1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
/* $OpenBSD: bn.h,v 1.57 2022/12/17 15:56:25 jsing Exp $ */
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
*
*/
#ifndef HEADER_BN_H
#define HEADER_BN_H
#include <stdio.h>
#include <stdlib.h>
#include <openssl/opensslconf.h>
#include <openssl/ossl_typ.h>
#include <openssl/crypto.h>
#include <openssl/bio.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef OPENSSL_SMALL_FOOTPRINT
#define BN_MUL_COMBA
#define BN_SQR_COMBA
#define BN_RECURSION
#endif
/* This next option uses the C libraries (2 word)/(1 word) function.
* If it is not defined, I use my C version (which is slower).
* The reason for this flag is that when the particular C compiler
* library routine is used, and the library is linked with a different
* compiler, the library is missing. This mostly happens when the
* library is built with gcc and then linked using normal cc. This would
* be a common occurrence because gcc normally produces code that is
* 2 times faster than system compilers for the big number stuff.
* For machines with only one compiler (or shared libraries), this should
* be on. Again this in only really a problem on machines
* using "long long's", are 32bit, and are not using my assembler code. */
/* #define BN_DIV2W */
#ifdef _LP64
#undef BN_LLONG
#define BN_ULONG unsigned long
#define BN_LONG long
#define BN_BITS 128
#define BN_BYTES 8
#define BN_BITS2 64
#define BN_BITS4 32
#define BN_MASK2 (0xffffffffffffffffL)
#define BN_MASK2l (0xffffffffL)
#define BN_MASK2h (0xffffffff00000000L)
#define BN_MASK2h1 (0xffffffff80000000L)
#define BN_TBIT (0x8000000000000000L)
#define BN_DEC_CONV (10000000000000000000UL)
#define BN_DEC_FMT1 "%lu"
#define BN_DEC_FMT2 "%019lu"
#define BN_DEC_NUM 19
#define BN_HEX_FMT1 "%lX"
#define BN_HEX_FMT2 "%016lX"
#else
#define BN_ULLONG unsigned long long
#define BN_LLONG
#define BN_ULONG unsigned int
#define BN_LONG int
#define BN_BITS 64
#define BN_BYTES 4
#define BN_BITS2 32
#define BN_BITS4 16
#define BN_MASK (0xffffffffffffffffLL)
#define BN_MASK2 (0xffffffffL)
#define BN_MASK2l (0xffff)
#define BN_MASK2h1 (0xffff8000L)
#define BN_MASK2h (0xffff0000L)
#define BN_TBIT (0x80000000L)
#define BN_DEC_CONV (1000000000L)
#define BN_DEC_FMT1 "%u"
#define BN_DEC_FMT2 "%09u"
#define BN_DEC_NUM 9
#define BN_HEX_FMT1 "%X"
#define BN_HEX_FMT2 "%08X"
#endif
#define BN_FLG_MALLOCED 0x01
#define BN_FLG_STATIC_DATA 0x02
#define BN_FLG_CONSTTIME 0x04 /* avoid leaking exponent information through timing,
* BN_mod_exp_mont() will call BN_mod_exp_mont_consttime,
* BN_div() will call BN_div_no_branch,
* BN_mod_inverse() will call BN_mod_inverse_no_branch.
*/
#ifndef OPENSSL_NO_DEPRECATED
#define BN_FLG_EXP_CONSTTIME BN_FLG_CONSTTIME /* deprecated name for the flag */
/* avoid leaking exponent information through timings
* (BN_mod_exp_mont() will call BN_mod_exp_mont_consttime) */
#endif
#ifndef OPENSSL_NO_DEPRECATED
#define BN_FLG_FREE 0x8000 /* used for debugging */
#endif
void BN_set_flags(BIGNUM *b, int n);
int BN_get_flags(const BIGNUM *b, int n);
void BN_with_flags(BIGNUM *dest, const BIGNUM *src, int flags);
/* Values for |top| in BN_rand() */
#define BN_RAND_TOP_ANY -1
#define BN_RAND_TOP_ONE 0
#define BN_RAND_TOP_TWO 1
/* Values for |bottom| in BN_rand() */
#define BN_RAND_BOTTOM_ANY 0
#define BN_RAND_BOTTOM_ODD 1
BN_GENCB *BN_GENCB_new(void);
void BN_GENCB_free(BN_GENCB *cb);
/* Wrapper function to make using BN_GENCB easier, */
int BN_GENCB_call(BN_GENCB *cb, int a, int b);
/* Populate a BN_GENCB structure with an "old"-style callback */
void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback)(int, int, void *),
void *cb_arg);
/* Populate a BN_GENCB structure with a "new"-style callback */
void BN_GENCB_set(BN_GENCB *gencb, int (*callback)(int, int, BN_GENCB *),
void *cb_arg);
void *BN_GENCB_get_arg(BN_GENCB *cb);
#define BN_prime_checks 0 /* default: select number of iterations
based on the size of the number */
/*
* BN_prime_checks_for_size() returns the number of Miller-Rabin
* iterations that will be done for checking that a random number
* is probably prime. The error rate for accepting a composite
* number as prime depends on the size of the prime |b|. The error
* rates used are for calculating an RSA key with 2 primes, and so
* the level is what you would expect for a key of double the size
* of the prime.
*
* This table is generated using the algorithm of FIPS PUB 186-4
* Digital Signature Standard (DSS), section F.1, page 117.
* (https://dx.doi.org/10.6028/NIST.FIPS.186-4)
*
* The following magma script was used to generate the output:
* securitybits:=125;
* k:=1024;
* for t:=1 to 65 do
* for M:=3 to Floor(2*Sqrt(k-1)-1) do
* S:=0;
* // Sum over m
* for m:=3 to M do
* s:=0;
* // Sum over j
* for j:=2 to m do
* s+:=(RealField(32)!2)^-(j+(k-1)/j);
* end for;
* S+:=2^(m-(m-1)*t)*s;
* end for;
* A:=2^(k-2-M*t);
* B:=8*(Pi(RealField(32))^2-6)/3*2^(k-2)*S;
* pkt:=2.00743*Log(2)*k*2^-k*(A+B);
* seclevel:=Floor(-Log(2,pkt));
* if seclevel ge securitybits then
* printf "k: %5o, security: %o bits (t: %o, M: %o)\n",k,seclevel,t,M;
* break;
* end if;
* end for;
* if seclevel ge securitybits then break; end if;
* end for;
*
* It can be run online at:
* http://magma.maths.usyd.edu.au/calc
*
* And will output:
* k: 1024, security: 129 bits (t: 6, M: 23)
*
* k is the number of bits of the prime, securitybits is the level
* we want to reach.
*
* prime length | RSA key size | # MR tests | security level
* -------------+--------------|------------+---------------
* (b) >= 6394 | >= 12788 | 3 | 256 bit
* (b) >= 3747 | >= 7494 | 3 | 192 bit
* (b) >= 1345 | >= 2690 | 4 | 128 bit
* (b) >= 1080 | >= 2160 | 5 | 128 bit
* (b) >= 852 | >= 1704 | 5 | 112 bit
* (b) >= 476 | >= 952 | 5 | 80 bit
* (b) >= 400 | >= 800 | 6 | 80 bit
* (b) >= 347 | >= 694 | 7 | 80 bit
* (b) >= 308 | >= 616 | 8 | 80 bit
* (b) >= 55 | >= 110 | 27 | 64 bit
* (b) >= 6 | >= 12 | 34 | 64 bit
*/
#define BN_prime_checks_for_size(b) ((b) >= 3747 ? 3 : \
(b) >= 1345 ? 4 : \
(b) >= 476 ? 5 : \
(b) >= 400 ? 6 : \
(b) >= 347 ? 7 : \
(b) >= 308 ? 8 : \
(b) >= 55 ? 27 : \
/* b >= 6 */ 34)
#define BN_num_bytes(a) ((BN_num_bits(a)+7)/8)
int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w);
int BN_is_zero(const BIGNUM *a);
int BN_is_one(const BIGNUM *a);
int BN_is_word(const BIGNUM *a, const BN_ULONG w);
int BN_is_odd(const BIGNUM *a);
#if defined(LIBRESSL_INTERNAL) || defined(LIBRESSL_NEXT_API)
void BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);
#else
#define BN_one(a) BN_set_word((a), 1)
void BN_zero_ex(BIGNUM *a);
#ifdef OPENSSL_NO_DEPRECATED
#define BN_zero(a) BN_zero_ex(a)
#else
#define BN_zero(a) (BN_set_word((a),0))
#endif
#endif
const BIGNUM *BN_value_one(void);
char * BN_options(void);
BN_CTX *BN_CTX_new(void);
#ifndef OPENSSL_NO_DEPRECATED
void BN_CTX_init(BN_CTX *c);
#endif
void BN_CTX_free(BN_CTX *c);
void BN_CTX_start(BN_CTX *ctx);
BIGNUM *BN_CTX_get(BN_CTX *ctx);
void BN_CTX_end(BN_CTX *ctx);
int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_rand_range(BIGNUM *rnd, const BIGNUM *range);
int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG);
BIGNUM *BN_new(void);
void BN_init(BIGNUM *);
void BN_clear_free(BIGNUM *a);
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
void BN_swap(BIGNUM *a, BIGNUM *b);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2bin(const BIGNUM *a, unsigned char *to);
int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
/** BN_set_negative sets sign of a BIGNUM
* \param b pointer to the BIGNUM object
* \param n 0 if the BIGNUM b should be positive and a value != 0 otherwise
*/
void BN_set_negative(BIGNUM *b, int n);
int BN_is_negative(const BIGNUM *b);
#ifndef LIBRESSL_INTERNAL
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
BN_CTX *ctx);
#define BN_mod(rem,m,d,ctx) BN_div(NULL,(rem),(m),(d),(ctx))
#endif
int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx);
int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m);
int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m);
int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
int BN_mul_word(BIGNUM *a, BN_ULONG w);
int BN_add_word(BIGNUM *a, BN_ULONG w);
int BN_sub_word(BIGNUM *a, BN_ULONG w);
int BN_set_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_get_word(const BIGNUM *a);
int BN_cmp(const BIGNUM *a, const BIGNUM *b);
void BN_free(BIGNUM *a);
int BN_is_bit_set(const BIGNUM *a, int n);
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, const BIGNUM *a);
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
#ifndef LIBRESSL_INTERNAL
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
#endif
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont);
int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, const BIGNUM *p1,
const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
BN_CTX *ctx, BN_MONT_CTX *m_ctx);
int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_mask_bits(BIGNUM *a, int n);
int BN_print_fp(FILE *fp, const BIGNUM *a);
int BN_print(BIO *fp, const BIGNUM *a);
int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx);
int BN_rshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, const BIGNUM *a);
void BN_clear(BIGNUM *a);
BIGNUM *BN_dup(const BIGNUM *a);
int BN_ucmp(const BIGNUM *a, const BIGNUM *b);
int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);
char * BN_bn2hex(const BIGNUM *a);
char * BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);
int BN_asc2bn(BIGNUM **a, const char *str);
#ifndef LIBRESSL_INTERNAL
int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
#endif
int BN_kronecker(const BIGNUM *a,const BIGNUM *b,BN_CTX *ctx); /* returns -2 for error */
#ifndef LIBRESSL_INTERNAL
BIGNUM *BN_mod_inverse(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
#endif
BIGNUM *BN_mod_sqrt(BIGNUM *ret,
const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx);
void BN_consttime_swap(BN_ULONG swap, BIGNUM *a, BIGNUM *b, int nwords);
int BN_security_bits(int L, int N);
/* Deprecated versions */
#ifndef OPENSSL_NO_DEPRECATED
BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe,
const BIGNUM *add, const BIGNUM *rem,
void (*callback)(int, int, void *), void *cb_arg);
int BN_is_prime(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *),
BN_CTX *ctx, void *cb_arg);
int BN_is_prime_fasttest(const BIGNUM *p, int nchecks,
void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
int do_trial_division);
#endif /* !defined(OPENSSL_NO_DEPRECATED) */
/* Newer versions */
int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
const BIGNUM *rem, BN_GENCB *cb);
int BN_is_prime_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx, BN_GENCB *cb);
int BN_is_prime_fasttest_ex(const BIGNUM *p, int nchecks, BN_CTX *ctx,
int do_trial_division, BN_GENCB *cb);
int BN_X931_generate_Xpq(BIGNUM *Xp, BIGNUM *Xq, int nbits, BN_CTX *ctx);
int BN_X931_derive_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2,
const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb);
int BN_X931_generate_prime_ex(BIGNUM *p, BIGNUM *p1, BIGNUM *p2,
BIGNUM *Xp1, BIGNUM *Xp2,
const BIGNUM *Xp,
const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb);
BN_MONT_CTX *BN_MONT_CTX_new(void );
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
BN_MONT_CTX *mont, BN_CTX *ctx);
int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx);
int BN_from_montgomery(BIGNUM *r, const BIGNUM *a,
BN_MONT_CTX *mont, BN_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, int lock,
const BIGNUM *mod, BN_CTX *ctx);
/* BN_BLINDING flags */
#define BN_BLINDING_NO_UPDATE 0x00000001
#define BN_BLINDING_NO_RECREATE 0x00000002
BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod);
void BN_BLINDING_free(BN_BLINDING *b);
int BN_BLINDING_update(BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b, BN_CTX *);
int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b, BN_CTX *);
#ifndef OPENSSL_NO_DEPRECATED
unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *);
void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long);
#endif
CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *);
unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
BN_MONT_CTX *m_ctx);
#ifndef OPENSSL_NO_DEPRECATED
void BN_set_params(int mul, int high, int low, int mont);
int BN_get_params(int which); /* 0, mul, 1 high, 2 low, 3 mont */
#endif
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);
int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *rdiv, BN_CTX *ctx);
int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
BN_RECP_CTX *recp, BN_CTX *ctx);
int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
const BIGNUM *m, BN_CTX *ctx);
int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
BN_RECP_CTX *recp, BN_CTX *ctx);
#ifndef OPENSSL_NO_EC2M
/* Functions for arithmetic over binary polynomials represented by BIGNUMs.
*
* The BIGNUM::neg property of BIGNUMs representing binary polynomials is
* ignored.
*
* Note that input arguments are not const so that their bit arrays can
* be expanded to the appropriate size if needed.
*/
int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); /*r = a + b*/
#define BN_GF2m_sub(r, a, b) BN_GF2m_add(r, a, b)
int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p); /*r=a mod p*/
int
BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *p, BN_CTX *ctx); /* r = (a * b) mod p */
int
BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx); /* r = (a * a) mod p */
int
BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *b, const BIGNUM *p,
BN_CTX *ctx); /* r = (1 / b) mod p */
int
BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *p, BN_CTX *ctx); /* r = (a / b) mod p */
int
BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const BIGNUM *p, BN_CTX *ctx); /* r = (a ^ b) mod p */
int
BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx); /* r = sqrt(a) mod p */
int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
BN_CTX *ctx); /* r^2 + r = a mod p */
#define BN_GF2m_cmp(a, b) BN_ucmp((a), (b))
/* Some functions allow for representation of the irreducible polynomials
* as an unsigned int[], say p. The irreducible f(t) is then of the form:
* t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[]);
/* r = a mod p */
int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const int p[], BN_CTX *ctx); /* r = (a * b) mod p */
int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
BN_CTX *ctx); /* r = (a * a) mod p */
int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *b, const int p[],
BN_CTX *ctx); /* r = (1 / b) mod p */
int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const int p[], BN_CTX *ctx); /* r = (a / b) mod p */
int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
const int p[], BN_CTX *ctx); /* r = (a ^ b) mod p */
int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a,
const int p[], BN_CTX *ctx); /* r = sqrt(a) mod p */
int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a,
const int p[], BN_CTX *ctx); /* r^2 + r = a mod p */
int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max);
int BN_GF2m_arr2poly(const int p[], BIGNUM *a);
#endif
/* faster mod functions for the 'NIST primes'
* 0 <= a < p^2 */
int BN_nist_mod_192(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_224(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_256(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_384(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
int BN_nist_mod_521(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
const BIGNUM *BN_get0_nist_prime_192(void);
const BIGNUM *BN_get0_nist_prime_224(void);
const BIGNUM *BN_get0_nist_prime_256(void);
const BIGNUM *BN_get0_nist_prime_384(void);
const BIGNUM *BN_get0_nist_prime_521(void);
/* Primes from RFC 2409 */
BIGNUM *get_rfc2409_prime_768(BIGNUM *bn);
BIGNUM *get_rfc2409_prime_1024(BIGNUM *bn);
BIGNUM *BN_get_rfc2409_prime_768(BIGNUM *bn);
BIGNUM *BN_get_rfc2409_prime_1024(BIGNUM *bn);
/* Primes from RFC 3526 */
BIGNUM *get_rfc3526_prime_1536(BIGNUM *bn);
BIGNUM *get_rfc3526_prime_2048(BIGNUM *bn);
BIGNUM *get_rfc3526_prime_3072(BIGNUM *bn);
BIGNUM *get_rfc3526_prime_4096(BIGNUM *bn);
BIGNUM *get_rfc3526_prime_6144(BIGNUM *bn);
BIGNUM *get_rfc3526_prime_8192(BIGNUM *bn);
BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *bn);
BIGNUM *BN_get_rfc3526_prime_2048(BIGNUM *bn);
BIGNUM *BN_get_rfc3526_prime_3072(BIGNUM *bn);
BIGNUM *BN_get_rfc3526_prime_4096(BIGNUM *bn);
BIGNUM *BN_get_rfc3526_prime_6144(BIGNUM *bn);
BIGNUM *BN_get_rfc3526_prime_8192(BIGNUM *bn);
void ERR_load_BN_strings(void);
/* Error codes for the BN functions. */
/* Function codes. */
#define BN_F_BNRAND 127
#define BN_F_BN_BLINDING_CONVERT_EX 100
#define BN_F_BN_BLINDING_CREATE_PARAM 128
#define BN_F_BN_BLINDING_INVERT_EX 101
#define BN_F_BN_BLINDING_NEW 102
#define BN_F_BN_BLINDING_UPDATE 103
#define BN_F_BN_BN2DEC 104
#define BN_F_BN_BN2HEX 105
#define BN_F_BN_CTX_GET 116
#define BN_F_BN_CTX_NEW 106
#define BN_F_BN_CTX_START 129
#define BN_F_BN_DIV 107
#define BN_F_BN_DIV_NO_BRANCH 138
#define BN_F_BN_DIV_RECP 130
#define BN_F_BN_EXP 123
#define BN_F_BN_EXPAND2 108
#define BN_F_BN_GENERATE_PRIME_EX 140
#define BN_F_BN_EXPAND_INTERNAL 120
#define BN_F_BN_GF2M_MOD 131
#define BN_F_BN_GF2M_MOD_EXP 132
#define BN_F_BN_GF2M_MOD_MUL 133
#define BN_F_BN_GF2M_MOD_SOLVE_QUAD 134
#define BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR 135
#define BN_F_BN_GF2M_MOD_SQR 136
#define BN_F_BN_GF2M_MOD_SQRT 137
#define BN_F_BN_MOD_EXP2_MONT 118
#define BN_F_BN_MOD_EXP_MONT 109
#define BN_F_BN_MOD_EXP_MONT_CONSTTIME 124
#define BN_F_BN_MOD_EXP_MONT_WORD 117
#define BN_F_BN_MOD_EXP_RECP 125
#define BN_F_BN_MOD_EXP_SIMPLE 126
#define BN_F_BN_MOD_INVERSE 110
#define BN_F_BN_MOD_INVERSE_NO_BRANCH 139
#define BN_F_BN_MOD_LSHIFT_QUICK 119
#define BN_F_BN_MOD_MUL_RECIPROCAL 111
#define BN_F_BN_MOD_SQRT 121
#define BN_F_BN_MPI2BN 112
#define BN_F_BN_NEW 113
#define BN_F_BN_RAND 114
#define BN_F_BN_RAND_RANGE 122
#define BN_F_BN_USUB 115
/* Reason codes. */
#define BN_R_ARG2_LT_ARG3 100
#define BN_R_BAD_RECIPROCAL 101
#define BN_R_BIGNUM_TOO_LONG 114
#define BN_R_BITS_TOO_SMALL 117
#define BN_R_CALLED_WITH_EVEN_MODULUS 102
#define BN_R_DIV_BY_ZERO 103
#define BN_R_ENCODING_ERROR 104
#define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 105
#define BN_R_INPUT_NOT_REDUCED 110
#define BN_R_INVALID_LENGTH 106
#define BN_R_INVALID_RANGE 115
#define BN_R_NOT_A_SQUARE 111
#define BN_R_NOT_INITIALIZED 107
#define BN_R_NO_INVERSE 108
#define BN_R_NO_SOLUTION 116
#define BN_R_P_IS_NOT_PRIME 112
#define BN_R_TOO_MANY_ITERATIONS 113
#define BN_R_TOO_MANY_TEMPORARY_VARIABLES 109
#ifdef __cplusplus
}
#endif
#endif
|