1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
|
/*-
* Copyright (c) 1990, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Mike Olson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
static char rcsid[] = "$OpenBSD: bt_split.c,v 1.4 1997/11/13 06:35:06 deraadt Exp $";
#endif /* LIBC_SCCS and not lint */
#include <sys/types.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <db.h>
#include "btree.h"
static int bt_broot __P((BTREE *, PAGE *, PAGE *, PAGE *));
static PAGE *bt_page
__P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
static int bt_preserve __P((BTREE *, pgno_t));
static PAGE *bt_psplit
__P((BTREE *, PAGE *, PAGE *, PAGE *, indx_t *, size_t));
static PAGE *bt_root
__P((BTREE *, PAGE *, PAGE **, PAGE **, indx_t *, size_t));
static int bt_rroot __P((BTREE *, PAGE *, PAGE *, PAGE *));
static recno_t rec_total __P((PAGE *));
#ifdef STATISTICS
u_long bt_rootsplit, bt_split, bt_sortsplit, bt_pfxsaved;
#endif
/*
* __BT_SPLIT -- Split the tree.
*
* Parameters:
* t: tree
* sp: page to split
* key: key to insert
* data: data to insert
* flags: BIGKEY/BIGDATA flags
* ilen: insert length
* skip: index to leave open
*
* Returns:
* RET_ERROR, RET_SUCCESS
*/
int
__bt_split(t, sp, key, data, flags, ilen, argskip)
BTREE *t;
PAGE *sp;
const DBT *key, *data;
int flags;
size_t ilen;
u_int32_t argskip;
{
BINTERNAL *bi;
BLEAF *bl, *tbl;
DBT a, b;
EPGNO *parent;
PAGE *h, *l, *r, *lchild, *rchild;
indx_t nxtindex;
u_int16_t skip;
u_int32_t n, nbytes, nksize;
int parentsplit;
char *dest;
/*
* Split the page into two pages, l and r. The split routines return
* a pointer to the page into which the key should be inserted and with
* skip set to the offset which should be used. Additionally, l and r
* are pinned.
*/
skip = argskip;
h = sp->pgno == P_ROOT ?
bt_root(t, sp, &l, &r, &skip, ilen) :
bt_page(t, sp, &l, &r, &skip, ilen);
if (h == NULL)
return (RET_ERROR);
/*
* Insert the new key/data pair into the leaf page. (Key inserts
* always cause a leaf page to split first.)
*/
h->linp[skip] = h->upper -= ilen;
dest = (char *)h + h->upper;
if (F_ISSET(t, R_RECNO))
WR_RLEAF(dest, data, flags)
else
WR_BLEAF(dest, key, data, flags)
/* If the root page was split, make it look right. */
if (sp->pgno == P_ROOT &&
(F_ISSET(t, R_RECNO) ?
bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
goto err2;
/*
* Now we walk the parent page stack -- a LIFO stack of the pages that
* were traversed when we searched for the page that split. Each stack
* entry is a page number and a page index offset. The offset is for
* the page traversed on the search. We've just split a page, so we
* have to insert a new key into the parent page.
*
* If the insert into the parent page causes it to split, may have to
* continue splitting all the way up the tree. We stop if the root
* splits or the page inserted into didn't have to split to hold the
* new key. Some algorithms replace the key for the old page as well
* as the new page. We don't, as there's no reason to believe that the
* first key on the old page is any better than the key we have, and,
* in the case of a key being placed at index 0 causing the split, the
* key is unavailable.
*
* There are a maximum of 5 pages pinned at any time. We keep the left
* and right pages pinned while working on the parent. The 5 are the
* two children, left parent and right parent (when the parent splits)
* and the root page or the overflow key page when calling bt_preserve.
* This code must make sure that all pins are released other than the
* root page or overflow page which is unlocked elsewhere.
*/
while ((parent = BT_POP(t)) != NULL) {
lchild = l;
rchild = r;
/* Get the parent page. */
if ((h = mpool_get(t->bt_mp, parent->pgno, 0)) == NULL)
goto err2;
/*
* The new key goes ONE AFTER the index, because the split
* was to the right.
*/
skip = parent->index + 1;
/*
* Calculate the space needed on the parent page.
*
* Prefix trees: space hack when inserting into BINTERNAL
* pages. Retain only what's needed to distinguish between
* the new entry and the LAST entry on the page to its left.
* If the keys compare equal, retain the entire key. Note,
* we don't touch overflow keys, and the entire key must be
* retained for the next-to-left most key on the leftmost
* page of each level, or the search will fail. Applicable
* ONLY to internal pages that have leaf pages as children.
* Further reduction of the key between pairs of internal
* pages loses too much information.
*/
switch (rchild->flags & P_TYPE) {
case P_BINTERNAL:
bi = GETBINTERNAL(rchild, 0);
nbytes = NBINTERNAL(bi->ksize);
break;
case P_BLEAF:
bl = GETBLEAF(rchild, 0);
nbytes = NBINTERNAL(bl->ksize);
if (t->bt_pfx && !(bl->flags & P_BIGKEY) &&
(h->prevpg != P_INVALID || skip > 1)) {
tbl = GETBLEAF(lchild, NEXTINDEX(lchild) - 1);
a.size = tbl->ksize;
a.data = tbl->bytes;
b.size = bl->ksize;
b.data = bl->bytes;
nksize = t->bt_pfx(&a, &b);
n = NBINTERNAL(nksize);
if (n < nbytes) {
#ifdef STATISTICS
bt_pfxsaved += nbytes - n;
#endif
nbytes = n;
} else
nksize = 0;
} else
nksize = 0;
break;
case P_RINTERNAL:
case P_RLEAF:
nbytes = NRINTERNAL;
break;
default:
abort();
}
/* Split the parent page if necessary or shift the indices. */
if (h->upper - h->lower < nbytes + sizeof(indx_t)) {
sp = h;
h = h->pgno == P_ROOT ?
bt_root(t, h, &l, &r, &skip, nbytes) :
bt_page(t, h, &l, &r, &skip, nbytes);
if (h == NULL)
goto err1;
parentsplit = 1;
} else {
if (skip < (nxtindex = NEXTINDEX(h)))
memmove(h->linp + skip + 1, h->linp + skip,
(nxtindex - skip) * sizeof(indx_t));
h->lower += sizeof(indx_t);
parentsplit = 0;
}
/* Insert the key into the parent page. */
switch (rchild->flags & P_TYPE) {
case P_BINTERNAL:
h->linp[skip] = h->upper -= nbytes;
dest = (char *)h + h->linp[skip];
memmove(dest, bi, nbytes);
((BINTERNAL *)dest)->pgno = rchild->pgno;
break;
case P_BLEAF:
h->linp[skip] = h->upper -= nbytes;
dest = (char *)h + h->linp[skip];
WR_BINTERNAL(dest, nksize ? nksize : bl->ksize,
rchild->pgno, bl->flags & P_BIGKEY);
memmove(dest, bl->bytes, nksize ? nksize : bl->ksize);
if (bl->flags & P_BIGKEY &&
bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
goto err1;
break;
case P_RINTERNAL:
/*
* Update the left page count. If split
* added at index 0, fix the correct page.
*/
if (skip > 0)
dest = (char *)h + h->linp[skip - 1];
else
dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
((RINTERNAL *)dest)->nrecs = rec_total(lchild);
((RINTERNAL *)dest)->pgno = lchild->pgno;
/* Update the right page count. */
h->linp[skip] = h->upper -= nbytes;
dest = (char *)h + h->linp[skip];
((RINTERNAL *)dest)->nrecs = rec_total(rchild);
((RINTERNAL *)dest)->pgno = rchild->pgno;
break;
case P_RLEAF:
/*
* Update the left page count. If split
* added at index 0, fix the correct page.
*/
if (skip > 0)
dest = (char *)h + h->linp[skip - 1];
else
dest = (char *)l + l->linp[NEXTINDEX(l) - 1];
((RINTERNAL *)dest)->nrecs = NEXTINDEX(lchild);
((RINTERNAL *)dest)->pgno = lchild->pgno;
/* Update the right page count. */
h->linp[skip] = h->upper -= nbytes;
dest = (char *)h + h->linp[skip];
((RINTERNAL *)dest)->nrecs = NEXTINDEX(rchild);
((RINTERNAL *)dest)->pgno = rchild->pgno;
break;
default:
abort();
}
/* Unpin the held pages. */
if (!parentsplit) {
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
break;
}
/* If the root page was split, make it look right. */
if (sp->pgno == P_ROOT &&
(F_ISSET(t, R_RECNO) ?
bt_rroot(t, sp, l, r) : bt_broot(t, sp, l, r)) == RET_ERROR)
goto err1;
mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
}
/* Unpin the held pages. */
mpool_put(t->bt_mp, l, MPOOL_DIRTY);
mpool_put(t->bt_mp, r, MPOOL_DIRTY);
/* Clear any pages left on the stack. */
return (RET_SUCCESS);
/*
* If something fails in the above loop we were already walking back
* up the tree and the tree is now inconsistent. Nothing much we can
* do about it but release any memory we're holding.
*/
err1: mpool_put(t->bt_mp, lchild, MPOOL_DIRTY);
mpool_put(t->bt_mp, rchild, MPOOL_DIRTY);
err2: mpool_put(t->bt_mp, l, 0);
mpool_put(t->bt_mp, r, 0);
__dbpanic(t->bt_dbp);
return (RET_ERROR);
}
/*
* BT_PAGE -- Split a non-root page of a btree.
*
* Parameters:
* t: tree
* h: root page
* lp: pointer to left page pointer
* rp: pointer to right page pointer
* skip: pointer to index to leave open
* ilen: insert length
*
* Returns:
* Pointer to page in which to insert or NULL on error.
*/
static PAGE *
bt_page(t, h, lp, rp, skip, ilen)
BTREE *t;
PAGE *h, **lp, **rp;
indx_t *skip;
size_t ilen;
{
PAGE *l, *r, *tp;
pgno_t npg;
#ifdef STATISTICS
++bt_split;
#endif
/* Put the new right page for the split into place. */
if ((r = __bt_new(t, &npg)) == NULL)
return (NULL);
r->pgno = npg;
r->lower = BTDATAOFF;
r->upper = t->bt_psize;
r->nextpg = h->nextpg;
r->prevpg = h->pgno;
r->flags = h->flags & P_TYPE;
/*
* If we're splitting the last page on a level because we're appending
* a key to it (skip is NEXTINDEX()), it's likely that the data is
* sorted. Adding an empty page on the side of the level is less work
* and can push the fill factor much higher than normal. If we're
* wrong it's no big deal, we'll just do the split the right way next
* time. It may look like it's equally easy to do a similar hack for
* reverse sorted data, that is, split the tree left, but it's not.
* Don't even try.
*/
if (h->nextpg == P_INVALID && *skip == NEXTINDEX(h)) {
#ifdef STATISTICS
++bt_sortsplit;
#endif
h->nextpg = r->pgno;
r->lower = BTDATAOFF + sizeof(indx_t);
*skip = 0;
*lp = h;
*rp = r;
return (r);
}
/* Put the new left page for the split into place. */
if ((l = (PAGE *)malloc(t->bt_psize)) == NULL) {
mpool_put(t->bt_mp, r, 0);
return (NULL);
}
#ifdef PURIFY
memset(l, 0xff, t->bt_psize);
#endif
l->pgno = h->pgno;
l->nextpg = r->pgno;
l->prevpg = h->prevpg;
l->lower = BTDATAOFF;
l->upper = t->bt_psize;
l->flags = h->flags & P_TYPE;
/* Fix up the previous pointer of the page after the split page. */
if (h->nextpg != P_INVALID) {
if ((tp = mpool_get(t->bt_mp, h->nextpg, 0)) == NULL) {
free(l);
/* XXX mpool_free(t->bt_mp, r->pgno); */
return (NULL);
}
tp->prevpg = r->pgno;
mpool_put(t->bt_mp, tp, MPOOL_DIRTY);
}
/*
* Split right. The key/data pairs aren't sorted in the btree page so
* it's simpler to copy the data from the split page onto two new pages
* instead of copying half the data to the right page and compacting
* the left page in place. Since the left page can't change, we have
* to swap the original and the allocated left page after the split.
*/
tp = bt_psplit(t, h, l, r, skip, ilen);
/* Move the new left page onto the old left page. */
memmove(h, l, t->bt_psize);
if (tp == l)
tp = h;
free(l);
*lp = h;
*rp = r;
return (tp);
}
/*
* BT_ROOT -- Split the root page of a btree.
*
* Parameters:
* t: tree
* h: root page
* lp: pointer to left page pointer
* rp: pointer to right page pointer
* skip: pointer to index to leave open
* ilen: insert length
*
* Returns:
* Pointer to page in which to insert or NULL on error.
*/
static PAGE *
bt_root(t, h, lp, rp, skip, ilen)
BTREE *t;
PAGE *h, **lp, **rp;
indx_t *skip;
size_t ilen;
{
PAGE *l, *r, *tp;
pgno_t lnpg, rnpg;
#ifdef STATISTICS
++bt_split;
++bt_rootsplit;
#endif
/* Put the new left and right pages for the split into place. */
if ((l = __bt_new(t, &lnpg)) == NULL ||
(r = __bt_new(t, &rnpg)) == NULL)
return (NULL);
l->pgno = lnpg;
r->pgno = rnpg;
l->nextpg = r->pgno;
r->prevpg = l->pgno;
l->prevpg = r->nextpg = P_INVALID;
l->lower = r->lower = BTDATAOFF;
l->upper = r->upper = t->bt_psize;
l->flags = r->flags = h->flags & P_TYPE;
/* Split the root page. */
tp = bt_psplit(t, h, l, r, skip, ilen);
*lp = l;
*rp = r;
return (tp);
}
/*
* BT_RROOT -- Fix up the recno root page after it has been split.
*
* Parameters:
* t: tree
* h: root page
* l: left page
* r: right page
*
* Returns:
* RET_ERROR, RET_SUCCESS
*/
static int
bt_rroot(t, h, l, r)
BTREE *t;
PAGE *h, *l, *r;
{
char *dest;
/* Insert the left and right keys, set the header information. */
h->linp[0] = h->upper = t->bt_psize - NRINTERNAL;
dest = (char *)h + h->upper;
WR_RINTERNAL(dest,
l->flags & P_RLEAF ? NEXTINDEX(l) : rec_total(l), l->pgno);
h->linp[1] = h->upper -= NRINTERNAL;
dest = (char *)h + h->upper;
WR_RINTERNAL(dest,
r->flags & P_RLEAF ? NEXTINDEX(r) : rec_total(r), r->pgno);
h->lower = BTDATAOFF + 2 * sizeof(indx_t);
/* Unpin the root page, set to recno internal page. */
h->flags &= ~P_TYPE;
h->flags |= P_RINTERNAL;
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
return (RET_SUCCESS);
}
/*
* BT_BROOT -- Fix up the btree root page after it has been split.
*
* Parameters:
* t: tree
* h: root page
* l: left page
* r: right page
*
* Returns:
* RET_ERROR, RET_SUCCESS
*/
static int
bt_broot(t, h, l, r)
BTREE *t;
PAGE *h, *l, *r;
{
BINTERNAL *bi;
BLEAF *bl;
u_int32_t nbytes;
char *dest;
/*
* If the root page was a leaf page, change it into an internal page.
* We copy the key we split on (but not the key's data, in the case of
* a leaf page) to the new root page.
*
* The btree comparison code guarantees that the left-most key on any
* level of the tree is never used, so it doesn't need to be filled in.
*/
nbytes = NBINTERNAL(0);
h->linp[0] = h->upper = t->bt_psize - nbytes;
dest = (char *)h + h->upper;
WR_BINTERNAL(dest, 0, l->pgno, 0);
switch (h->flags & P_TYPE) {
case P_BLEAF:
bl = GETBLEAF(r, 0);
nbytes = NBINTERNAL(bl->ksize);
h->linp[1] = h->upper -= nbytes;
dest = (char *)h + h->upper;
WR_BINTERNAL(dest, bl->ksize, r->pgno, 0);
memmove(dest, bl->bytes, bl->ksize);
/*
* If the key is on an overflow page, mark the overflow chain
* so it isn't deleted when the leaf copy of the key is deleted.
*/
if (bl->flags & P_BIGKEY &&
bt_preserve(t, *(pgno_t *)bl->bytes) == RET_ERROR)
return (RET_ERROR);
break;
case P_BINTERNAL:
bi = GETBINTERNAL(r, 0);
nbytes = NBINTERNAL(bi->ksize);
h->linp[1] = h->upper -= nbytes;
dest = (char *)h + h->upper;
memmove(dest, bi, nbytes);
((BINTERNAL *)dest)->pgno = r->pgno;
break;
default:
abort();
}
/* There are two keys on the page. */
h->lower = BTDATAOFF + 2 * sizeof(indx_t);
/* Unpin the root page, set to btree internal page. */
h->flags &= ~P_TYPE;
h->flags |= P_BINTERNAL;
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
return (RET_SUCCESS);
}
/*
* BT_PSPLIT -- Do the real work of splitting the page.
*
* Parameters:
* t: tree
* h: page to be split
* l: page to put lower half of data
* r: page to put upper half of data
* pskip: pointer to index to leave open
* ilen: insert length
*
* Returns:
* Pointer to page in which to insert.
*/
static PAGE *
bt_psplit(t, h, l, r, pskip, ilen)
BTREE *t;
PAGE *h, *l, *r;
indx_t *pskip;
size_t ilen;
{
BINTERNAL *bi;
BLEAF *bl;
CURSOR *c;
RLEAF *rl;
PAGE *rval;
void *src;
indx_t full, half, nxt, off, skip, top, used;
u_int32_t nbytes;
int bigkeycnt, isbigkey;
/*
* Split the data to the left and right pages. Leave the skip index
* open. Additionally, make some effort not to split on an overflow
* key. This makes internal page processing faster and can save
* space as overflow keys used by internal pages are never deleted.
*/
bigkeycnt = 0;
skip = *pskip;
full = t->bt_psize - BTDATAOFF;
half = full / 2;
used = 0;
for (nxt = off = 0, top = NEXTINDEX(h); nxt < top; ++off) {
if (skip == off) {
nbytes = ilen;
isbigkey = 0; /* XXX: not really known. */
} else
switch (h->flags & P_TYPE) {
case P_BINTERNAL:
src = bi = GETBINTERNAL(h, nxt);
nbytes = NBINTERNAL(bi->ksize);
isbigkey = bi->flags & P_BIGKEY;
break;
case P_BLEAF:
src = bl = GETBLEAF(h, nxt);
nbytes = NBLEAF(bl);
isbigkey = bl->flags & P_BIGKEY;
break;
case P_RINTERNAL:
src = GETRINTERNAL(h, nxt);
nbytes = NRINTERNAL;
isbigkey = 0;
break;
case P_RLEAF:
src = rl = GETRLEAF(h, nxt);
nbytes = NRLEAF(rl);
isbigkey = 0;
break;
default:
abort();
}
/*
* If the key/data pairs are substantial fractions of the max
* possible size for the page, it's possible to get situations
* where we decide to try and copy too much onto the left page.
* Make sure that doesn't happen.
*/
if ((skip <= off && used + nbytes + sizeof(indx_t) >= full) ||
nxt == top - 1) {
--off;
break;
}
/* Copy the key/data pair, if not the skipped index. */
if (skip != off) {
++nxt;
l->linp[off] = l->upper -= nbytes;
memmove((char *)l + l->upper, src, nbytes);
}
used += nbytes + sizeof(indx_t);
if (used >= half) {
if (!isbigkey || bigkeycnt == 3)
break;
else
++bigkeycnt;
}
}
/*
* Off is the last offset that's valid for the left page.
* Nxt is the first offset to be placed on the right page.
*/
l->lower += (off + 1) * sizeof(indx_t);
/*
* If splitting the page that the cursor was on, the cursor has to be
* adjusted to point to the same record as before the split. If the
* cursor is at or past the skipped slot, the cursor is incremented by
* one. If the cursor is on the right page, it is decremented by the
* number of records split to the left page.
*/
c = &t->bt_cursor;
if (F_ISSET(c, CURS_INIT) && c->pg.pgno == h->pgno) {
if (c->pg.index >= skip)
++c->pg.index;
if (c->pg.index < nxt) /* Left page. */
c->pg.pgno = l->pgno;
else { /* Right page. */
c->pg.pgno = r->pgno;
c->pg.index -= nxt;
}
}
/*
* If the skipped index was on the left page, just return that page.
* Otherwise, adjust the skip index to reflect the new position on
* the right page.
*/
if (skip <= off) {
skip = 0;
rval = l;
} else {
rval = r;
*pskip -= nxt;
}
for (off = 0; nxt < top; ++off) {
if (skip == nxt) {
++off;
skip = 0;
}
switch (h->flags & P_TYPE) {
case P_BINTERNAL:
src = bi = GETBINTERNAL(h, nxt);
nbytes = NBINTERNAL(bi->ksize);
break;
case P_BLEAF:
src = bl = GETBLEAF(h, nxt);
nbytes = NBLEAF(bl);
break;
case P_RINTERNAL:
src = GETRINTERNAL(h, nxt);
nbytes = NRINTERNAL;
break;
case P_RLEAF:
src = rl = GETRLEAF(h, nxt);
nbytes = NRLEAF(rl);
break;
default:
abort();
}
++nxt;
r->linp[off] = r->upper -= nbytes;
memmove((char *)r + r->upper, src, nbytes);
}
r->lower += off * sizeof(indx_t);
/* If the key is being appended to the page, adjust the index. */
if (skip == top)
r->lower += sizeof(indx_t);
return (rval);
}
/*
* BT_PRESERVE -- Mark a chain of pages as used by an internal node.
*
* Chains of indirect blocks pointed to by leaf nodes get reclaimed when the
* record that references them gets deleted. Chains pointed to by internal
* pages never get deleted. This routine marks a chain as pointed to by an
* internal page.
*
* Parameters:
* t: tree
* pg: page number of first page in the chain.
*
* Returns:
* RET_SUCCESS, RET_ERROR.
*/
static int
bt_preserve(t, pg)
BTREE *t;
pgno_t pg;
{
PAGE *h;
if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
return (RET_ERROR);
h->flags |= P_PRESERVE;
mpool_put(t->bt_mp, h, MPOOL_DIRTY);
return (RET_SUCCESS);
}
/*
* REC_TOTAL -- Return the number of recno entries below a page.
*
* Parameters:
* h: page
*
* Returns:
* The number of recno entries below a page.
*
* XXX
* These values could be set by the bt_psplit routine. The problem is that the
* entry has to be popped off of the stack etc. or the values have to be passed
* all the way back to bt_split/bt_rroot and it's not very clean.
*/
static recno_t
rec_total(h)
PAGE *h;
{
recno_t recs;
indx_t nxt, top;
for (recs = 0, nxt = 0, top = NEXTINDEX(h); nxt < top; ++nxt)
recs += GETRINTERNAL(h, nxt)->nrecs;
return (recs);
}
|