1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/* $OpenBSD: ldexp.c,v 1.4 2005/08/07 16:40:13 espie Exp $ */
/* $NetBSD: ldexp.c,v 1.1 1995/02/10 17:50:24 cgd Exp $ */
/*
* Copyright (c) 1994, 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/types.h>
#include <machine/ieee.h>
#include <errno.h>
#include <math.h>
/*
* double ldexp(double val, int exp)
* returns: val * (2**exp)
*/
double
ldexp(val, exp)
double val;
int exp;
{
register int oldexp, newexp, mulexp;
union doub {
double v;
struct ieee_double s;
} u, mul;
/*
* If input is zero, or no change, just return input.
* Likewise, if input is Inf or NaN, just return it.
*/
u.v = val;
oldexp = u.s.dbl_exp;
if (val == 0 || exp == 0 || oldexp == DBL_EXP_INFNAN)
return (val);
/*
* Compute new exponent and check for over/under flow.
* Underflow, unfortunately, could mean switching to denormal.
* If result out of range, set ERANGE and return 0 if too small
* or Inf if too big, with the same sign as the input value.
*/
newexp = oldexp + exp;
if (newexp >= DBL_EXP_INFNAN) {
/* u.s.dbl_sign = val < 0; -- already set */
u.s.dbl_exp = DBL_EXP_INFNAN;
u.s.dbl_frach = u.s.dbl_fracl = 0;
errno = ERANGE;
return (u.v); /* Inf */
}
if (newexp <= 0) {
/*
* The output number is either a denormal or underflows
* (see comments in machine/ieee.h).
*/
if (newexp <= -DBL_FRACBITS) {
/* u.s.dbl_sign = val < 0; -- already set */
u.s.dbl_exp = 0;
u.s.dbl_frach = u.s.dbl_fracl = 0;
errno = ERANGE;
return (u.v); /* zero */
}
/*
* We are going to produce a denorm. Our `exp' argument
* might be as small as -2097, and we cannot compute
* 2^-2097, so we may have to do this as many as three
* steps (not just two, as for positive `exp's below).
*/
mul.v = 0;
while (exp <= -DBL_EXP_BIAS) {
mul.s.dbl_exp = 1;
val *= mul.v;
exp += DBL_EXP_BIAS - 1;
}
mul.s.dbl_exp = exp + DBL_EXP_BIAS;
val *= mul.v;
return (val);
}
/*
* Newexp is positive.
*
* If oldexp is zero, we are starting with a denorm, and simply
* adjusting the exponent will produce bogus answers. We need
* to fix that first.
*/
if (oldexp == 0) {
/*
* Multiply by 2^mulexp to make the number normalizable.
* We cannot multiply by more than 2^1023, but `exp'
* argument might be as large as 2046. A single
* adjustment, however, will normalize the number even
* for huge `exp's, and then we can use exponent
* arithmetic just as for normal `double's.
*/
mulexp = exp <= DBL_EXP_BIAS ? exp : DBL_EXP_BIAS;
mul.v = 0;
mul.s.dbl_exp = mulexp + DBL_EXP_BIAS;
val *= mul.v;
if (mulexp == exp)
return (val);
u.v = val;
newexp -= mulexp;
}
/*
* Both oldexp and newexp are positive; just replace the
* old exponent with the new one.
*/
u.s.dbl_exp = newexp;
return (u.v);
}
|