1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
#if defined(LIBC_SCCS) && !defined(lint)
static char rcsid[] = "$OpenBSD: sha1.c,v 1.4 1996/09/30 23:27:05 millert Exp $";
#endif /* LIBC_SCCS and not lint */
/*
* sha1.c
*
* signature function hook for SHA1.
*
* Gene Kim
* Purdue University
* August 10, 1993
*/
/* --------------------------------- SHA1.C ------------------------------- */
/* NIST proposed Secure Hash Standard.
Written 2 September 1992, Peter C. Gutmann.
This implementation placed in the public domain.
Comments to pgut1@cs.aukuni.ac.nz */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sha1.h>
#ifdef TEST
#include <time.h>
#endif
/* Useful defines/typedefs */
typedef unsigned char BYTE;
typedef u_int32_t LONG;
/* The SHA1 f()-functions */
#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
/* The SHA1 Mysterious Constants */
#define K1 0x5A827999L /* Rounds 0-19 */
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
#define K4 0xCA62C1D6L /* Rounds 60-79 */
/* SHA1 initial values */
#define h0init 0x67452301L
#define h1init 0xEFCDAB89L
#define h2init 0x98BADCFEL
#define h3init 0x10325476L
#define h4init 0xC3D2E1F0L
/* 32-bit rotate - kludged with shifts */
#define S(n,X) ( ( X << n ) | ( X >> ( 32 - n ) ) )
/* The initial expanding function */
#ifdef NEW_SHA1
#define expand(count) temp = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ];W[ count ] = S(1, temp)
#else
#define expand(count) W[ count ] = W[ count - 3 ] ^ W[ count - 8 ] ^ W[ count - 14 ] ^ W[ count - 16 ]
#endif
/* The four SHA1 sub-rounds */
#define subRound1(count) \
{ \
temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound2(count) \
{ \
temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound3(count) \
{ \
temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
#define subRound4(count) \
{ \
temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \
E = D; \
D = C; \
C = S( 30, B ); \
B = A; \
A = temp; \
}
/* The two buffers of 5 32-bit words */
LONG h0, h1, h2, h3, h4;
LONG A, B, C, D, E;
/* Initialize the SHA1 values */
void sha1Init(sha1Info)
SHA1_INFO *sha1Info;
{
/* Set the h-vars to their initial values */
sha1Info->digest[ 0 ] = h0init;
sha1Info->digest[ 1 ] = h1init;
sha1Info->digest[ 2 ] = h2init;
sha1Info->digest[ 3 ] = h3init;
sha1Info->digest[ 4 ] = h4init;
/* Initialise bit count */
sha1Info->countLo = sha1Info->countHi = 0L;
}
/* Perform the SHA1 transformation. Note that this code, like MD5, seems to
break some optimizing compilers - it may be necessary to split it into
sections, eg based on the four subrounds */
void sha1Transform(sha1Info)
SHA1_INFO *sha1Info;
{
LONG W[ 80 ], temp;
int i;
/* Step A. Copy the data buffer into the local work buffer */
for( i = 0; i < 16; i++ )
W[ i ] = sha1Info->data[ i ];
/* Step B. Expand the 16 words into 64 temporary data words */
expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 );
expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 );
expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 );
expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 );
expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 );
expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 );
expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 );
expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 );
expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 );
expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 );
expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 );
expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 );
expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 );
/* Step C. Set up first buffer */
A = sha1Info->digest[ 0 ];
B = sha1Info->digest[ 1 ];
C = sha1Info->digest[ 2 ];
D = sha1Info->digest[ 3 ];
E = sha1Info->digest[ 4 ];
/* Step D. Serious mangling, divided into four sub-rounds */
subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 );
subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 );
subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 );
subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 );
subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 );
subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 );
subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 );
subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 );
subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 );
subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 );
subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 );
subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 );
subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 );
subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 );
subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 );
subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 );
subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 );
subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 );
subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 );
subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 );
/* Step E. Build message digest */
sha1Info->digest[ 0 ] += A;
sha1Info->digest[ 1 ] += B;
sha1Info->digest[ 2 ] += C;
sha1Info->digest[ 3 ] += D;
sha1Info->digest[ 4 ] += E;
}
#if BYTE_ORDER == LITTLE_ENDIAN
/* When run on a little-endian CPU we need to perform byte reversal on an
array of longwords. It is possible to make the code endianness-
independant by fiddling around with data at the byte level, but this
makes for very slow code, so we rely on the user to sort out endianness
at compile time */
void sha1ByteReverse(buffer, byteCount)
LONG *buffer;
int byteCount;
{
LONG value;
int count;
byteCount /= sizeof( LONG );
for( count = 0; count < byteCount; count++ )
{
value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );
buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 );
}
}
#endif /* LITTLE_ENDIAN */
/* Update SHA1 for a block of data. This code assumes that the buffer size
is a multiple of SHA1_BLOCKSIZE bytes long, which makes the code a lot
more efficient since it does away with the need to handle partial blocks
between calls to sha1Update() */
void sha1Update(sha1Info, buffer, count)
SHA1_INFO *sha1Info;
BYTE *buffer;
int count;
{
/* Update bitcount */
if( ( sha1Info->countLo + ( ( LONG ) count << 3 ) ) < sha1Info->countLo )
sha1Info->countHi++; /* Carry from low to high bitCount */
sha1Info->countLo += ( ( LONG ) count << 3 );
sha1Info->countHi += ( ( LONG ) count >> 29 );
/* Process data in SHA1_BLOCKSIZE chunks */
while( count >= SHA1_BLOCKSIZE )
{
memcpy( (void *) sha1Info->data, (void *) buffer, SHA1_BLOCKSIZE );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE );
#endif /* LITTLE_ENDIAN */
sha1Transform( sha1Info );
buffer += SHA1_BLOCKSIZE;
count -= SHA1_BLOCKSIZE;
}
/* Handle any remaining bytes of data. This should only happen once
on the final lot of data */
memcpy( (void *) sha1Info->data, (void *) buffer, count );
}
void sha1Final(sha1Info)
SHA1_INFO *sha1Info;
{
int count;
LONG lowBitcount = sha1Info->countLo, highBitcount = sha1Info->countHi;
/* Compute number of bytes mod 64 */
count = ( int ) ( ( sha1Info->countLo >> 3 ) & 0x3F );
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
( ( BYTE * ) sha1Info->data )[ count++ ] = 0x80;
/* Pad out to 56 mod 64 */
if( count > 56 )
{
/* Two lots of padding: Pad the first block to 64 bytes */
memset( ( char * ) sha1Info->data + count, 0, 64 - count );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE );
#endif /* LITTLE_ENDIAN */
sha1Transform( sha1Info );
/* Now fill the next block with 56 bytes */
memset( (void *) sha1Info->data, 0, 56 );
}
else
/* Pad block to 56 bytes */
memset( ( char * ) sha1Info->data + count, 0, 56 - count );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_BLOCKSIZE );
#endif /* LITTLE_ENDIAN */
/* Append length in bits and transform */
sha1Info->data[ 14 ] = highBitcount;
sha1Info->data[ 15 ] = lowBitcount;
sha1Transform( sha1Info );
#if BYTE_ORDER == LITTLE_ENDIAN
sha1ByteReverse( sha1Info->data, SHA1_DIGESTSIZE );
#endif /* LITTLE_ENDIAN */
}
#ifdef TEST
/* ----------------------------- SHA1 Test code --------------------------- */
/* Size of buffer for SHA1 speed test data */
#define TEST_BLOCK_SIZE ( SHA1_DIGESTSIZE * 100 )
/* Number of bytes of test data to process */
#define TEST_BYTES 10000000L
#define TEST_BLOCKS ( TEST_BYTES / TEST_BLOCK_SIZE )
void main()
{
SHA1_INFO sha1Info;
time_t endTime, startTime;
BYTE data[ TEST_BLOCK_SIZE ];
long i;
/* Test output data (this is the only test data given in the SHA1
document, but chances are if it works for this it'll work for
anything) */
sha1Init( &sha1Info );
sha1Update( &sha1Info, ( BYTE * ) "abc", 3 );
sha1Final( &sha1Info );
#ifdef NEW_SHA1
if( sha1Info.digest[ 0 ] != 0xA9993E36L ||
sha1Info.digest[ 1 ] != 0x4706816AL ||
sha1Info.digest[ 2 ] != 0xBA3E2571L ||
sha1Info.digest[ 3 ] != 0x7850C26CL ||
sha1Info.digest[ 4 ] != 0x9CD0D89DL )
#else
if( sha1Info.digest[ 0 ] != 0x0164B8A9L ||
sha1Info.digest[ 1 ] != 0x14CD2A5EL ||
sha1Info.digest[ 2 ] != 0x74C4F7FFL ||
sha1Info.digest[ 3 ] != 0x082C4D97L ||
sha1Info.digest[ 4 ] != 0xF1EDF880L )
#endif
{
puts( "Error in SHA1 implementation" );
exit( -1 );
}
/* Now perform time trial, generating MD for 10MB of data. First,
initialize the test data */
memset( ( void * ) data, 0, TEST_BLOCK_SIZE );
/* Get start time */
printf( "SHA1 time trial. Processing %ld characters...\n", TEST_BYTES );
time( &startTime );
/* Calculate SHA1 message digest in TEST_BLOCK_SIZE byte blocks */
sha1Init( &sha1Info );
for( i = TEST_BLOCKS; i > 0; i-- )
sha1Update( &sha1Info, data, TEST_BLOCK_SIZE );
sha1Final( &sha1Info );
/* Get finish time and time difference */
time( &endTime );
printf( "Seconds to process test input: %ld\n", endTime - startTime );
printf( "Characters processed per second: %ld\n", TEST_BYTES / ( endTime - startTime ) );
}
#endif
|