summaryrefslogtreecommitdiff
path: root/lib/libcrypto/bn/asm/via-mont.pl
blob: c046a514c873fb9e773384b635ac066883f5e565 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# Wrapper around 'rep montmul', VIA-specific instruction accessing
# PadLock Montgomery Multiplier. The wrapper is designed as drop-in
# replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9].
#
# Below are interleaved outputs from 'openssl speed rsa dsa' for 4
# different software configurations on 1.5GHz VIA Esther processor.
# Lines marked with "software integer" denote performance of hand-
# coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2"
# refers to hand-coded SSE2 Montgomery multiplication procedure found
# OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from
# Padlock SDK 2.0.1 available for download from VIA, which naturally
# utilizes the magic 'repz montmul' instruction. And finally "hardware
# this" refers to *this* implementation which also uses 'repz montmul'
#
#                   sign    verify    sign/s verify/s
# rsa  512 bits 0.001720s 0.000140s    581.4   7149.7	software integer
# rsa  512 bits 0.000690s 0.000086s   1450.3  11606.0	software SSE2
# rsa  512 bits 0.006136s 0.000201s    163.0   4974.5	hardware VIA SDK
# rsa  512 bits 0.000712s 0.000050s   1404.9  19858.5	hardware this
#
# rsa 1024 bits 0.008518s 0.000413s    117.4   2420.8	software integer
# rsa 1024 bits 0.004275s 0.000277s    233.9   3609.7	software SSE2
# rsa 1024 bits 0.012136s 0.000260s     82.4   3844.5	hardware VIA SDK
# rsa 1024 bits 0.002522s 0.000116s    396.5   8650.9	hardware this
#
# rsa 2048 bits 0.050101s 0.001371s     20.0    729.6	software integer
# rsa 2048 bits 0.030273s 0.001008s     33.0    991.9	software SSE2
# rsa 2048 bits 0.030833s 0.000976s     32.4   1025.1	hardware VIA SDK
# rsa 2048 bits 0.011879s 0.000342s     84.2   2921.7	hardware this
#
# rsa 4096 bits 0.327097s 0.004859s      3.1    205.8	software integer
# rsa 4096 bits 0.229318s 0.003859s      4.4    259.2	software SSE2
# rsa 4096 bits 0.233953s 0.003274s      4.3    305.4	hardware VIA SDK
# rsa 4096 bits 0.070493s 0.001166s     14.2    857.6	hardware this
#
# dsa  512 bits 0.001342s 0.001651s    745.2    605.7	software integer
# dsa  512 bits 0.000844s 0.000987s   1185.3   1013.1	software SSE2
# dsa  512 bits 0.001902s 0.002247s    525.6    444.9	hardware VIA SDK
# dsa  512 bits 0.000458s 0.000524s   2182.2   1909.1	hardware this
#
# dsa 1024 bits 0.003964s 0.004926s    252.3    203.0	software integer
# dsa 1024 bits 0.002686s 0.003166s    372.3    315.8	software SSE2
# dsa 1024 bits 0.002397s 0.002823s    417.1    354.3	hardware VIA SDK
# dsa 1024 bits 0.000978s 0.001170s   1022.2    855.0	hardware this
#
# dsa 2048 bits 0.013280s 0.016518s     75.3     60.5	software integer
# dsa 2048 bits 0.009911s 0.011522s    100.9     86.8	software SSE2
# dsa 2048 bits 0.009542s 0.011763s    104.8     85.0	hardware VIA SDK
# dsa 2048 bits 0.002884s 0.003352s    346.8    298.3	hardware this
#
# To give you some other reference point here is output for 2.4GHz P4
# running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software
# SSE2" in above terms.
#
# rsa  512 bits 0.000407s 0.000047s   2454.2  21137.0
# rsa 1024 bits 0.002426s 0.000141s    412.1   7100.0
# rsa 2048 bits 0.015046s 0.000491s     66.5   2034.9
# rsa 4096 bits 0.109770s 0.002379s      9.1    420.3
# dsa  512 bits 0.000438s 0.000525s   2281.1   1904.1
# dsa 1024 bits 0.001346s 0.001595s    742.7    627.0
# dsa 2048 bits 0.004745s 0.005582s    210.7    179.1
#
# Conclusions: 
# - VIA SDK leaves a *lot* of room for improvement (which this
#   implementation successfully fills:-);
# - 'rep montmul' gives up to >3x performance improvement depending on
#   key length;
# - in terms of absolute performance it delivers approximately as much
#   as modern out-of-order 32-bit cores [again, for longer keys].

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"via-mont.pl");

# int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num);
$func="bn_mul_mont_padlock";

$pad=16*1;	# amount of reserved bytes on top of every vector

# stack layout
$mZeroPrime=&DWP(0,"esp");		# these are specified by VIA
$A=&DWP(4,"esp");
$B=&DWP(8,"esp");
$T=&DWP(12,"esp");
$M=&DWP(16,"esp");
$scratch=&DWP(20,"esp");
$rp=&DWP(24,"esp");			# these are mine
$sp=&DWP(28,"esp");
# &DWP(32,"esp")			# 32 byte scratch area
# &DWP(64+(4*$num+$pad)*0,"esp")	# padded tp[num]
# &DWP(64+(4*$num+$pad)*1,"esp")	# padded copy of ap[num]
# &DWP(64+(4*$num+$pad)*2,"esp")	# padded copy of bp[num]
# &DWP(64+(4*$num+$pad)*3,"esp")	# padded copy of np[num]
# Note that SDK suggests to unconditionally allocate 2K per vector. This
# has quite an impact on performance. It naturally depends on key length,
# but to give an example 1024 bit private RSA key operations suffer >30%
# penalty. I allocate only as much as actually required...

&function_begin($func);
	&xor	("eax","eax");
	&mov	("ecx",&wparam(5));	# num
	# meet VIA's limitations for num [note that the specification
	# expresses them in bits, while we work with amount of 32-bit words]
	&test	("ecx",3);
	&jnz	(&label("leave"));	# num % 4 != 0
	&cmp	("ecx",8);
	&jb	(&label("leave"));	# num < 8
	&cmp	("ecx",1024);
	&ja	(&label("leave"));	# num > 1024

	&pushf	();
	&cld	();

	&mov	("edi",&wparam(0));	# rp
	&mov	("eax",&wparam(1));	# ap
	&mov	("ebx",&wparam(2));	# bp
	&mov	("edx",&wparam(3));	# np
	&mov	("esi",&wparam(4));	# n0
	&mov	("esi",&DWP(0,"esi"));	# *n0

	&lea	("ecx",&DWP($pad,"","ecx",4));	# ecx becomes vector size in bytes
	&lea	("ebp",&DWP(64,"","ecx",4));	# allocate 4 vectors + 64 bytes
	&neg	("ebp");
	&add	("ebp","esp");
	&and	("ebp",-64);		# align to cache-line
	&xchg	("ebp","esp");		# alloca

	&mov	($rp,"edi");		# save rp
	&mov	($sp,"ebp");		# save esp

	&mov	($mZeroPrime,"esi");
	&lea	("esi",&DWP(64,"esp"));	# tp
	&mov	($T,"esi");
	&lea	("edi",&DWP(32,"esp"));	# scratch area
	&mov	($scratch,"edi");
	&mov	("esi","eax");

	&lea	("ebp",&DWP(-$pad,"ecx"));
	&shr	("ebp",2);		# restore original num value in ebp

	&xor	("eax","eax");

	&mov	("ecx","ebp");
	&lea	("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch
	&data_byte(0xf3,0xab);		# rep stosl, bzero

	&mov	("ecx","ebp");
	&lea	("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy
	&mov	($A,"edi");
	&data_byte(0xf3,0xa5);		# rep movsl, memcpy
	&mov	("ecx",$pad/4);
	&data_byte(0xf3,0xab);		# rep stosl, bzero pad
	# edi points at the end of padded ap copy...

	&mov	("ecx","ebp");
	&mov	("esi","ebx");
	&mov	($B,"edi");
	&data_byte(0xf3,0xa5);		# rep movsl, memcpy
	&mov	("ecx",$pad/4);
	&data_byte(0xf3,0xab);		# rep stosl, bzero pad
	# edi points at the end of padded bp copy...

	&mov	("ecx","ebp");
	&mov	("esi","edx");
	&mov	($M,"edi");
	&data_byte(0xf3,0xa5);		# rep movsl, memcpy
	&mov	("ecx",$pad/4);
	&data_byte(0xf3,0xab);		# rep stosl, bzero pad
	# edi points at the end of padded np copy...

	# let magic happen...
	&mov	("ecx","ebp");
	&mov	("esi","esp");
	&shl	("ecx",5);		# convert word counter to bit counter
	&align	(4);
	&data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul

	&mov	("ecx","ebp");
	&lea	("esi",&DWP(64,"esp"));		# tp
	# edi still points at the end of padded np copy...
	&neg	("ebp");
	&lea	("ebp",&DWP(-$pad,"edi","ebp",4));	# so just "rewind"
	&mov	("edi",$rp);			# restore rp
	&xor	("edx","edx");			# i=0 and clear CF

&set_label("sub",8);
	&mov	("eax",&DWP(0,"esi","edx",4));
	&sbb	("eax",&DWP(0,"ebp","edx",4));
	&mov	(&DWP(0,"edi","edx",4),"eax");	# rp[i]=tp[i]-np[i]
	&lea	("edx",&DWP(1,"edx"));		# i++
	&loop	(&label("sub"));		# doesn't affect CF!

	&mov	("eax",&DWP(0,"esi","edx",4));	# upmost overflow bit
	&sbb	("eax",0);
	&and	("esi","eax");
	&not	("eax");
	&mov	("ebp","edi");
	&and	("ebp","eax");
	&or	("esi","ebp");			# tp=carry?tp:rp

	&mov	("ecx","edx");			# num
	&xor	("edx","edx");			# i=0

&set_label("copy",8);
	&mov	("eax",&DWP(0,"esi","edx",4));
	&mov	(&DWP(64,"esp","edx",4),"ecx");	# zap tp
	&mov	(&DWP(0,"edi","edx",4),"eax");
	&lea	("edx",&DWP(1,"edx"));		# i++
	&loop	(&label("copy"));

	&mov	("ebp",$sp);
	&xor	("eax","eax");

	&mov	("ecx",64/4);
	&mov	("edi","esp");		# zap frame including scratch area
	&data_byte(0xf3,0xab);		# rep stosl, bzero

	# zap copies of ap, bp and np
	&lea	("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap
	&lea	("ecx",&DWP(3*$pad/4,"edx","edx",2));
	&data_byte(0xf3,0xab);		# rep stosl, bzero

	&mov	("esp","ebp");
	&inc	("eax");		# signal "done"
	&popf	();
&set_label("leave");
&function_end($func);

&asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>");

&asm_finish();