exponent
$x->exponent();
Return the exponent of $x as BigInt.
=head2 mantissa
$x->mantissa();
Return the signed mantissa of $x as BigInt.
=head2 parts
$x->parts(); # return (mantissa,exponent) as BigInt
=head2 copy
$x->copy(); # make a true copy of $x (unlike $y = $x;)
=head2 as_int
$x->as_int();
Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as
C<copy()>.
C<as_number()> is an alias to this method. C<as_number> was introduced in
v1.22, while C<as_int()> was only introduced in v1.68.
=head2 bstr
$x->bstr();
Returns a normalized string represantation of C<$x>.
=head2 bsstr
$x->bsstr(); # normalized string in scientific notation
=head2 as_hex
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
=head2 as_bin
$x->as_bin(); # as signed binary string with prefixed 0b
=head1 ACCURACY and PRECISION
Since version v1.33, Math::BigInt and Math::BigFloat have full support for
accuracy and precision based rounding, both automatically after every
operation, as well as manually.
This section describes the accuracy/precision handling in Math::Big* as it
used to be and as it is now, complete with an explanation of all terms and
abbreviations.
Not yet implemented things (but with correct description) are marked with '!',
things that need to be answered are marked with '?'.
In the next paragraph follows a short description of terms used here (because
these may differ from terms used by others people or documentation).
During the rest of this document, the shortcuts A (for accuracy), P (for
precision), F (fallback) and R (rounding mode) will be used.
=head2 Precision P
A fixed number of digits before (positive) or after (negative)
the decimal point. For example, 123.45 has a precision of -2. 0 means an
integer like 123 (or 120). A precision of 2 means two digits to the left
of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
numbers with zeros before the decimal point may have different precisions,
because 1200 can have p = 0, 1 or 2 (depending on what the inital value
was). It could also have p < 0, when the digits after the decimal point
are zero.
The string output (of floating point numbers) will be padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 -3 1000 1000
1234 -2 1200 1200
1234.5 -1 1230 1230
1234.001 1 1234 1234.0
1234.01 0 1234 1234
1234.01 2 1234.01 1234.01
1234.01 5 1234.01 1234.01000
For BigInts, no padding occurs.
=head2 Accuracy A
Number of significant digits. Leading zeros are not counted. A
number may have an accuracy greater than the non-zero digits
when there are zeros in it or trailing zeros. For example, 123.456 has
A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.
The string output (of floating point numbers) will be padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 3 1230 1230
1234.01 6 1234.01 1234.01
1234.1 8 1234.1 1234.1000
For BigInts, no padding occurs.
=head2 Fallback F
When both A and P are undefined, this is used as a fallback accuracy when
dividing numbers.
=head2 Rounding mode R
When rounding a number, different 'styles' or 'kinds'
of rounding are possible. (Note that random rounding, as in
Math::Round, is not implemented.)
=over 2
=item 'trunc'
truncation invariably removes all digits following the
rounding place, replacing them with zeros. Thus, 987.65 rounded
to tens (P=1) becomes 980, and rounded to the fourth sigdig
becomes 987.6 (A=4). 123.456 rounded to the second place after the
decimal point (P=-2) becomes 123.46.
All other implemented styles of rounding attempt to round to the
"nearest digit." If the digit D immediately to the right of the
rounding place (skipping the decimal point) is greater than 5, the
number is incremented at the rounding place (possibly causing a
cascade of incrementation): e.g. when rounding to units, 0.9 rounds
to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
truncated at the rounding place: e.g. when rounding to units, 0.4
rounds to 0, and -19.4 rounds to -19.
However the results of other styles of rounding differ if the
digit immediately to the right of the rounding place (skipping the
decimal point) is 5 and if there are no digits, or no digits other
than 0, after that 5. In such cases:
=item 'even'
rounds the digit at the rounding place to 0, 2, 4, 6, or 8
if it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.
=item 'odd'
rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.
=item '+inf'
round to plus infinity, i.e. always round up. E.g., when
rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5,
and 0.4501 also becomes 0.5.
=item '-inf'
round to minus infinity, i.e. always round down. E.g., when
rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6,
but 0.4501 becomes 0.5.
=item 'zero'
round to zero, i.e. positive numbers down, negative ones up.
E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
becomes -0.5, but 0.4501 becomes 0.5.
=back
The handling of A & P in MBI/MBF (the old core code shipped with Perl
versions <= 5.7.2) is like this:
=over 2
=item Precision
* ffround($p) is able to round to $p number of digits after the decimal
point
* otherwise P is unused
=item Accuracy (significant digits)
* fround($a) rounds to $a significant digits
* only fdiv() and fsqrt() take A as (optional) paramater
+ other operations simply create the same number (fneg etc), or more (fmul)
of digits
+ rounding/truncating is only done when explicitly calling one of fround
or ffround, and never for BigInt (not implemented)
* fsqrt() simply hands its accuracy argument over to fdiv.
* the documentation and the comment in the code indicate two different ways
on how fdiv() determines the maximum number of digits it should calculate,
and the actual code does yet another thing
POD:
max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
Comment:
result has at most max(scale, length(dividend), length(divisor)) digits
Actual code:
scale = max(scale, length(dividend)-1,length(divisor)-1);
scale += length(divisior) - length(dividend);
So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
Actually, the 'difference' added to the scale is calculated from the
number of "significant digits" in dividend and divisor, which is derived
by looking at the length of the mantissa. Which is wrong, since it includes
the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops
again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
assumption that 124 has 3 significant digits, while 120/7 will get you
'17', not '17.1' since 120 is thought to have 2 significant digits.
The rounding after the division then uses the remainder and $y to determine
wether it must round up or down.
? I have no idea which is the right way. That's why I used a slightly more
? simple scheme and tweaked the few failing testcases to match it.
=back
This is how it works now:
=over 2
=item Setting/Accessing
* You can set the A global via C<< Math::BigInt->accuracy() >> or
C<< Math::BigFloat->accuracy() >> or whatever class you are using.
* You can also set P globally by using C<< Math::SomeClass->precision() >>
likewise.
* Globals are classwide, and not inherited by subclasses.
* to undefine A, use C<< Math::SomeCLass->accuracy(undef); >>
* to undefine P, use C<< Math::SomeClass->precision(undef); >>
* Setting C<< Math::SomeClass->accuracy() >> clears automatically
C<< Math::SomeClass->precision() >>, and vice versa.
* To be valid, A must be > 0, P can have any value.
* If P is negative, this means round to the P'th place to the right of the
decimal point; positive values mean to the left of the decimal point.
P of 0 means round to integer.
* to find out the current global A, use C<< Math::SomeClass->accuracy() >>
* to find out the current global P, use C<< Math::SomeClass->precision() >>
* use C<< $x->accuracy() >> respective C<< $x->precision() >> for the local
setting of C<< $x >>.
* Please note that C<< $x->accuracy() >> respecive C<< $x->precision() >>
return eventually defined global A or P, when C<< $x >>'s A or P is not
set.
=item Creating numbers
* When you create a number, you can give it's desired A or P via:
$x = Math::BigInt->new($number,$A,$P);
* Only one of A or P can be defined, otherwise the result is NaN
* If no A or P is give ($x = Math::BigInt->new($number) form), then the
globals (if set) will be used. Thus changing the global defaults later on
will not change the A or P of previously created numbers (i.e., A and P of
$x will be what was in effect when $x was created)
* If given undef for A and P, B<no> rounding will occur, and the globals will
B<not> be used. This is used by subclasses to create numbers without
suffering rounding in the parent. Thus a subclass is able to have it's own
globals enforced upon creation of a number by using
C<< $x = Math::BigInt->new($number,undef,undef) >>:
use Math::BigInt::SomeSubclass;
use Math::BigInt;
Math::BigInt->accuracy(2);
Math::BigInt::SomeSubClass->accuracy(3);
$x = Math::BigInt::SomeSubClass->new(1234);
$x is now 1230, and not 1200. A subclass might choose to implement
this otherwise, e.g. falling back to the parent's A and P.
=item Usage
* If A or P are enabled/defined, they are used to round the result of each
operation according to the rules below
* Negative P is ignored in Math::BigInt, since BigInts never have digits
after the decimal point
* Math::BigFloat uses Math::BigInt internally, but setting A or P inside
Math::BigInt as globals does not tamper with the parts of a BigFloat.
A flag is used to mark all Math::BigFloat numbers as 'never round'.
=item Precedence
* It only makes sense that a number has only one of A or P at a time.
If you set either A or P on one object, or globally, the other one will
be automatically cleared.
* If two objects are involved in an operation, and one of them has A in
effect, and the other P, this results in an error (NaN).
* A takes precendence over P (Hint: A comes before P).
If neither of them is defined, nothing is used, i.e. the result will have
as many digits as it can (with an exception for fdiv/fsqrt) and will not
be rounded.
* There is another setting for fdiv() (and thus for fsqrt()). If neither of
A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
If either the dividend's or the divisor's mantissa has more digits than
the value of F, the higher value will be used instead of F.
This is to limit the digits (A) of the result (just consider what would
happen with unlimited A and P in the case of 1/3 :-)
* fdiv will calculate (at least) 4 more digits than required (determined by
A, P or F), and, if F is not used, round the result
(this will still fail in the case of a result like 0.12345000000001 with A
or P of 5, but this can not be helped - or can it?)
* Thus you can have the math done by on Math::Big* class in two modi:
+ never round (this is the default):
This is done by setting A and P to undef. No math operation
will round the result, with fdiv() and fsqrt() as exceptions to guard
against overflows. You must explicitely call bround(), bfround() or
round() (the latter with parameters).
Note: Once you have rounded a number, the settings will 'stick' on it
and 'infect' all other numbers engaged in math operations with it, since
local settings have the highest precedence. So, to get SaferRound[tm],
use a copy() before rounding like this:
$x = Math::BigFloat->new(12.34);
$y = Math::BigFloat->new(98.76);
$z = $x * $y; # 1218.6984
print $x->copy()->fround(3); # 12.3 (but A is now 3!)
$z = $x * $y; # still 1218.6984, without
# copy would have been 1210!
+ round after each op:
After each single operation (except for testing like is_zero()), the
method round() is called and the result is rounded appropriately. By
setting proper values for A and P, you can have all-the-same-A or
all-the-same-P modes. For example, Math::Currency might set A to undef,
and P to -2, globally.
?Maybe an extra option that forbids local A & P settings would be in order,
?so that intermediate rounding does not 'poison' further math?
=item Overriding globals
* you will be able to give A, P and R as an argument to all the calculation
routines; the second parameter is A, the third one is P, and the fourth is
R (shift right by one for binary operations like badd). P is used only if
the first parameter (A) is undefined. These three parameters override the
globals in the order detailed as follows, i.e. the first defined value
wins:
(local: per object, global: global default, parameter: argument to sub)
+ parameter A
+ parameter P
+ local A (if defined on both of the operands: smaller one is taken)
+ local P (if defined on both of the operands: bigger one is taken)
+ global A
+ global P
+ global F
* fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
arguments (A and P) instead of one
=item Local settings
* You can set A or P locally by using C<< $x->accuracy() >> or
C<< $x->precision() >>
and thus force different A and P for different objects/numbers.
* Setting A or P this way immediately rounds $x to the new value.
* C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa.
=item Rounding
* the rounding routines will use the respective global or local settings.
fround()/bround() is for accuracy rounding, while ffround()/bfround()
is for precision
* the two rounding functions take as the second parameter one of the
following rounding modes (R):
'even', 'odd', '+inf', '-inf', 'zero', 'trunc'
* you can set/get the global R by using C<< Math::SomeClass->round_mode() >>
or by setting C<< $Math::SomeClass::round_mode >>
* after each operation, C<< $result->round() >> is called, and the result may
eventually be rounded (that is, if A or P were set either locally,
globally or as parameter to the operation)
* to manually round a number, call C<< $x->round($A,$P,$round_mode); >>
this will round the number by using the appropriate rounding function
and then normalize it.
* rounding modifies the local settings of the number:
$x = Math::BigFloat->new(123.456);
$x->accuracy(5);
$x->bround(4);
Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
will be 4 from now on.
=item Default values
* R: 'even'
* F: 40
* A: undef
* P: undef
=item Remarks
* The defaults are set up so that the new code gives the same results as
the old code (except in a few cases on fdiv):
+ Both A and P are undefined and thus will not be used for rounding
after each operation.
+ round() is thus a no-op, unless given extra parameters A and P
=back
=head1 INTERNALS
The actual numbers are stored as unsigned big integers (with seperate sign).
You should neither care about nor depend on the internal representation; it
might change without notice. Use only method calls like C<< $x->sign(); >>
instead relying on the internal hash keys like in C<< $x->{sign}; >>.
=head2 MATH LIBRARY
Math with the numbers is done (by default) by a module called
C<Math::BigInt::Calc>. This is equivalent to saying:
use Math::BigInt lib => 'Calc';
You can change this by using:
use Math::BigInt lib => 'BitVect';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigInt lib => 'Foo,Math::BigInt::Bar';
Since Math::BigInt::GMP is in almost all cases faster than Calc (especially in
cases involving really big numbers, where it is B<much> faster), and there is
no penalty if Math::BigInt::GMP is not installed, it is a good idea to always
use the following:
use Math::BigInt lib => 'GMP';
Different low-level libraries use different formats to store the
numbers. You should not depend on the number having a specific format.
See the respective math library module documentation for further details.
=head2 SIGN
The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.
A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You will get '+inf' when dividing a positive number by 0, and
'-inf' when dividing any negative number by 0.
=head2 mantissa(), exponent() and parts()
C<mantissa()> and C<exponent()> return the said parts of the BigInt such
that:
$m = $x->mantissa();
$e = $x->exponent();
$y = $m * ( 10 ** $e );
print "ok\n" if $x == $y;
C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
in one go. Both the returned mantissa and exponent have a sign.
Currently, for BigInts C<$e> is always 0, except for NaN, +inf and -inf,
where it is C<NaN>; and for C<$x == 0>, where it is C<1> (to be compatible
with Math::BigFloat's internal representation of a zero as C<0E1>).
C<$m> is currently just a copy of the original number. The relation between
C<$e> and C<$m> will stay always the same, though their real values might
change.
=head1 EXAMPLES
use Math::BigInt;
sub bint { Math::BigInt->new(shift); }
$x = Math::BigInt->bstr("1234") # string "1234"
$x = "$x"; # same as bstr()
$x = Math::BigInt->bneg("1234"); # BigInt "-1234"
$x = Math::BigInt->babs("-12345"); # BigInt "12345"
$x = Math::BigInt->bnorm("-0 00"); # BigInt "0"
$x = bint(1) + bint(2); # BigInt "3"
$x = bint(1) + "2"; # ditto (auto-BigIntify of "2")
$x = bint(1); # BigInt "1"
$x = $x + 5 / 2; # BigInt "3"
$x = $x ** 3; # BigInt "27"
$x *= 2; # BigInt "54"
$x = Math::BigInt->new(0); # BigInt "0"
$x--; # BigInt "-1"
$x = Math::BigInt->badd(4,5) # BigInt "9"
print $x->bsstr(); # 9e+0
Examples for rounding:
use Math::BigFloat;
use Test;
$x = Math::BigFloat->new(123.4567);
$y = Math::BigFloat->new(123.456789);
Math::BigFloat->accuracy(4); # no more A than 4
ok ($x->copy()->fround(),123.4); # even rounding
print $x->copy()->fround(),"\n"; # 123.4
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->fround(),"\n"; # 123.5
Math::BigFloat->accuracy(5); # no more A than 5
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->fround(),"\n"; # 123.46
$y = $x->copy()->fround(4),"\n"; # A = 4: 123.4
print "$y, ",$y->accuracy(),"\n"; # 123.4, 4
Math::BigFloat->accuracy(undef); # A not important now
Math::BigFloat->precision(2); # P important
print $x->copy()->bnorm(),"\n"; # 123.46
print $x->copy()->fround(),"\n"; # 123.46
Examples for converting:
my $x = Math::BigInt->new('0b1'.'01' x 123);
print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";
=head1 Autocreating constants
After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
and binary constants in the given scope are converted to C<Math::BigInt>.
This conversion happens at compile time.
In particular,
perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
prints the integer value of C<2**100>. Note that without conversion of
constants the expression 2**100 will be calculated as perl scalar.
Please note that strings and floating point constants are not affected,
so that
use Math::BigInt qw/:constant/;
$x = 1234567890123456789012345678901234567890
+ 123456789123456789;
$y = '1234567890123456789012345678901234567890'
+ '123456789123456789';
do not work. You need an explicit Math::BigInt->new() around one of the
operands. You should also quote large constants to protect loss of precision:
use Math::BigInt;
$x = Math::BigInt->new('1234567889123456789123456789123456789');
Without the quotes Perl would convert the large number to a floating point
constant at compile time and then hand the result to BigInt, which results in
an truncated result or a NaN.
This also applies to integers that look like floating point constants:
use Math::BigInt ':constant';
print ref(123e2),"\n";
print ref(123.2e2),"\n";
will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat>
to get this to work.
=head1 PERFORMANCE
Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
must be made in the second case. For long numbers, the copy can eat up to 20%
of the work (in the case of addition/subtraction, less for
multiplication/division). If $y is very small compared to $x, the form
$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
more time then the actual addition.
With a technique called copy-on-write, the cost of copying with overload could
be minimized or even completely avoided. A test implementation of COW did show
performance gains for overloaded math, but introduced a performance loss due
to a constant overhead for all other operatons. So Math::BigInt does currently
not COW.
The rewritten version of this module (vs. v0.01) is slower on certain
operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
does now more work and handles much more cases. The time spent in these
operations is usually gained in the other math operations so that code on
the average should get (much) faster. If they don't, please contact the author.
Some operations may be slower for small numbers, but are significantly faster
for big numbers. Other operations are now constant (O(1), like C<bneg()>,
C<babs()> etc), instead of O(N) and thus nearly always take much less time.
These optimizations were done on purpose.
If you find the Calc module to slow, try to install any of the replacement
modules and see if they help you.
=head2 Alternative math libraries
You can use an alternative library to drive Math::BigInt via:
use Math::BigInt lib => 'Module';
See L<MATH LIBRARY> for more information.
For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
=head2 SUBCLASSING
=head1 Subclassing Math::BigInt
The basic design of Math::BigInt allows simple subclasses with very little
work, as long as a few simple rules are followed:
=over 2
=item *
The public API must remain consistent, i.e. if a sub-class is overloading
addition, the sub-class must use the same name, in this case badd(). The
reason for this is that Math::BigInt is optimized to call the object methods
directly.
=item *
The private object hash keys like C<$x->{sign}> may not be changed, but
additional keys can be added, like C<$x->{_custom}>.
=item *
Accessor functions are available for all existing object hash keys and should
be used instead of directly accessing the internal hash keys. The reason for
this is that Math::BigInt itself has a pluggable interface which permits it
to support different storage methods.
=back
More complex sub-classes may have to replicate more of the logic internal of
Math::BigInt if they need to change more basic behaviors. A subclass that
needs to merely change the output only needs to overload C<bstr()>.
All other object methods and overloaded functions can be directly inherited
from the parent class.
At the very minimum, any subclass will need to provide it's own C<new()> and can
store additional hash keys in the object. There are also some package globals
that must be defined, e.g.:
# Globals
$accuracy = undef;
$precision = -2; # round to 2 decimal places
$round_mode = 'even';
$div_scale = 40;
Additionally, you might want to provide the following two globals to allow
auto-upgrading and auto-downgrading to work correctly:
$upgrade = undef;
$downgrade = undef;
This allows Math::BigInt to correctly retrieve package globals from the
subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
t/Math/BigFloat/SubClass.pm completely functional subclass examples.
Don't forget to
use overload;
in your subclass to automatically inherit the overloading from the parent. If
you like, you can change part of the overloading, look at Math::String for an
example.
=head1 UPGRADING
When used like this:
use Math::BigInt upgrade => 'Foo::Bar';
certain operations will 'upgrade' their calculation and thus the result to
the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
use Math::BigInt upgrade => 'Math::BigFloat';
As a shortcut, you can use the module C<bignum>:
use bignum;
Also good for oneliners:
perl -Mbignum -le 'print 2 ** 255'
This makes it possible to mix arguments of different classes (as in 2.5 + 2)
as well es preserve accuracy (as in sqrt(3)).
Beware: This feature is not fully implemented yet.
=head2 Auto-upgrade
The following methods upgrade themselves unconditionally; that is if upgrade
is in effect, they will always hand up their work:
=over 2
=item bsqrt()
=item div()
=item blog()
=back
Beware: This list is not complete.
All other methods upgrade themselves only when one (or all) of their
arguments are of the class mentioned in $upgrade (This might change in later
versions to a more sophisticated scheme):
=head1 BUGS
=over 2
=item broot() does not work
The broot() function in BigInt may only work for small values. This will be
fixed in a later version.
=item Out of Memory!
Under Perl prior to 5.6.0 having an C<use Math::BigInt ':constant';> and
C<eval()> in your code will crash with "Out of memory". This is probably an
overload/exporter bug. You can workaround by not having C<eval()>
and ':constant' at the same time or upgrade your Perl to a newer version.
=item Fails to load Calc on Perl prior 5.6.0
Since eval(' use ...') can not be used in conjunction with ':constant', BigInt
will fall back to eval { require ... } when loading the math lib on Perls
prior to 5.6.0. This simple replaces '::' with '/' and thus might fail on
filesystems using a different seperator.
=back
=head1 CAVEATS
Some things might not work as you expect them. Below is documented what is
known to be troublesome:
=over 1
=item bstr(), bsstr() and 'cmp'
Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now
drop the leading '+'. The old code would return '+3', the new returns '3'.
This is to be consistent with Perl and to make C<cmp> (especially with
overloading) to work as you expect. It also solves problems with C<Test.pm>,
because it's C<ok()> uses 'eq' internally.
Mark Biggar said, when asked about to drop the '+' altogether, or make only
C<cmp> work:
I agree (with the first alternative), don't add the '+' on positive
numbers. It's not as important anymore with the new internal
form for numbers. It made doing things like abs and neg easier,
but those have to be done differently now anyway.
So, the following examples will now work all as expected:
use Test;
BEGIN { plan tests => 1 }
use Math::BigInt;
my $x = new Math::BigInt 3*3;
my $y = new Math::BigInt 3*3;
ok ($x,3*3);
print "$x eq 9" if $x eq $y;
print "$x eq 9" if $x eq '9';
print "$x eq 9" if $x eq 3*3;
Additionally, the following still works:
print "$x == 9" if $x == $y;
print "$x == 9" if $x == 9;
print "$x == 9" if $x == 3*3;
There is now a C<bsstr()> method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparisation, but Perl will represent some numbers as 100 and others
as 1e+308. If in doubt, convert both arguments to Math::BigInt before
comparing them as strings:
use Test;
BEGIN { plan tests => 3 }
use Math::BigInt;
$x = Math::BigInt->new('1e56'); $y = 1e56;
ok ($x,$y); # will fail
ok ($x->bsstr(),$y); # okay
$y = Math::BigInt->new($y);
ok ($x,$y); # okay
Alternatively, simple use C<< <=> >> for comparisations, this will get it
always right. There is not yet a way to get a number automatically represented
as a string that matches exactly the way Perl represents it.
=item int()
C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a
Perl scalar:
$x = Math::BigInt->new(123);
$y = int($x); # BigInt 123
$x = Math::BigFloat->new(123.45);
$y = int($x); # BigInt 123
In all Perl versions you can use C<as_number()> for the same effect:
$x = Math::BigFloat->new(123.45);
$y = $x->as_number(); # BigInt 123
This also works for other subclasses, like Math::String.
It is yet unlcear whether overloaded int() should return a scalar or a BigInt.
=item length
The following will probably not do what you expect:
$c = Math::BigInt->new(123);
print $c->length(),"\n"; # prints 30
It prints both the number of digits in the number and in the fraction part
since print calls C<length()> in list context. Use something like:
print scalar $c->length(),"\n"; # prints 3
=item bdiv
The following will probably not do what you expect:
print $c->bdiv(10000),"\n";
It prints both quotient and remainder since print calls C<bdiv()> in list
context. Also, C<bdiv()> will modify $c, so be carefull. You probably want
to use
print $c / 10000,"\n";
print scalar $c->bdiv(10000),"\n"; # or if you want to modify $c
instead.
The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
nonzero) always has the same sign as the second operand; so, for
example,
1 / 4 => ( 0, 1)
1 / -4 => (-1,-3)
-3 / 4 => (-1, 1)
-3 / -4 => ( 0,-3)
-11 / 2 => (-5,1)
11 /-2 => (-5,-1)
As a consequence, the behavior of the operator % agrees with the
behavior of Perl's built-in % operator (as documented in the perlop
manpage), and the equation
$x == ($x / $y) * $y + ($x % $y)
holds true for any $x and $y, which justifies calling the two return
values of bdiv() the quotient and remainder. The only exception to this rule
are when $y == 0 and $x is negative, then the remainder will also be
negative. See below under "infinity handling" for the reasoning behing this.
Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
not change BigInt's way to do things. This is because under 'use integer' Perl
will do what the underlying C thinks is right and this is different for each
system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
the author to implement it ;)
=item infinity handling
Here are some examples that explain the reasons why certain results occur while
handling infinity:
The following table shows the result of the division and the remainder, so that
the equation above holds true. Some "ordinary" cases are strewn in to show more
clearly the reasoning:
A / B = C, R so that C * B + R = A
=========================================================
5 / 8 = 0, 5 0 * 8 + 5 = 5
0 / 8 = 0, 0 0 * 8 + 0 = 0
0 / inf = 0, 0 0 * inf + 0 = 0
0 /-inf = 0, 0 0 * -inf + 0 = 0
5 / inf = 0, 5 0 * inf + 5 = 5
5 /-inf = 0, 5 0 * -inf + 5 = 5
-5/ inf = 0, -5 0 * inf + -5 = -5
-5/-inf = 0, -5 0 * -inf + -5 = -5
inf/ 5 = inf, 0 inf * 5 + 0 = inf
-inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
inf/ -5 = -inf, 0 -inf * -5 + 0 = inf
-inf/ -5 = inf, 0 inf * -5 + 0 = -inf
5/ 5 = 1, 0 1 * 5 + 0 = 5
-5/ -5 = 1, 0 1 * -5 + 0 = -5
inf/ inf = 1, 0 1 * inf + 0 = inf
-inf/-inf = 1, 0 1 * -inf + 0 = -inf
inf/-inf = -1, 0 -1 * -inf + 0 = inf
-inf/ inf = -1, 0 1 * -inf + 0 = -inf
8/ 0 = inf, 8 inf * 0 + 8 = 8
inf/ 0 = inf, inf inf * 0 + inf = inf
0/ 0 = NaN
These cases below violate the "remainder has the sign of the second of the two
arguments", since they wouldn't match up otherwise.
A / B = C, R so that C * B + R = A
========================================================
-inf/ 0 = -inf, -inf -inf * 0 + inf = -inf
-8/ 0 = -inf, -8 -inf * 0 + 8 = -8
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B<same> object and stores it in $y. Thus anything
that modifies $x (except overloaded operators) will modify $y, and vice versa.
Or in other words, C<=> is only safe if you modify your BigInts only via
overloaded math. As soon as you use a method call it breaks:
$x->bmul(2);
print "$x, $y\n"; # prints '10, 10'
If you want a true copy of $x, use:
$y = $x->copy();
You can also chain the calls like this, this will make first a copy and then
multiply it by 2:
$y = $x->copy()->bmul(2);
See also the documentation for overload.pm regarding C<=>.
=item bpow
C<bpow()> (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C<badd()> etc. The first three will
modify $x, the last one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x **= $i,"\n"; # the same
print $x ** $i,"\n"; # leave $x alone
The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
=item Overloading -$x
The following:
$x = -$x;
is slower than
$x->bneg();
since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
needs to preserve $x since it does not know that it later will get overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
With Copy-On-Write, this issue would be gone, but C-o-W is not implemented
since it is slower for all other things.
=item Mixing different object types
In Perl you will get a floating point value if you do one of the following:
$float = 5.0 + 2;
$float = 2 + 5.0;
$float = 5 / 2;
With overloaded math, only the first two variants will result in a BigFloat:
use Math::BigInt;
use Math::BigFloat;
$mbf = Math::BigFloat->new(5);
$mbi2 = Math::BigInteger->new(5);
$mbi = Math::BigInteger->new(2);
# what actually gets called:
$float = $mbf + $mbi; # $mbf->badd()
$float = $mbf / $mbi; # $mbf->bdiv()
$integer = $mbi + $mbf; # $mbi->badd()
$integer = $mbi2 / $mbi; # $mbi2->bdiv()
$integer = $mbi2 / $mbf; # $mbi2->bdiv()
This is because math with overloaded operators follows the first (dominating)
operand, and the operation of that is called and returns thus the result. So,
Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
the result should be a Math::BigFloat or the second operant is one.
To get a Math::BigFloat you either need to call the operation manually,
make sure the operands are already of the proper type or casted to that type
via Math::BigFloat->new():
$float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
Beware of simple "casting" the entire expression, this would only convert
the already computed result:
$float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong!
Beware also of the order of more complicated expressions like:
$integer = ($mbi2 + $mbi) / $mbf; # int / float => int
$integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.
Scalar values are a bit different, since:
$float = 2 + $mbf;
$float = $mbf + 2;
will both result in the proper type due to the way the overloaded math works.
This section also applies to other overloaded math packages, like Math::String.
One solution to you problem might be autoupgrading|upgrading. See the
pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
=item bsqrt()
C<bsqrt()> works only good if the result is a big integer, e.g. the square
root of 144 is 12, but from 12 the square root is 3, regardless of rounding
mode. The reason is that the result is always truncated to an integer.
If you want a better approximation of the square root, then use:
$x = Math::BigFloat->new(12);
Math::BigFloat->precision(0);
Math::BigFloat->round_mode('even');
print $x->copy->bsqrt(),"\n"; # 4
Math::BigFloat->precision(2);
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464
=item brsft()
For negative numbers in base see also L<brsft|brsft>.
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
The package at
L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.
=head1 AUTHORS
Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2003
and still at it in 2004.
Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (uncomplete) list. If you miss your name, please drop me a
mail. Thank you!
=cut
|