1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
|
/* $OpenBSD: ecp_nistz256.c,v 1.7 2018/11/05 20:18:21 tb Exp $ */
/* Copyright (c) 2014, Intel Corporation.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* Developers and authors:
* Shay Gueron (1, 2), and Vlad Krasnov (1)
* (1) Intel Corporation, Israel Development Center
* (2) University of Haifa
* Reference:
* S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
* 256 Bit Primes" */
/*
* The following license applies to _booth_recode_w5() and
* _booth_recode_w7():
*/
/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include "ec_lcl.h"
#if BN_BITS2 != 64
#define TOBN(hi,lo) lo,hi
#else
#define TOBN(hi,lo) ((BN_ULONG)hi << 32 | lo)
#endif
#if defined(__GNUC__)
#define ALIGN32 __attribute((aligned(32)))
#elif defined(_MSC_VER)
#define ALIGN32 __declspec(align(32))
#else
#define ALIGN32
#endif
#define P256_LIMBS (256 / BN_BITS2)
typedef struct {
BN_ULONG X[P256_LIMBS];
BN_ULONG Y[P256_LIMBS];
BN_ULONG Z[P256_LIMBS];
} P256_POINT;
typedef struct {
BN_ULONG X[P256_LIMBS];
BN_ULONG Y[P256_LIMBS];
} P256_POINT_AFFINE;
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
/* structure for precomputed multiples of the generator */
typedef struct ec_pre_comp_st {
const EC_GROUP *group; /* Parent EC_GROUP object */
size_t w; /* Window size */
/*
* Constant time access to the X and Y coordinates of the pre-computed,
* generator multiplies, in the Montgomery domain. Pre-calculated
* multiplies are stored in affine form.
*/
PRECOMP256_ROW *precomp;
int references;
} EC_PRE_COMP;
/*
* Arithmetic on field elements using Almost Montgomery Multiplication. The
* "almost" means, in particular, that the inputs and outputs of these
* functions are in the range [0, 2**BN_BITS2), not [0, P). Only
* |ecp_nistz256_from_mont| outputs a fully reduced value in [0, P). Almost
* Montgomery Arithmetic is described clearly in "Efficient Software
* Implementations of Modular Exponentiation" by Shay Gueron.
*/
/* Modular neg: res = -a mod P, where res is not fully reduced. */
void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS]);
/* Montgomery mul: res = a*b*2^-256 mod P, where res is not fully reduced. */
void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS]);
/* Montgomery sqr: res = a*a*2^-256 mod P, where res is not fully reduced. */
void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG a[P256_LIMBS]);
/* Convert a number from Montgomery domain, by multiplying with 1, where res
* will be fully reduced mod P. */
void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS],
const BN_ULONG in[P256_LIMBS]);
/* Functions that perform constant time access to the precomputed tables */
void ecp_nistz256_select_w5(P256_POINT *val, const P256_POINT *in_t,
int index);
void ecp_nistz256_select_w7(P256_POINT_AFFINE *val,
const P256_POINT_AFFINE *in_t, int index);
/* One converted into the Montgomery domain */
static const BN_ULONG ONE[P256_LIMBS] = {
TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe)
};
static void *ecp_nistz256_pre_comp_dup(void *);
static void ecp_nistz256_pre_comp_free(void *);
static void ecp_nistz256_pre_comp_clear_free(void *);
static EC_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group);
/* Precomputed tables for the default generator */
#include "ecp_nistz256_table.h"
/* This function looks at 5+1 scalar bits (5 current, 1 adjacent less
* significant bit), and recodes them into a signed digit for use in fast point
* multiplication: the use of signed rather than unsigned digits means that
* fewer points need to be precomputed, given that point inversion is easy (a
* precomputed point dP makes -dP available as well).
*
* BACKGROUND:
*
* Signed digits for multiplication were introduced by Booth ("A signed binary
* multiplication technique", Quart. Journ. Mech. and Applied Math., vol. IV,
* pt. 2 (1951), pp. 236-240), in that case for multiplication of integers.
* Booth's original encoding did not generally improve the density of nonzero
* digits over the binary representation, and was merely meant to simplify the
* handling of signed factors given in two's complement; but it has since been
* shown to be the basis of various signed-digit representations that do have
* further advantages, including the wNAF, using the following general
* approach:
*
* (1) Given a binary representation
*
* b_k ... b_2 b_1 b_0,
*
* of a nonnegative integer (b_k in {0, 1}), rewrite it in digits 0, 1, -1
* by using bit-wise subtraction as follows:
*
* b_k b_(k-1) ... b_2 b_1 b_0
* - b_k ... b_3 b_2 b_1 b_0
* -------------------------------------
* s_k b_(k-1) ... s_3 s_2 s_1 s_0
*
* A left-shift followed by subtraction of the original value yields a new
* representation of the same value, using signed bits s_i = b_(i+1) - b_i.
* This representation from Booth's paper has since appeared in the
* literature under a variety of different names including "reversed binary
* form", "alternating greedy expansion", "mutual opposite form", and
* "sign-alternating {+-1}-representation".
*
* An interesting property is that among the nonzero bits, values 1 and -1
* strictly alternate.
*
* (2) Various window schemes can be applied to the Booth representation of
* integers: for example, right-to-left sliding windows yield the wNAF
* (a signed-digit encoding independently discovered by various researchers
* in the 1990s), and left-to-right sliding windows yield a left-to-right
* equivalent of the wNAF (independently discovered by various researchers
* around 2004).
*
* To prevent leaking information through side channels in point multiplication,
* we need to recode the given integer into a regular pattern: sliding windows
* as in wNAFs won't do, we need their fixed-window equivalent -- which is a few
* decades older: we'll be using the so-called "modified Booth encoding" due to
* MacSorley ("High-speed arithmetic in binary computers", Proc. IRE, vol. 49
* (1961), pp. 67-91), in a radix-2^5 setting. That is, we always combine five
* signed bits into a signed digit:
*
* s_(4j + 4) s_(4j + 3) s_(4j + 2) s_(4j + 1) s_(4j)
*
* The sign-alternating property implies that the resulting digit values are
* integers from -16 to 16.
*
* Of course, we don't actually need to compute the signed digits s_i as an
* intermediate step (that's just a nice way to see how this scheme relates
* to the wNAF): a direct computation obtains the recoded digit from the
* six bits b_(4j + 4) ... b_(4j - 1).
*
* This function takes those five bits as an integer (0 .. 63), writing the
* recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
* value, in the range 0 .. 8). Note that this integer essentially provides the
* input bits "shifted to the left" by one position: for example, the input to
* compute the least significant recoded digit, given that there's no bit b_-1,
* has to be b_4 b_3 b_2 b_1 b_0 0. */
static unsigned int
_booth_recode_w5(unsigned int in)
{
unsigned int s, d;
/* sets all bits to MSB(in), 'in' seen as 6-bit value */
s = ~((in >> 5) - 1);
d = (1 << 6) - in - 1;
d = (d & s) | (in & ~s);
d = (d >> 1) + (d & 1);
return (d << 1) + (s & 1);
}
static unsigned int
_booth_recode_w7(unsigned int in)
{
unsigned int s, d;
/* sets all bits to MSB(in), 'in' seen as 8-bit value */
s = ~((in >> 7) - 1);
d = (1 << 8) - in - 1;
d = (d & s) | (in & ~s);
d = (d >> 1) + (d & 1);
return (d << 1) + (s & 1);
}
static void
copy_conditional(BN_ULONG dst[P256_LIMBS], const BN_ULONG src[P256_LIMBS],
BN_ULONG move)
{
BN_ULONG mask1 = -move;
BN_ULONG mask2 = ~mask1;
dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
if (P256_LIMBS == 8) {
dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
}
}
static BN_ULONG
is_zero(BN_ULONG in)
{
in |= (0 - in);
in = ~in;
in &= BN_MASK2;
in >>= BN_BITS2 - 1;
return in;
}
static BN_ULONG
is_equal(const BN_ULONG a[P256_LIMBS], const BN_ULONG b[P256_LIMBS])
{
BN_ULONG res;
res = a[0] ^ b[0];
res |= a[1] ^ b[1];
res |= a[2] ^ b[2];
res |= a[3] ^ b[3];
if (P256_LIMBS == 8) {
res |= a[4] ^ b[4];
res |= a[5] ^ b[5];
res |= a[6] ^ b[6];
res |= a[7] ^ b[7];
}
return is_zero(res);
}
static BN_ULONG
is_one(const BIGNUM *z)
{
BN_ULONG res = 0;
BN_ULONG *a = z->d;
if (z->top == (P256_LIMBS - P256_LIMBS / 8)) {
res = a[0] ^ ONE[0];
res |= a[1] ^ ONE[1];
res |= a[2] ^ ONE[2];
res |= a[3] ^ ONE[3];
if (P256_LIMBS == 8) {
res |= a[4] ^ ONE[4];
res |= a[5] ^ ONE[5];
res |= a[6] ^ ONE[6];
/*
* No check for a[7] (being zero) on 32-bit platforms,
* because value of "one" takes only 7 limbs.
*/
}
res = is_zero(res);
}
return res;
}
static int
ecp_nistz256_set_words(BIGNUM *a, BN_ULONG words[P256_LIMBS])
{
if (bn_wexpand(a, P256_LIMBS) == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
return 0;
}
memcpy(a->d, words, sizeof(BN_ULONG) * P256_LIMBS);
a->top = P256_LIMBS;
bn_correct_top(a);
return 1;
}
void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a);
void ecp_nistz256_point_add(P256_POINT *r, const P256_POINT *a,
const P256_POINT *b);
void ecp_nistz256_point_add_affine(P256_POINT *r, const P256_POINT *a,
const P256_POINT_AFFINE *b);
/* r = in^-1 mod p */
static void
ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], const BN_ULONG in[P256_LIMBS])
{
/*
* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff
* ffffffff ffffffff. We use FLT and use poly-2 as exponent.
*/
BN_ULONG p2[P256_LIMBS];
BN_ULONG p4[P256_LIMBS];
BN_ULONG p8[P256_LIMBS];
BN_ULONG p16[P256_LIMBS];
BN_ULONG p32[P256_LIMBS];
BN_ULONG res[P256_LIMBS];
unsigned int i;
ecp_nistz256_sqr_mont(res, in);
ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
ecp_nistz256_sqr_mont(res, p2);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
ecp_nistz256_sqr_mont(res, p4);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
ecp_nistz256_sqr_mont(res, p8);
for (i = 0; i < 7; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
ecp_nistz256_sqr_mont(res, p16);
for (i = 0; i < 15; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
ecp_nistz256_sqr_mont(res, p32);
for (i = 0; i < 31; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, in);
for (i = 0; i < 32 * 4; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, p32);
for (i = 0; i < 32; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, p32);
for (i = 0; i < 16; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, p16);
for (i = 0; i < 8; i++)
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, p8);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, p4);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, p2);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_sqr_mont(res, res);
ecp_nistz256_mul_mont(res, res, in);
memcpy(r, res, sizeof(res));
}
/*
* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
* returns one if it fits. Otherwise it returns zero.
*/
static int
ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], const BIGNUM *in)
{
if (in->top > P256_LIMBS)
return 0;
memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
return 1;
}
/* r = sum(scalar[i]*point[i]) */
static int
ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
const BIGNUM **scalar, const EC_POINT **point, size_t num, BN_CTX *ctx)
{
int ret = 0;
unsigned int i, j, index;
unsigned char (*p_str)[33] = NULL;
const unsigned int window_size = 5;
const unsigned int mask = (1 << (window_size + 1)) - 1;
unsigned int wvalue;
BN_ULONG tmp[P256_LIMBS];
/* avoid warning about ignored alignment for stack variable */
#if defined(__GNUC__) && !defined(__OpenBSD__)
ALIGN32
#endif
P256_POINT h;
const BIGNUM **scalars = NULL;
P256_POINT (*table)[16] = NULL;
if (posix_memalign((void **)&table, 64, num * sizeof(*table)) != 0 ||
(p_str = reallocarray(NULL, num, sizeof(*p_str))) == NULL ||
(scalars = reallocarray(NULL, num, sizeof(*scalars))) == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
for (i = 0; i < num; i++) {
P256_POINT *row = table[i];
/*
* This is an unusual input, we don't guarantee
* constant-timeness.
*/
if (BN_num_bits(scalar[i]) > 256 || BN_is_negative(scalar[i])) {
BIGNUM *mod;
if ((mod = BN_CTX_get(ctx)) == NULL)
goto err;
if (!BN_nnmod(mod, scalar[i], &group->order, ctx)) {
ECerror(ERR_R_BN_LIB);
goto err;
}
scalars[i] = mod;
} else
scalars[i] = scalar[i];
for (j = 0; j < scalars[i]->top * BN_BYTES; j += BN_BYTES) {
BN_ULONG d = scalars[i]->d[j / BN_BYTES];
p_str[i][j + 0] = d & 0xff;
p_str[i][j + 1] = (d >> 8) & 0xff;
p_str[i][j + 2] = (d >> 16) & 0xff;
p_str[i][j + 3] = (d >> 24) & 0xff;
if (BN_BYTES == 8) {
d >>= 32;
p_str[i][j + 4] = d & 0xff;
p_str[i][j + 5] = (d >> 8) & 0xff;
p_str[i][j + 6] = (d >> 16) & 0xff;
p_str[i][j + 7] = (d >> 24) & 0xff;
}
}
for (; j < 33; j++)
p_str[i][j] = 0;
/*
* table[0] is implicitly (0,0,0) (the point at infinity),
* therefore it is not stored. All other values are actually
* stored with an offset of -1 in table.
*/
if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X,
&point[i]->X) ||
!ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y,
&point[i]->Y) ||
!ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z,
&point[i]->Z)) {
ECerror(EC_R_COORDINATES_OUT_OF_RANGE);
goto err;
}
ecp_nistz256_point_double(&row[ 2 - 1], &row[ 1 - 1]);
ecp_nistz256_point_add(&row[ 3 - 1], &row[ 2 - 1], &row[1 - 1]);
ecp_nistz256_point_double(&row[ 4 - 1], &row[ 2 - 1]);
ecp_nistz256_point_double(&row[ 6 - 1], &row[ 3 - 1]);
ecp_nistz256_point_double(&row[ 8 - 1], &row[ 4 - 1]);
ecp_nistz256_point_double(&row[12 - 1], &row[ 6 - 1]);
ecp_nistz256_point_add(&row[ 5 - 1], &row[ 4 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[ 7 - 1], &row[ 6 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[ 9 - 1], &row[ 8 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
ecp_nistz256_point_double(&row[14 - 1], &row[ 7 - 1]);
ecp_nistz256_point_double(&row[10 - 1], &row[ 5 - 1]);
ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
ecp_nistz256_point_add(&row[16 - 1], &row[15 - 1], &row[1 - 1]);
}
index = 255;
wvalue = p_str[0][(index - 1) / 8];
wvalue = (wvalue >> ((index - 1) % 8)) & mask;
ecp_nistz256_select_w5(r, table[0], _booth_recode_w5(wvalue) >> 1);
while (index >= 5) {
for (i = (index == 255 ? 1 : 0); i < num; i++) {
unsigned int off = (index - 1) / 8;
wvalue = p_str[i][off] | p_str[i][off + 1] << 8;
wvalue = (wvalue >> ((index - 1) % 8)) & mask;
wvalue = _booth_recode_w5(wvalue);
ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);
ecp_nistz256_neg(tmp, h.Y);
copy_conditional(h.Y, tmp, (wvalue & 1));
ecp_nistz256_point_add(r, r, &h);
}
index -= window_size;
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
ecp_nistz256_point_double(r, r);
}
/* Final window */
for (i = 0; i < num; i++) {
wvalue = p_str[i][0];
wvalue = (wvalue << 1) & mask;
wvalue = _booth_recode_w5(wvalue);
ecp_nistz256_select_w5(&h, table[i], wvalue >> 1);
ecp_nistz256_neg(tmp, h.Y);
copy_conditional(h.Y, tmp, wvalue & 1);
ecp_nistz256_point_add(r, r, &h);
}
ret = 1;
err:
free(table);
free(p_str);
free(scalars);
return ret;
}
/* Coordinates of G, for which we have precomputed tables */
const static BN_ULONG def_xG[P256_LIMBS] = {
TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601),
TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6)
};
const static BN_ULONG def_yG[P256_LIMBS] = {
TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c),
TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85)
};
/*
* ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256
* generator.
*/
static int
ecp_nistz256_is_affine_G(const EC_POINT *generator)
{
return generator->X.top == P256_LIMBS &&
generator->Y.top == P256_LIMBS &&
is_equal(generator->X.d, def_xG) &&
is_equal(generator->Y.d, def_yG) &&
is_one(&generator->Z);
}
static int
ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx)
{
/*
* We precompute a table for a Booth encoded exponent (wNAF) based
* computation. Each table holds 64 values for safe access, with an
* implicit value of infinity at index zero. We use a window of size 7,
* and therefore require ceil(256/7) = 37 tables.
*/
EC_POINT *P = NULL, *T = NULL;
BN_CTX *new_ctx = NULL;
const EC_POINT *generator;
EC_PRE_COMP *ec_pre_comp;
BIGNUM *order;
int ret = 0;
unsigned int i, j, k;
PRECOMP256_ROW *precomp = NULL;
/* if there is an old EC_PRE_COMP object, throw it away */
EC_EX_DATA_free_data(&group->extra_data, ecp_nistz256_pre_comp_dup,
ecp_nistz256_pre_comp_free, ecp_nistz256_pre_comp_clear_free);
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
ECerror(EC_R_UNDEFINED_GENERATOR);
return 0;
}
if (ecp_nistz256_is_affine_G(generator)) {
/*
* No need to calculate tables for the standard generator
* because we have them statically.
*/
return 1;
}
if ((ec_pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL)
return 0;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
}
BN_CTX_start(ctx);
order = BN_CTX_get(ctx);
if (order == NULL)
goto err;
if (!EC_GROUP_get_order(group, order, ctx))
goto err;
if (BN_is_zero(order)) {
ECerror(EC_R_UNKNOWN_ORDER);
goto err;
}
if (posix_memalign((void **)&precomp, 64, 37 * sizeof(*precomp)) != 0) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
P = EC_POINT_new(group);
T = EC_POINT_new(group);
if (P == NULL || T == NULL)
goto err;
/*
* The zero entry is implicitly infinity, and we skip it, storing other
* values with -1 offset.
*/
if (!EC_POINT_copy(T, generator))
goto err;
for (k = 0; k < 64; k++) {
if (!EC_POINT_copy(P, T))
goto err;
for (j = 0; j < 37; j++) {
/*
* It would be faster to use EC_POINTs_make_affine and
* make multiple points affine at the same time.
*/
if (!EC_POINT_make_affine(group, P, ctx))
goto err;
if (!ecp_nistz256_bignum_to_field_elem(
precomp[j][k].X, &P->X) ||
!ecp_nistz256_bignum_to_field_elem(
precomp[j][k].Y, &P->Y)) {
ECerror(EC_R_COORDINATES_OUT_OF_RANGE);
goto err;
}
for (i = 0; i < 7; i++) {
if (!EC_POINT_dbl(group, P, P, ctx))
goto err;
}
}
if (!EC_POINT_add(group, T, T, generator, ctx))
goto err;
}
ec_pre_comp->group = group;
ec_pre_comp->w = 7;
ec_pre_comp->precomp = precomp;
if (!EC_EX_DATA_set_data(&group->extra_data, ec_pre_comp,
ecp_nistz256_pre_comp_dup, ecp_nistz256_pre_comp_free,
ecp_nistz256_pre_comp_clear_free)) {
goto err;
}
ec_pre_comp = NULL;
ret = 1;
err:
if (ctx != NULL)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
ecp_nistz256_pre_comp_free(ec_pre_comp);
free(precomp);
EC_POINT_free(P);
EC_POINT_free(T);
return ret;
}
static int
ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group,
const P256_POINT_AFFINE *in, BN_CTX *ctx)
{
BIGNUM x, y;
BN_ULONG d_x[P256_LIMBS], d_y[P256_LIMBS];
int ret = 0;
memcpy(d_x, in->X, sizeof(d_x));
x.d = d_x;
x.dmax = x.top = P256_LIMBS;
x.neg = 0;
x.flags = BN_FLG_STATIC_DATA;
memcpy(d_y, in->Y, sizeof(d_y));
y.d = d_y;
y.dmax = y.top = P256_LIMBS;
y.neg = 0;
y.flags = BN_FLG_STATIC_DATA;
ret = EC_POINT_set_affine_coordinates_GFp(group, out, &x, &y, ctx);
return ret;
}
/* r = scalar*G + sum(scalars[i]*points[i]) */
static int
ecp_nistz256_points_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar, size_t num, const EC_POINT *points[],
const BIGNUM *scalars[], BN_CTX *ctx)
{
int ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0;
size_t j;
unsigned char p_str[33] = { 0 };
const PRECOMP256_ROW *precomp = NULL;
const EC_PRE_COMP *ec_pre_comp = NULL;
const EC_POINT *generator = NULL;
unsigned int i = 0, index = 0;
BN_CTX *new_ctx = NULL;
const BIGNUM **new_scalars = NULL;
const EC_POINT **new_points = NULL;
const unsigned int window_size = 7;
const unsigned int mask = (1 << (window_size + 1)) - 1;
unsigned int wvalue;
/* avoid warning about ignored alignment for stack variable */
#if defined(__GNUC__) && !defined(__OpenBSD__)
ALIGN32
#endif
union {
P256_POINT p;
P256_POINT_AFFINE a;
} t, p;
BIGNUM *tmp_scalar;
if (group->meth != r->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (scalar == NULL && num == 0)
return EC_POINT_set_to_infinity(group, r);
for (j = 0; j < num; j++) {
if (group->meth != points[j]->meth) {
ECerror(EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
}
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
}
BN_CTX_start(ctx);
if (scalar) {
generator = EC_GROUP_get0_generator(group);
if (generator == NULL) {
ECerror(EC_R_UNDEFINED_GENERATOR);
goto err;
}
/* look if we can use precomputed multiples of generator */
ec_pre_comp = EC_EX_DATA_get_data(group->extra_data,
ecp_nistz256_pre_comp_dup, ecp_nistz256_pre_comp_free,
ecp_nistz256_pre_comp_clear_free);
if (ec_pre_comp != NULL) {
/*
* If there is a precomputed table for the generator,
* check that it was generated with the same generator.
*/
EC_POINT *pre_comp_generator = EC_POINT_new(group);
if (pre_comp_generator == NULL)
goto err;
if (!ecp_nistz256_set_from_affine(pre_comp_generator,
group, ec_pre_comp->precomp[0], ctx)) {
EC_POINT_free(pre_comp_generator);
goto err;
}
if (0 == EC_POINT_cmp(group, generator,
pre_comp_generator, ctx))
precomp = (const PRECOMP256_ROW *)
ec_pre_comp->precomp;
EC_POINT_free(pre_comp_generator);
}
if (precomp == NULL && ecp_nistz256_is_affine_G(generator)) {
/*
* If there is no precomputed data, but the generator
* is the default, a hardcoded table of precomputed
* data is used. This is because applications, such as
* Apache, do not use EC_KEY_precompute_mult.
*/
precomp =
(const PRECOMP256_ROW *)ecp_nistz256_precomputed;
}
if (precomp) {
if (BN_num_bits(scalar) > 256 ||
BN_is_negative(scalar)) {
if ((tmp_scalar = BN_CTX_get(ctx)) == NULL)
goto err;
if (!BN_nnmod(tmp_scalar, scalar, &group->order,
ctx)) {
ECerror(ERR_R_BN_LIB);
goto err;
}
scalar = tmp_scalar;
}
for (i = 0; i < scalar->top * BN_BYTES; i += BN_BYTES) {
BN_ULONG d = scalar->d[i / BN_BYTES];
p_str[i + 0] = d & 0xff;
p_str[i + 1] = (d >> 8) & 0xff;
p_str[i + 2] = (d >> 16) & 0xff;
p_str[i + 3] = (d >> 24) & 0xff;
if (BN_BYTES == 8) {
d >>= 32;
p_str[i + 4] = d & 0xff;
p_str[i + 5] = (d >> 8) & 0xff;
p_str[i + 6] = (d >> 16) & 0xff;
p_str[i + 7] = (d >> 24) & 0xff;
}
}
for (; i < 33; i++)
p_str[i] = 0;
/* First window */
wvalue = (p_str[0] << 1) & mask;
index += window_size;
wvalue = _booth_recode_w7(wvalue);
ecp_nistz256_select_w7(&p.a, precomp[0], wvalue >> 1);
ecp_nistz256_neg(p.p.Z, p.p.Y);
copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
/*
* Since affine infinity is encoded as (0,0) and
* Jacobian is (,,0), we need to harmonize them
* by assigning "one" or zero to Z.
*/
BN_ULONG infty;
infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] |
p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]);
if (P256_LIMBS == 8)
infty |=
(p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] |
p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]);
infty = 0 - is_zero(infty);
infty = ~infty;
p.p.Z[0] = ONE[0] & infty;
p.p.Z[1] = ONE[1] & infty;
p.p.Z[2] = ONE[2] & infty;
p.p.Z[3] = ONE[3] & infty;
if (P256_LIMBS == 8) {
p.p.Z[4] = ONE[4] & infty;
p.p.Z[5] = ONE[5] & infty;
p.p.Z[6] = ONE[6] & infty;
p.p.Z[7] = ONE[7] & infty;
}
for (i = 1; i < 37; i++) {
unsigned int off = (index - 1) / 8;
wvalue = p_str[off] | p_str[off + 1] << 8;
wvalue = (wvalue >> ((index - 1) % 8)) & mask;
index += window_size;
wvalue = _booth_recode_w7(wvalue);
ecp_nistz256_select_w7(&t.a, precomp[i],
wvalue >> 1);
ecp_nistz256_neg(t.p.Z, t.a.Y);
copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
}
} else {
p_is_infinity = 1;
no_precomp_for_generator = 1;
}
} else
p_is_infinity = 1;
if (no_precomp_for_generator) {
/*
* Without a precomputed table for the generator, it has to be
* handled like a normal point.
*/
new_scalars = reallocarray(NULL, num + 1, sizeof(BIGNUM *));
new_points = reallocarray(NULL, num + 1, sizeof(EC_POINT *));
if (new_scalars == NULL || new_points == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
goto err;
}
memcpy(new_scalars, scalars, num * sizeof(BIGNUM *));
new_scalars[num] = scalar;
memcpy(new_points, points, num * sizeof(EC_POINT *));
new_points[num] = generator;
scalars = new_scalars;
points = new_points;
num++;
}
if (num != 0) {
P256_POINT *out = &t.p;
if (p_is_infinity)
out = &p.p;
if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num,
ctx))
goto err;
if (!p_is_infinity)
ecp_nistz256_point_add(&p.p, &p.p, out);
}
/* Not constant-time, but we're only operating on the public output. */
if (!ecp_nistz256_set_words(&r->X, p.p.X) ||
!ecp_nistz256_set_words(&r->Y, p.p.Y) ||
!ecp_nistz256_set_words(&r->Z, p.p.Z)) {
goto err;
}
r->Z_is_one = is_one(&r->Z) & 1;
ret = 1;
err:
if (ctx)
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
free(new_points);
free(new_scalars);
return ret;
}
static int
ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
{
BN_ULONG z_inv2[P256_LIMBS];
BN_ULONG z_inv3[P256_LIMBS];
BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
if (EC_POINT_is_at_infinity(group, point)) {
ECerror(EC_R_POINT_AT_INFINITY);
return 0;
}
if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
!ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
!ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
ECerror(EC_R_COORDINATES_OUT_OF_RANGE);
return 0;
}
ecp_nistz256_mod_inverse(z_inv3, point_z);
ecp_nistz256_sqr_mont(z_inv2, z_inv3);
/*
* Unlike the |BN_mod_mul_montgomery|-based implementation, we cannot
* factor out the two calls to |ecp_nistz256_from_mont| into one call,
* because |ecp_nistz256_from_mont| must be the last operation to
* ensure that the result is fully reduced mod P.
*/
if (x != NULL) {
BN_ULONG x_aff[P256_LIMBS];
BN_ULONG x_ret[P256_LIMBS];
ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
ecp_nistz256_from_mont(x_ret, x_aff);
if (!ecp_nistz256_set_words(x, x_ret))
return 0;
}
if (y != NULL) {
BN_ULONG y_aff[P256_LIMBS];
BN_ULONG y_ret[P256_LIMBS];
ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
ecp_nistz256_from_mont(y_ret, y_aff);
if (!ecp_nistz256_set_words(y, y_ret))
return 0;
}
return 1;
}
static EC_PRE_COMP *
ecp_nistz256_pre_comp_new(const EC_GROUP *group)
{
EC_PRE_COMP *ret;
if (group == NULL)
return NULL;
ret = (EC_PRE_COMP *)malloc(sizeof(EC_PRE_COMP));
if (ret == NULL) {
ECerror(ERR_R_MALLOC_FAILURE);
return ret;
}
ret->group = group;
ret->w = 6; /* default */
ret->precomp = NULL;
ret->references = 1;
return ret;
}
static void *
ecp_nistz256_pre_comp_dup(void *src_)
{
EC_PRE_COMP *src = src_;
/* no need to actually copy, these objects never change! */
CRYPTO_add(&src->references, 1, CRYPTO_LOCK_EC_PRE_COMP);
return src_;
}
static void
ecp_nistz256_pre_comp_free(void *pre_)
{
int i;
EC_PRE_COMP *pre = pre_;
if (pre == NULL)
return;
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0)
return;
free(pre->precomp);
free(pre);
}
static void
ecp_nistz256_pre_comp_clear_free(void *pre_)
{
int i;
EC_PRE_COMP *pre = pre_;
if (pre == NULL)
return;
i = CRYPTO_add(&pre->references, -1, CRYPTO_LOCK_EC_PRE_COMP);
if (i > 0)
return;
if (pre->precomp != NULL) {
/*
* LSSL XXX
* The original OpenSSL code uses an obfuscated
* computation which is intended to be
* 37 * (1 << pre->w) * sizeof(P256_POINT_AFFINE)
* here, but the only place where we allocate this uses
* PRECOMP256_ROW (i.e. 64 P256_POINT_AFFINE) but sets w == 7.
*/
freezero(pre->precomp, 37 * sizeof(PRECOMP256_ROW));
}
freezero(pre, sizeof *pre);
}
static int
ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group)
{
/* There is a hard-coded table for the default generator. */
const EC_POINT *generator = EC_GROUP_get0_generator(group);
if (generator != NULL && ecp_nistz256_is_affine_G(generator)) {
/* There is a hard-coded table for the default generator. */
return 1;
}
return
EC_EX_DATA_get_data(group->extra_data, ecp_nistz256_pre_comp_dup,
ecp_nistz256_pre_comp_free, ecp_nistz256_pre_comp_clear_free) !=
NULL;
}
const EC_METHOD *
EC_GFp_nistz256_method(void)
{
static const EC_METHOD ret = {
.flags = EC_FLAGS_DEFAULT_OCT,
.field_type = NID_X9_62_prime_field,
.group_init = ec_GFp_mont_group_init,
.group_finish = ec_GFp_mont_group_finish,
.group_clear_finish = ec_GFp_mont_group_clear_finish,
.group_copy = ec_GFp_mont_group_copy,
.group_set_curve = ec_GFp_mont_group_set_curve,
.group_get_curve = ec_GFp_simple_group_get_curve,
.group_get_degree = ec_GFp_simple_group_get_degree,
.group_check_discriminant =
ec_GFp_simple_group_check_discriminant,
.point_init = ec_GFp_simple_point_init,
.point_finish = ec_GFp_simple_point_finish,
.point_clear_finish = ec_GFp_simple_point_clear_finish,
.point_copy = ec_GFp_simple_point_copy,
.point_set_to_infinity = ec_GFp_simple_point_set_to_infinity,
.point_set_Jprojective_coordinates_GFp =
ec_GFp_simple_set_Jprojective_coordinates_GFp,
.point_get_Jprojective_coordinates_GFp =
ec_GFp_simple_get_Jprojective_coordinates_GFp,
.point_set_affine_coordinates =
ec_GFp_simple_point_set_affine_coordinates,
.point_get_affine_coordinates = ecp_nistz256_get_affine,
.add = ec_GFp_simple_add,
.dbl = ec_GFp_simple_dbl,
.invert = ec_GFp_simple_invert,
.is_at_infinity = ec_GFp_simple_is_at_infinity,
.is_on_curve = ec_GFp_simple_is_on_curve,
.point_cmp = ec_GFp_simple_cmp,
.make_affine = ec_GFp_simple_make_affine,
.points_make_affine = ec_GFp_simple_points_make_affine,
.mul = ecp_nistz256_points_mul,
.precompute_mult = ecp_nistz256_mult_precompute,
.have_precompute_mult =
ecp_nistz256_window_have_precompute_mult,
.field_mul = ec_GFp_mont_field_mul,
.field_sqr = ec_GFp_mont_field_sqr,
.field_encode = ec_GFp_mont_field_encode,
.field_decode = ec_GFp_mont_field_decode,
.field_set_to_one = ec_GFp_mont_field_set_to_one,
.blind_coordinates = NULL,
};
return &ret;
}
|