1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/* $OpenBSD: rthread_libc.c,v 1.2 2017/09/05 02:40:54 guenther Exp $ */
/* PUBLIC DOMAIN: No Rights Reserved. Marco S Hyman <marc@snafu.org> */
#include <pthread.h>
#include <stdlib.h>
#include <string.h>
#include "rthread.h"
#include "rthread_cb.h"
/*
* A thread tag is a pointer to a structure of this type. An opaque
* tag is used to decouple libc from the thread library.
*/
struct _thread_tag {
pthread_mutex_t m; /* the tag's mutex */
pthread_key_t k; /* a key for private data */
};
/*
* local mutex to protect against tag creation races.
*/
static pthread_mutex_t _thread_tag_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Initialize a thread tag structure once. This function is called
* if the tag is null. Allocation and initialization are controlled
* by a mutex. If the tag is not null when the mutex is obtained
* the caller lost a race -- some other thread initialized the tag.
* This function will never return NULL.
*/
static void
_thread_tag_init(void **tag)
{
struct _thread_tag *tt;
int result;
result = pthread_mutex_lock(&_thread_tag_mutex);
if (result == 0) {
if (*tag == NULL) {
tt = malloc(sizeof *tt);
if (tt != NULL) {
result = pthread_mutex_init(&tt->m, NULL);
result |= pthread_key_create(&tt->k, free);
*tag = tt;
}
}
result |= pthread_mutex_unlock(&_thread_tag_mutex);
}
if (result != 0)
_rthread_debug(1, "tag init failure");
}
/*
* lock the mutex associated with the given tag
*/
void
_thread_tag_lock(void **tag)
{
struct _thread_tag *tt;
if (__isthreaded) {
if (*tag == NULL)
_thread_tag_init(tag);
tt = *tag;
if (pthread_mutex_lock(&tt->m) != 0)
_rthread_debug(1, "tag mutex lock failure");
}
}
/*
* unlock the mutex associated with the given tag
*/
void
_thread_tag_unlock(void **tag)
{
struct _thread_tag *tt;
if (__isthreaded) {
if (*tag == NULL)
_thread_tag_init(tag);
tt = *tag;
if (pthread_mutex_unlock(&tt->m) != 0)
_rthread_debug(1, "tag mutex unlock failure");
}
}
/*
* return the thread specific data for the given tag. If there
* is no data for this thread initialize it from 'storage'.
* On any error return 'err'.
*/
void *
_thread_tag_storage(void **tag, void *storage, size_t sz, void *err)
{
struct _thread_tag *tt;
void *ret;
if (*tag == NULL)
_thread_tag_init(tag);
tt = *tag;
ret = pthread_getspecific(tt->k);
if (ret == NULL) {
ret = malloc(sz);
if (ret == NULL)
ret = err;
else {
if (pthread_setspecific(tt->k, ret) == 0)
memcpy(ret, storage, sz);
else {
free(ret);
ret = err;
}
}
}
return ret;
}
void
_thread_mutex_lock(void **mutex)
{
pthread_mutex_t *pmutex = (pthread_mutex_t *)mutex;
if (pthread_mutex_lock(pmutex) != 0)
_rthread_debug(1, "mutex lock failure");
}
void
_thread_mutex_unlock(void **mutex)
{
pthread_mutex_t *pmutex = (pthread_mutex_t *)mutex;
if (pthread_mutex_unlock(pmutex) != 0)
_rthread_debug(1, "mutex unlock failure");
}
void
_thread_mutex_destroy(void **mutex)
{
pthread_mutex_t *pmutex = (pthread_mutex_t *)mutex;
if (pthread_mutex_destroy(pmutex) != 0)
_rthread_debug(1, "mutex destroy failure");
}
/*
* the malloc lock
*/
#ifndef FUTEX
#define MALLOC_LOCK_INITIALIZER(n) { \
_SPINLOCK_UNLOCKED, \
TAILQ_HEAD_INITIALIZER(malloc_lock[n].lockers), \
PTHREAD_MUTEX_DEFAULT, \
NULL, \
0, \
-1 }
#else
#define MALLOC_LOCK_INITIALIZER(n) { \
_SPINLOCK_UNLOCKED, \
PTHREAD_MUTEX_DEFAULT, \
NULL, \
0, \
-1 }
#endif
static struct pthread_mutex malloc_lock[_MALLOC_MUTEXES] = {
MALLOC_LOCK_INITIALIZER(0),
MALLOC_LOCK_INITIALIZER(1),
MALLOC_LOCK_INITIALIZER(2),
MALLOC_LOCK_INITIALIZER(3)
};
static pthread_mutex_t malloc_mutex[_MALLOC_MUTEXES] = {
&malloc_lock[0],
&malloc_lock[1],
&malloc_lock[2],
&malloc_lock[3]
};
void
_thread_malloc_lock(int i)
{
pthread_mutex_lock(&malloc_mutex[i]);
}
void
_thread_malloc_unlock(int i)
{
pthread_mutex_unlock(&malloc_mutex[i]);
}
static void
_thread_malloc_reinit(void)
{
int i;
for (i = 0; i < _MALLOC_MUTEXES; i++) {
malloc_lock[i].lock = _SPINLOCK_UNLOCKED;
#ifndef FUTEX
TAILQ_INIT(&malloc_lock[i].lockers);
#endif
malloc_lock[i].owner = NULL;
malloc_lock[i].count = 0;
}
}
/*
* atexit lock
*/
static _atomic_lock_t atexit_lock = _SPINLOCK_UNLOCKED;
void
_thread_atexit_lock(void)
{
_spinlock(&atexit_lock);
}
void
_thread_atexit_unlock(void)
{
_spinunlock(&atexit_lock);
}
/*
* atfork lock
*/
static _atomic_lock_t atfork_lock = _SPINLOCK_UNLOCKED;
void
_thread_atfork_lock(void)
{
_spinlock(&atfork_lock);
}
void
_thread_atfork_unlock(void)
{
_spinunlock(&atfork_lock);
}
/*
* arc4random lock
*/
static _atomic_lock_t arc4_lock = _SPINLOCK_UNLOCKED;
void
_thread_arc4_lock(void)
{
_spinlock(&arc4_lock);
}
void
_thread_arc4_unlock(void)
{
_spinunlock(&arc4_lock);
}
pid_t
_thread_dofork(pid_t (*sys_fork)(void))
{
int i;
pid_t newid;
_thread_atexit_lock();
for (i = 0; i < _MALLOC_MUTEXES; i++)
_thread_malloc_lock(i);
_thread_arc4_lock();
newid = sys_fork();
_thread_arc4_unlock();
if (newid == 0)
_thread_malloc_reinit();
else
for (i = 0; i < _MALLOC_MUTEXES; i++)
_thread_malloc_unlock(i);
_thread_atexit_unlock();
return newid;
}
|