summaryrefslogtreecommitdiff
path: root/gnu/usr.bin/perl/win32/vmem.h
blob: 31aa07e3a4a172aaa1d0c794238d9c12247a7757 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
/* vmem.h
 *
 * (c) 1999 Microsoft Corporation. All rights reserved. 
 * Portions (c) 1999 ActiveState Tool Corp, http://www.ActiveState.com/
 *
 *    You may distribute under the terms of either the GNU General Public
 *    License or the Artistic License, as specified in the README file.
 *
 * Options:
 *
 * Defining _USE_MSVCRT_MEM_ALLOC will cause all memory allocations
 * to be forwarded to MSVCRT.DLL. Defining _USE_LINKED_LIST as well will
 * track all allocations in a doubly linked list, so that the host can
 * free all memory allocated when it goes away.
 * If _USE_MSVCRT_MEM_ALLOC is not defined then Knuth's boundary tag algorithm
 * is used; defining _USE_BUDDY_BLOCKS will use Knuth's algorithm R
 * (Buddy system reservation)
 *
 */

#ifndef ___VMEM_H_INC___
#define ___VMEM_H_INC___

#define _USE_MSVCRT_MEM_ALLOC
#define _USE_LINKED_LIST

// #define _USE_BUDDY_BLOCKS

// #define _DEBUG_MEM
#ifdef _DEBUG_MEM
#define ASSERT(f) if(!(f)) DebugBreak();

inline void MEMODS(char *str)
{
    OutputDebugString(str);
    OutputDebugString("\n");
}

inline void MEMODSlx(char *str, long x)
{
    char szBuffer[512];	
    sprintf(szBuffer, "%s %lx\n", str, x);
    OutputDebugString(szBuffer);
}

#define WALKHEAP() WalkHeap(0)
#define WALKHEAPTRACE() WalkHeap(1)

#else

#define ASSERT(f)
#define MEMODS(x)
#define MEMODSlx(x, y)
#define WALKHEAP()
#define WALKHEAPTRACE()

#endif

#ifdef _USE_MSVCRT_MEM_ALLOC

#ifndef _USE_LINKED_LIST
// #define _USE_LINKED_LIST
#endif

/* 
 * Pass all memory requests throught to msvcrt.dll 
 * optionaly track by using a doubly linked header
 */

typedef void (*LPFREE)(void *block);
typedef void* (*LPMALLOC)(size_t size);
typedef void* (*LPREALLOC)(void *block, size_t size);
#ifdef _USE_LINKED_LIST
class VMem;
typedef struct _MemoryBlockHeader* PMEMORY_BLOCK_HEADER;
typedef struct _MemoryBlockHeader {
    PMEMORY_BLOCK_HEADER    pNext;
    PMEMORY_BLOCK_HEADER    pPrev;
    VMem *owner;
} MEMORY_BLOCK_HEADER, *PMEMORY_BLOCK_HEADER;
#endif

class VMem
{
public:
    VMem();
    ~VMem();
    virtual void* Malloc(size_t size);
    virtual void* Realloc(void* pMem, size_t size);
    virtual void Free(void* pMem);
    virtual void GetLock(void);
    virtual void FreeLock(void);
    virtual int IsLocked(void);
    virtual long Release(void);
    virtual long AddRef(void);

    inline BOOL CreateOk(void)
    {
	return TRUE;
    };

protected:
#ifdef _USE_LINKED_LIST
    void LinkBlock(PMEMORY_BLOCK_HEADER ptr)
    {
	PMEMORY_BLOCK_HEADER next = m_Dummy.pNext;
	m_Dummy.pNext = ptr;
	ptr->pPrev = &m_Dummy;
	ptr->pNext = next;
        ptr->owner = this;
	next->pPrev = ptr;
    }
    void UnlinkBlock(PMEMORY_BLOCK_HEADER ptr)
    {
	PMEMORY_BLOCK_HEADER next = ptr->pNext;
	PMEMORY_BLOCK_HEADER prev = ptr->pPrev;
	prev->pNext = next;
	next->pPrev = prev;
    }

    MEMORY_BLOCK_HEADER	m_Dummy;
#endif

    long		m_lRefCount;	// number of current users
    CRITICAL_SECTION	m_cs;		// access lock
    HINSTANCE		m_hLib;
    LPFREE		m_pfree;
    LPMALLOC		m_pmalloc;
    LPREALLOC		m_prealloc;
};

VMem::VMem()
{
    m_lRefCount = 1;
    InitializeCriticalSection(&m_cs);
#ifdef _USE_LINKED_LIST
    m_Dummy.pNext = m_Dummy.pPrev =  &m_Dummy;
    m_Dummy.owner = this;
#endif
    m_hLib = LoadLibrary("msvcrt.dll");
    if (m_hLib) {
	m_pfree = (LPFREE)GetProcAddress(m_hLib, "free");
	m_pmalloc = (LPMALLOC)GetProcAddress(m_hLib, "malloc");
	m_prealloc = (LPREALLOC)GetProcAddress(m_hLib, "realloc");
    }
}

VMem::~VMem(void)
{
#ifdef _USE_LINKED_LIST
    while (m_Dummy.pNext != &m_Dummy) {
	Free(m_Dummy.pNext+1);
    }
#endif
    if (m_hLib)
	FreeLibrary(m_hLib);
    DeleteCriticalSection(&m_cs);
}

void* VMem::Malloc(size_t size)
{
#ifdef _USE_LINKED_LIST
    GetLock();
    PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)m_pmalloc(size+sizeof(MEMORY_BLOCK_HEADER));
    LinkBlock(ptr);
    FreeLock();
    return (ptr+1);
#else
    return m_pmalloc(size);
#endif
}

void* VMem::Realloc(void* pMem, size_t size)
{
#ifdef _USE_LINKED_LIST
    if (!pMem)
	return Malloc(size);

    if (!size) {
	Free(pMem);
	return NULL;
    }

    GetLock();
    PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)(((char*)pMem)-sizeof(MEMORY_BLOCK_HEADER));
    UnlinkBlock(ptr);
    ptr = (PMEMORY_BLOCK_HEADER)m_prealloc(ptr, size+sizeof(MEMORY_BLOCK_HEADER));
    LinkBlock(ptr);
    FreeLock();

    return (ptr+1);
#else
    return m_prealloc(pMem, size);
#endif
}

void VMem::Free(void* pMem)
{
#ifdef _USE_LINKED_LIST
    if (pMem) {
	PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)(((char*)pMem)-sizeof(MEMORY_BLOCK_HEADER));
        if (ptr->owner != this) {
	    if (ptr->owner) {
#if 1
		dTHX;
	    	int *nowhere = NULL;
	    	Perl_warn(aTHX_ "Free to wrong pool %p not %p",this,ptr->owner);
            	*nowhere = 0;
#else
                ptr->owner->Free(pMem);	
#endif
	    }
	    return;
        }
	GetLock();
	UnlinkBlock(ptr);
	ptr->owner = NULL;
	m_pfree(ptr);
	FreeLock();
    }
#else
    m_pfree(pMem);
#endif
}

void VMem::GetLock(void)
{
    EnterCriticalSection(&m_cs);
}

void VMem::FreeLock(void)
{
    LeaveCriticalSection(&m_cs);
}

int VMem::IsLocked(void)
{
#if 0
    /* XXX TryEnterCriticalSection() is not available in some versions
     * of Windows 95.  Since this code is not used anywhere yet, we 
     * skirt the issue for now. */
    BOOL bAccessed = TryEnterCriticalSection(&m_cs);
    if(bAccessed) {
	LeaveCriticalSection(&m_cs);
    }
    return !bAccessed;
#else
    ASSERT(0);	/* alarm bells for when somebody calls this */
    return 0;
#endif
}

long VMem::Release(void)
{
    long lCount = InterlockedDecrement(&m_lRefCount);
    if(!lCount)
	delete this;
    return lCount;
}

long VMem::AddRef(void)
{
    long lCount = InterlockedIncrement(&m_lRefCount);
    return lCount;
}

#else	/* _USE_MSVCRT_MEM_ALLOC */

/*
 * Knuth's boundary tag algorithm Vol #1, Page 440.
 *
 * Each block in the heap has tag words before and after it,
 *  TAG
 *  block
 *  TAG
 * The size is stored in these tags as a long word, and includes the 8 bytes
 * of overhead that the boundary tags consume.  Blocks are allocated on long
 * word boundaries, so the size is always multiples of long words.  When the
 * block is allocated, bit 0, (the tag bit), of the size is set to 1.  When 
 * a block is freed, it is merged with adjacent free blocks, and the tag bit
 * is set to 0.
 *
 * A linked list is used to manage the free list. The first two long words of
 * the block contain double links.  These links are only valid when the block
 * is freed, therefore space needs to be reserved for them.  Thus, the minimum
 * block size (not counting the tags) is 8 bytes.
 *
 * Since memory allocation may occur on a single threaded, explict locks are not
 * provided.
 * 
 */

const long lAllocStart = 0x00020000; /* start at 128K */
const long minBlockSize = sizeof(void*)*2;
const long sizeofTag = sizeof(long);
const long blockOverhead = sizeofTag*2;
const long minAllocSize = minBlockSize+blockOverhead;
#ifdef _USE_BUDDY_BLOCKS
const long lSmallBlockSize = 1024;
const size_t nListEntries = ((lSmallBlockSize-minAllocSize)/sizeof(long));

inline size_t CalcEntry(size_t size)
{
    ASSERT((size&(sizeof(long)-1)) == 0);
    return ((size - minAllocSize) / sizeof(long));
}
#endif

typedef BYTE* PBLOCK;	/* pointer to a memory block */

/*
 * Macros for accessing hidden fields in a memory block:
 *
 * SIZE	    size of this block (tag bit 0 is 1 if block is allocated)
 * PSIZE    size of previous physical block
 */

#define SIZE(block)	(*(ULONG*)(((PBLOCK)(block))-sizeofTag))
#define PSIZE(block)	(*(ULONG*)(((PBLOCK)(block))-(blockOverhead)))
inline void SetTags(PBLOCK block, long size)
{
    SIZE(block) = size;
    PSIZE(block+(size&~1)) = size;
}

/*
 * Free list pointers
 * PREV	pointer to previous block
 * NEXT	pointer to next block
 */

#define PREV(block)	(*(PBLOCK*)(block))
#define NEXT(block)	(*(PBLOCK*)((block)+sizeof(PBLOCK)))
inline void SetLink(PBLOCK block, PBLOCK prev, PBLOCK next)
{
    PREV(block) = prev;
    NEXT(block) = next;
}
inline void Unlink(PBLOCK p)
{
    PBLOCK next = NEXT(p);
    PBLOCK prev = PREV(p);
    NEXT(prev) = next;
    PREV(next) = prev;
}
#ifndef _USE_BUDDY_BLOCKS
inline void AddToFreeList(PBLOCK block, PBLOCK pInList)
{
    PBLOCK next = NEXT(pInList);
    NEXT(pInList) = block;
    SetLink(block, pInList, next);
    PREV(next) = block;
}
#endif

/* Macro for rounding up to the next sizeof(long) */
#define ROUND_UP(n)	(((ULONG)(n)+sizeof(long)-1)&~(sizeof(long)-1))
#define ROUND_UP64K(n)	(((ULONG)(n)+0x10000-1)&~(0x10000-1))
#define ROUND_DOWN(n)	((ULONG)(n)&~(sizeof(long)-1))

/*
 * HeapRec - a list of all non-contiguous heap areas
 *
 * Each record in this array contains information about a non-contiguous heap area.
 */

const int maxHeaps = 32; /* 64 was overkill */
const long lAllocMax   = 0x80000000; /* max size of allocation */

#ifdef _USE_BUDDY_BLOCKS
typedef struct _FreeListEntry
{
    BYTE    Dummy[minAllocSize];	// dummy free block
} FREE_LIST_ENTRY, *PFREE_LIST_ENTRY;
#endif

#ifndef _USE_BUDDY_BLOCKS
#define USE_BIGBLOCK_ALLOC
#endif
/*
 * performance tuning
 * Use VirtualAlloc() for blocks bigger than nMaxHeapAllocSize since
 * Windows 95/98/Me have heap managers that are designed for memory 
 * blocks smaller than four megabytes.
 */

#ifdef USE_BIGBLOCK_ALLOC
const int nMaxHeapAllocSize = (1024*512);  /* don't allocate anything larger than this from the heap */
#endif

typedef struct _HeapRec
{
    PBLOCK	base;	/* base of heap area */
    ULONG	len;	/* size of heap area */
#ifdef USE_BIGBLOCK_ALLOC
    BOOL	bBigBlock;  /* was allocate using VirtualAlloc */
#endif
} HeapRec;

class VMem
{
public:
    VMem();
    ~VMem();
    virtual void* Malloc(size_t size);
    virtual void* Realloc(void* pMem, size_t size);
    virtual void Free(void* pMem);
    virtual void GetLock(void);
    virtual void FreeLock(void);
    virtual int IsLocked(void);
    virtual long Release(void);
    virtual long AddRef(void);

    inline BOOL CreateOk(void)
    {
#ifdef _USE_BUDDY_BLOCKS
	return TRUE;
#else
	return m_hHeap != NULL;
#endif
    };

    void ReInit(void);

protected:
    void Init(void);
    int Getmem(size_t size);

    int HeapAdd(void* ptr, size_t size
#ifdef USE_BIGBLOCK_ALLOC
	, BOOL bBigBlock
#endif
    );

    void* Expand(void* block, size_t size);

#ifdef _USE_BUDDY_BLOCKS
    inline PBLOCK GetFreeListLink(int index)
    {
	if (index >= nListEntries)
	    index = nListEntries-1;
	return &m_FreeList[index].Dummy[sizeofTag];
    }
    inline PBLOCK GetOverSizeFreeList(void)
    {
	return &m_FreeList[nListEntries-1].Dummy[sizeofTag];
    }
    inline PBLOCK GetEOLFreeList(void)
    {
	return &m_FreeList[nListEntries].Dummy[sizeofTag];
    }

    void AddToFreeList(PBLOCK block, size_t size)
    {
	PBLOCK pFreeList = GetFreeListLink(CalcEntry(size));
	PBLOCK next = NEXT(pFreeList);
	NEXT(pFreeList) = block;
	SetLink(block, pFreeList, next);
	PREV(next) = block;
    }
#endif
    inline size_t CalcAllocSize(size_t size)
    {
	/*
	 * Adjust the real size of the block to be a multiple of sizeof(long), and add
	 * the overhead for the boundary tags.  Disallow negative or zero sizes.
	 */
	return (size < minBlockSize) ? minAllocSize : (size_t)ROUND_UP(size) + blockOverhead;
    }

#ifdef _USE_BUDDY_BLOCKS
    FREE_LIST_ENTRY	m_FreeList[nListEntries+1];	// free list with dummy end of list entry as well
#else
    HANDLE		m_hHeap;		    // memory heap for this script
    char		m_FreeDummy[minAllocSize];  // dummy free block
    PBLOCK		m_pFreeList;		    // pointer to first block on free list
#endif
    PBLOCK		m_pRover;		    // roving pointer into the free list
    HeapRec		m_heaps[maxHeaps];	    // list of all non-contiguous heap areas 
    int			m_nHeaps;		    // no. of heaps in m_heaps 
    long		m_lAllocSize;		    // current alloc size
    long		m_lRefCount;		    // number of current users
    CRITICAL_SECTION	m_cs;			    // access lock

#ifdef _DEBUG_MEM
    void WalkHeap(int complete);
    void MemoryUsageMessage(char *str, long x, long y, int c);
    FILE*		m_pLog;
#endif
};

VMem::VMem()
{
    m_lRefCount = 1;
#ifndef _USE_BUDDY_BLOCKS
    BOOL bRet = (NULL != (m_hHeap = HeapCreate(HEAP_NO_SERIALIZE,
				lAllocStart,	/* initial size of heap */
				0)));		/* no upper limit on size of heap */
    ASSERT(bRet);
#endif

    InitializeCriticalSection(&m_cs);
#ifdef _DEBUG_MEM
    m_pLog = 0;
#endif

    Init();
}

VMem::~VMem(void)
{
#ifndef _USE_BUDDY_BLOCKS
    ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, NULL));
#endif
    WALKHEAPTRACE();

    DeleteCriticalSection(&m_cs);
#ifdef _USE_BUDDY_BLOCKS
    for(int index = 0; index < m_nHeaps; ++index) {
	VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
    }
#else /* !_USE_BUDDY_BLOCKS */
#ifdef USE_BIGBLOCK_ALLOC
    for(int index = 0; index < m_nHeaps; ++index) {
	if (m_heaps[index].bBigBlock) {
	    VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
	}
    }
#endif
    BOOL bRet = HeapDestroy(m_hHeap);
    ASSERT(bRet);
#endif /* _USE_BUDDY_BLOCKS */
}

void VMem::ReInit(void)
{
    for(int index = 0; index < m_nHeaps; ++index) {
#ifdef _USE_BUDDY_BLOCKS
	VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
#else
#ifdef USE_BIGBLOCK_ALLOC
	if (m_heaps[index].bBigBlock) {
	    VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
	}
	else
#endif
	    HeapFree(m_hHeap, HEAP_NO_SERIALIZE, m_heaps[index].base);
#endif /* _USE_BUDDY_BLOCKS */
    }

    Init();
}

void VMem::Init(void)
{
#ifdef _USE_BUDDY_BLOCKS
    PBLOCK pFreeList;
    /*
     * Initialize the free list by placing a dummy zero-length block on it.
     * Set the end of list marker.
     * Set the number of non-contiguous heaps to zero.
     * Set the next allocation size.
     */
    for (int index = 0; index < nListEntries; ++index) {
	pFreeList = GetFreeListLink(index);
	SIZE(pFreeList) = PSIZE(pFreeList+minAllocSize) = 0;
	PREV(pFreeList) = NEXT(pFreeList) = pFreeList;
    }
    pFreeList = GetEOLFreeList();
    SIZE(pFreeList) = PSIZE(pFreeList+minAllocSize) = 0;
    PREV(pFreeList) = NEXT(pFreeList) = NULL;
    m_pRover = GetOverSizeFreeList();
#else
    /*
     * Initialize the free list by placing a dummy zero-length block on it.
     * Set the number of non-contiguous heaps to zero.
     */
    m_pFreeList = m_pRover = (PBLOCK)(&m_FreeDummy[sizeofTag]);
    PSIZE(m_pFreeList+minAllocSize) = SIZE(m_pFreeList) = 0;
    PREV(m_pFreeList) = NEXT(m_pFreeList) = m_pFreeList;
#endif

    m_nHeaps = 0;
    m_lAllocSize = lAllocStart;
}

void* VMem::Malloc(size_t size)
{
    WALKHEAP();

    PBLOCK ptr;
    size_t lsize, rem;
    /*
     * Disallow negative or zero sizes.
     */
    size_t realsize = CalcAllocSize(size);
    if((int)realsize < minAllocSize || size == 0)
	return NULL;

#ifdef _USE_BUDDY_BLOCKS
    /*
     * Check the free list of small blocks if this is free use it
     * Otherwise check the rover if it has no blocks then
     * Scan the free list entries use the first free block
     * split the block if needed, stop at end of list marker
     */
    {
	int index = CalcEntry(realsize);
	if (index < nListEntries-1) {
	    ptr = GetFreeListLink(index);
	    lsize = SIZE(ptr);
	    if (lsize >= realsize) {
		rem = lsize - realsize;
		if(rem < minAllocSize) {
		    /* Unlink the block from the free list. */
		    Unlink(ptr);
		}
		else {
		    /*
		     * split the block
		     * The remainder is big enough to split off into a new block.
		     * Use the end of the block, resize the beginning of the block
		     * no need to change the free list.
		     */
		    SetTags(ptr, rem);
		    ptr += SIZE(ptr);
		    lsize = realsize;
		}
		SetTags(ptr, lsize | 1);
		return ptr;
	    }
	    ptr = m_pRover;
	    lsize = SIZE(ptr);
	    if (lsize >= realsize) {
		rem = lsize - realsize;
		if(rem < minAllocSize) {
		    /* Unlink the block from the free list. */
		    Unlink(ptr);
		}
		else {
		    /*
		     * split the block
		     * The remainder is big enough to split off into a new block.
		     * Use the end of the block, resize the beginning of the block
		     * no need to change the free list.
		     */
		    SetTags(ptr, rem);
		    ptr += SIZE(ptr);
		    lsize = realsize;
		}
		SetTags(ptr, lsize | 1);
		return ptr;
	    }
	    ptr = GetFreeListLink(index+1);
	    while (NEXT(ptr)) {
		lsize = SIZE(ptr);
		if (lsize >= realsize) {
		    size_t rem = lsize - realsize;
		    if(rem < minAllocSize) {
			/* Unlink the block from the free list. */
			Unlink(ptr);
		    }
		    else {
			/*
			 * split the block
			 * The remainder is big enough to split off into a new block.
			 * Use the end of the block, resize the beginning of the block
			 * no need to change the free list.
			 */
			SetTags(ptr, rem);
			ptr += SIZE(ptr);
			lsize = realsize;
		    }
		    SetTags(ptr, lsize | 1);
		    return ptr;
		}
		ptr += sizeof(FREE_LIST_ENTRY);
	    }
	}
    }
#endif

    /*
     * Start searching the free list at the rover.  If we arrive back at rover without
     * finding anything, allocate some memory from the heap and try again.
     */
    ptr = m_pRover;	/* start searching at rover */
    int loops = 2;	/* allow two times through the loop  */
    for(;;) {
	lsize = SIZE(ptr);
	ASSERT((lsize&1)==0);
	/* is block big enough? */
	if(lsize >= realsize) {	
	    /* if the remainder is too small, don't bother splitting the block. */
	    rem = lsize - realsize;
	    if(rem < minAllocSize) {
		if(m_pRover == ptr)
		    m_pRover = NEXT(ptr);

		/* Unlink the block from the free list. */
		Unlink(ptr);
	    }
	    else {
		/*
		 * split the block
		 * The remainder is big enough to split off into a new block.
		 * Use the end of the block, resize the beginning of the block
		 * no need to change the free list.
		 */
		SetTags(ptr, rem);
		ptr += SIZE(ptr);
		lsize = realsize;
	    }
	    /* Set the boundary tags to mark it as allocated. */
	    SetTags(ptr, lsize | 1);
	    return ((void *)ptr);
	}

	/*
	 * This block was unsuitable.  If we've gone through this list once already without
	 * finding anything, allocate some new memory from the heap and try again.
	 */
	ptr = NEXT(ptr);
	if(ptr == m_pRover) {
	    if(!(loops-- && Getmem(realsize))) {
		return NULL;
	    }
	    ptr = m_pRover;
	}
    }
}

void* VMem::Realloc(void* block, size_t size)
{
    WALKHEAP();

    /* if size is zero, free the block. */
    if(size == 0) {
	Free(block);
	return (NULL);
    }

    /* if block pointer is NULL, do a Malloc(). */
    if(block == NULL)
	return Malloc(size);

    /*
     * Grow or shrink the block in place.
     * if the block grows then the next block will be used if free
     */
    if(Expand(block, size) != NULL)
	return block;

    size_t realsize = CalcAllocSize(size);
    if((int)realsize < minAllocSize)
	return NULL;

    /*
     * see if the previous block is free, and is it big enough to cover the new size
     * if merged with the current block.
     */
    PBLOCK ptr = (PBLOCK)block;
    size_t cursize = SIZE(ptr) & ~1;
    size_t psize = PSIZE(ptr);
    if((psize&1) == 0 && (psize + cursize) >= realsize) {
	PBLOCK prev = ptr - psize;
	if(m_pRover == prev)
	    m_pRover = NEXT(prev);

	/* Unlink the next block from the free list. */
	Unlink(prev);

	/* Copy contents of old block to new location, make it the current block. */
	memmove(prev, ptr, cursize);
	cursize += psize;	/* combine sizes */
	ptr = prev;

	size_t rem = cursize - realsize;
	if(rem >= minAllocSize) {
	    /*
	     * The remainder is big enough to be a new block.  Set boundary
	     * tags for the resized block and the new block.
	     */
	    prev = ptr + realsize;
	    /*
	     * add the new block to the free list.
	     * next block cannot be free
	     */
	    SetTags(prev, rem);
#ifdef _USE_BUDDY_BLOCKS
	    AddToFreeList(prev, rem);
#else
	    AddToFreeList(prev, m_pFreeList);
#endif
	    cursize = realsize;
        }
	/* Set the boundary tags to mark it as allocated. */
	SetTags(ptr, cursize | 1);
        return ((void *)ptr);
    }

    /* Allocate a new block, copy the old to the new, and free the old. */
    if((ptr = (PBLOCK)Malloc(size)) != NULL) {
	memmove(ptr, block, cursize-blockOverhead);
	Free(block);
    }
    return ((void *)ptr);
}

void VMem::Free(void* p)
{
    WALKHEAP();

    /* Ignore null pointer. */
    if(p == NULL)
	return;

    PBLOCK ptr = (PBLOCK)p;

    /* Check for attempt to free a block that's already free. */
    size_t size = SIZE(ptr);
    if((size&1) == 0) {
	MEMODSlx("Attempt to free previously freed block", (long)p);
	return;
    }
    size &= ~1;	/* remove allocated tag */

    /* if previous block is free, add this block to it. */
#ifndef _USE_BUDDY_BLOCKS
    int linked = FALSE;
#endif
    size_t psize = PSIZE(ptr);
    if((psize&1) == 0) {
	ptr -= psize;	/* point to previous block */
	size += psize;	/* merge the sizes of the two blocks */
#ifdef _USE_BUDDY_BLOCKS
	Unlink(ptr);
#else
	linked = TRUE;	/* it's already on the free list */
#endif
    }

    /* if the next physical block is free, merge it with this block. */
    PBLOCK next = ptr + size;	/* point to next physical block */
    size_t nsize = SIZE(next);
    if((nsize&1) == 0) {
	/* block is free move rover if needed */
	if(m_pRover == next)
	    m_pRover = NEXT(next);

	/* unlink the next block from the free list. */
	Unlink(next);

	/* merge the sizes of this block and the next block. */
	size += nsize;
    }

    /* Set the boundary tags for the block; */
    SetTags(ptr, size);

    /* Link the block to the head of the free list. */
#ifdef _USE_BUDDY_BLOCKS
	AddToFreeList(ptr, size);
#else
    if(!linked) {
	AddToFreeList(ptr, m_pFreeList);
    }
#endif
}

void VMem::GetLock(void)
{
    EnterCriticalSection(&m_cs);
}

void VMem::FreeLock(void)
{
    LeaveCriticalSection(&m_cs);
}

int VMem::IsLocked(void)
{
#if 0
    /* XXX TryEnterCriticalSection() is not available in some versions
     * of Windows 95.  Since this code is not used anywhere yet, we 
     * skirt the issue for now. */
    BOOL bAccessed = TryEnterCriticalSection(&m_cs);
    if(bAccessed) {
	LeaveCriticalSection(&m_cs);
    }
    return !bAccessed;
#else
    ASSERT(0);	/* alarm bells for when somebody calls this */
    return 0;
#endif
}


long VMem::Release(void)
{
    long lCount = InterlockedDecrement(&m_lRefCount);
    if(!lCount)
	delete this;
    return lCount;
}

long VMem::AddRef(void)
{
    long lCount = InterlockedIncrement(&m_lRefCount);
    return lCount;
}


int VMem::Getmem(size_t requestSize)
{   /* returns -1 is successful 0 if not */
#ifdef USE_BIGBLOCK_ALLOC
    BOOL bBigBlock;
#endif
    void *ptr;

    /* Round up size to next multiple of 64K. */
    size_t size = (size_t)ROUND_UP64K(requestSize);

    /*
     * if the size requested is smaller than our current allocation size
     * adjust up
     */
    if(size < (unsigned long)m_lAllocSize)
	size = m_lAllocSize;

    /* Update the size to allocate on the next request */
    if(m_lAllocSize != lAllocMax)
	m_lAllocSize <<= 2;

#ifndef _USE_BUDDY_BLOCKS
    if(m_nHeaps != 0
#ifdef USE_BIGBLOCK_ALLOC
	&& !m_heaps[m_nHeaps-1].bBigBlock
#endif
		    ) {
	/* Expand the last allocated heap */
	ptr = HeapReAlloc(m_hHeap, HEAP_REALLOC_IN_PLACE_ONLY|HEAP_NO_SERIALIZE,
		m_heaps[m_nHeaps-1].base,
		m_heaps[m_nHeaps-1].len + size);
	if(ptr != 0) {
	    HeapAdd(((char*)ptr) + m_heaps[m_nHeaps-1].len, size
#ifdef USE_BIGBLOCK_ALLOC
		, FALSE
#endif
		);
	    return -1;
	}
    }
#endif /* _USE_BUDDY_BLOCKS */

    /*
     * if we didn't expand a block to cover the requested size
     * allocate a new Heap
     * the size of this block must include the additional dummy tags at either end
     * the above ROUND_UP64K may not have added any memory to include this.
     */
    if(size == requestSize)
	size = (size_t)ROUND_UP64K(requestSize+(blockOverhead));

Restart:
#ifdef _USE_BUDDY_BLOCKS
    ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
#else
#ifdef USE_BIGBLOCK_ALLOC
    bBigBlock = FALSE;
    if (size >= nMaxHeapAllocSize) {
	bBigBlock = TRUE;
	ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
    }
    else
#endif
    ptr = HeapAlloc(m_hHeap, HEAP_NO_SERIALIZE, size);
#endif /* _USE_BUDDY_BLOCKS */

    if (!ptr) {
	/* try to allocate a smaller chunk */
	size >>= 1;
	if(size > requestSize)
	    goto Restart;
    }

    if(ptr == 0) {
	MEMODSlx("HeapAlloc failed on size!!!", size);
	return 0;
    }

#ifdef _USE_BUDDY_BLOCKS
    if (HeapAdd(ptr, size)) {
	VirtualFree(ptr, 0, MEM_RELEASE);
	return 0;
    }
#else
#ifdef USE_BIGBLOCK_ALLOC
    if (HeapAdd(ptr, size, bBigBlock)) {
	if (bBigBlock) {
	    VirtualFree(ptr, 0, MEM_RELEASE);
	}
    }
#else
    HeapAdd(ptr, size);
#endif
#endif /* _USE_BUDDY_BLOCKS */
    return -1;
}

int VMem::HeapAdd(void* p, size_t size
#ifdef USE_BIGBLOCK_ALLOC
    , BOOL bBigBlock
#endif
    )
{   /* if the block can be succesfully added to the heap, returns 0; otherwise -1. */
    int index;

    /* Check size, then round size down to next long word boundary. */
    if(size < minAllocSize)
	return -1;

    size = (size_t)ROUND_DOWN(size);
    PBLOCK ptr = (PBLOCK)p;

#ifdef USE_BIGBLOCK_ALLOC
    if (!bBigBlock) {
#endif
	/*
	 * Search for another heap area that's contiguous with the bottom of this new area.
	 * (It should be extremely unusual to find one that's contiguous with the top).
	 */
	for(index = 0; index < m_nHeaps; ++index) {
	    if(ptr == m_heaps[index].base + (int)m_heaps[index].len) {
		/*
		 * The new block is contiguous with a previously allocated heap area.  Add its
		 * length to that of the previous heap.  Merge it with the dummy end-of-heap
		 * area marker of the previous heap.
		 */
		m_heaps[index].len += size;
		break;
	    }
	}
#ifdef USE_BIGBLOCK_ALLOC
    }
    else {
	index = m_nHeaps;
    }
#endif

    if(index == m_nHeaps) {
	/* The new block is not contiguous, or is BigBlock.  Add it to the heap list. */
	if(m_nHeaps == maxHeaps) {
	    return -1;	/* too many non-contiguous heaps */
	}
	m_heaps[m_nHeaps].base = ptr;
	m_heaps[m_nHeaps].len = size;
#ifdef USE_BIGBLOCK_ALLOC
	m_heaps[m_nHeaps].bBigBlock = bBigBlock;
#endif
	m_nHeaps++;

	/*
	 * Reserve the first LONG in the block for the ending boundary tag of a dummy
	 * block at the start of the heap area.
	 */
	size -= blockOverhead;
	ptr += blockOverhead;
	PSIZE(ptr) = 1;	/* mark the dummy previous block as allocated */
    }

    /*
     * Convert the heap to one large block.  Set up its boundary tags, and those of
     * marker block after it.  The marker block before the heap will already have
     * been set up if this heap is not contiguous with the end of another heap.
     */
    SetTags(ptr, size | 1);
    PBLOCK next = ptr + size;	/* point to dummy end block */
    SIZE(next) = 1;	/* mark the dummy end block as allocated */

    /*
     * Link the block to the start of the free list by calling free().
     * This will merge the block with any adjacent free blocks.
     */
    Free(ptr);
    return 0;
}


void* VMem::Expand(void* block, size_t size)
{
    /*
     * Disallow negative or zero sizes.
     */
    size_t realsize = CalcAllocSize(size);
    if((int)realsize < minAllocSize || size == 0)
	return NULL;

    PBLOCK ptr = (PBLOCK)block; 

    /* if the current size is the same as requested, do nothing. */
    size_t cursize = SIZE(ptr) & ~1;
    if(cursize == realsize) {
	return block;
    }

    /* if the block is being shrunk, convert the remainder of the block into a new free block. */
    if(realsize <= cursize) {
	size_t nextsize = cursize - realsize;	/* size of new remainder block */
	if(nextsize >= minAllocSize) {
	    /*
	     * Split the block
	     * Set boundary tags for the resized block and the new block.
	     */
	    SetTags(ptr, realsize | 1);
	    ptr += realsize;

	    /*
	     * add the new block to the free list.
	     * call Free to merge this block with next block if free
	     */
	    SetTags(ptr, nextsize | 1);
	    Free(ptr);
	}

	return block;
    }

    PBLOCK next = ptr + cursize;
    size_t nextsize = SIZE(next);

    /* Check the next block for consistency.*/
    if((nextsize&1) == 0 && (nextsize + cursize) >= realsize) {
	/*
	 * The next block is free and big enough.  Add the part that's needed
	 * to our block, and split the remainder off into a new block.
	 */
	if(m_pRover == next)
	    m_pRover = NEXT(next);

	/* Unlink the next block from the free list. */
	Unlink(next);
	cursize += nextsize;	/* combine sizes */

	size_t rem = cursize - realsize;	/* size of remainder */
	if(rem >= minAllocSize) {
	    /*
	     * The remainder is big enough to be a new block.
	     * Set boundary tags for the resized block and the new block.
	     */
	    next = ptr + realsize;
	    /*
	     * add the new block to the free list.
	     * next block cannot be free
	     */
	    SetTags(next, rem);
#ifdef _USE_BUDDY_BLOCKS
	    AddToFreeList(next, rem);
#else
	    AddToFreeList(next, m_pFreeList);
#endif
	    cursize = realsize;
        }
	/* Set the boundary tags to mark it as allocated. */
	SetTags(ptr, cursize | 1);
	return ((void *)ptr);
    }
    return NULL;
}

#ifdef _DEBUG_MEM
#define LOG_FILENAME ".\\MemLog.txt"

void VMem::MemoryUsageMessage(char *str, long x, long y, int c)
{
    char szBuffer[512];
    if(str) {
	if(!m_pLog)
	    m_pLog = fopen(LOG_FILENAME, "w");
	sprintf(szBuffer, str, x, y, c);
	fputs(szBuffer, m_pLog);
    }
    else {
	if(m_pLog) {
	    fflush(m_pLog);
	    fclose(m_pLog);
	    m_pLog = 0;
	}
    }
}

void VMem::WalkHeap(int complete)
{
    if(complete) {
	MemoryUsageMessage(NULL, 0, 0, 0);
	size_t total = 0;
	for(int i = 0; i < m_nHeaps; ++i) {
	    total += m_heaps[i].len;
	}
	MemoryUsageMessage("VMem heaps used %d. Total memory %08x\n", m_nHeaps, total, 0);

	/* Walk all the heaps - verify structures */
	for(int index = 0; index < m_nHeaps; ++index) {
	    PBLOCK ptr = m_heaps[index].base;
	    size_t size = m_heaps[index].len;
#ifndef _USE_BUDDY_BLOCKS
#ifdef USE_BIGBLOCK_ALLOC
	    if (!m_heaps[m_nHeaps].bBigBlock)
#endif
		ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, ptr));
#endif

	    /* set over reserved header block */
	    size -= blockOverhead;
	    ptr += blockOverhead;
	    PBLOCK pLast = ptr + size;
	    ASSERT(PSIZE(ptr) == 1); /* dummy previous block is allocated */
	    ASSERT(SIZE(pLast) == 1); /* dummy next block is allocated */
	    while(ptr < pLast) {
		ASSERT(ptr > m_heaps[index].base);
		size_t cursize = SIZE(ptr) & ~1;
		ASSERT((PSIZE(ptr+cursize) & ~1) == cursize);
		MemoryUsageMessage("Memory Block %08x: Size %08x %c\n", (long)ptr, cursize, (SIZE(ptr)&1) ? 'x' : ' ');
		if(!(SIZE(ptr)&1)) {
		    /* this block is on the free list */
		    PBLOCK tmp = NEXT(ptr);
		    while(tmp != ptr) {
			ASSERT((SIZE(tmp)&1)==0);
			if(tmp == m_pFreeList)
			    break;
			ASSERT(NEXT(tmp));
			tmp = NEXT(tmp);
		    }
		    if(tmp == ptr) {
			MemoryUsageMessage("Memory Block %08x: Size %08x free but not in free list\n", (long)ptr, cursize, 0);
		    }
		}
		ptr += cursize;
	    }
	}
	MemoryUsageMessage(NULL, 0, 0, 0);
    }
}
#endif	/* _DEBUG_MEM */

#endif	/* _USE_MSVCRT_MEM_ALLOC */

#endif	/* ___VMEM_H_INC___ */