1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
|
.\" $OpenBSD: DES_set_key.3,v 1.2 2016/11/06 15:52:50 jmc Exp $
.\"
.Dd $Mdocdate: November 6 2016 $
.Dt DES_SET_KEY 3
.Os
.Sh NAME
.Nm DES_random_key ,
.Nm DES_set_key ,
.Nm DES_key_sched ,
.Nm DES_set_key_checked ,
.Nm DES_set_key_unchecked ,
.Nm DES_set_odd_parity ,
.Nm DES_is_weak_key ,
.Nm DES_ecb_encrypt ,
.Nm DES_ecb2_encrypt ,
.Nm DES_ecb3_encrypt ,
.Nm DES_ncbc_encrypt ,
.Nm DES_cfb_encrypt ,
.Nm DES_ofb_encrypt ,
.Nm DES_pcbc_encrypt ,
.Nm DES_cfb64_encrypt ,
.Nm DES_ofb64_encrypt ,
.Nm DES_xcbc_encrypt ,
.Nm DES_ede2_cbc_encrypt ,
.Nm DES_ede2_cfb64_encrypt ,
.Nm DES_ede2_ofb64_encrypt ,
.Nm DES_ede3_cbc_encrypt ,
.Nm DES_ede3_cbcm_encrypt ,
.Nm DES_ede3_cfb64_encrypt ,
.Nm DES_ede3_ofb64_encrypt ,
.Nm DES_cbc_cksum ,
.Nm DES_quad_cksum ,
.Nm DES_string_to_key ,
.Nm DES_string_to_2keys ,
.Nm DES_fcrypt ,
.Nm DES_crypt ,
.Nm DES_enc_read ,
.Nm DES_enc_write
.Nd DES encryption
.Sh SYNOPSIS
.In openssl/des.h
.Ft void
.Fo DES_random_key
.Fa "DES_cblock *ret"
.Fc
.Ft int
.Fo DES_set_key
.Fa "const_DES_cblock *key"
.Fa "DES_key_schedule *schedule"
.Fc
.Ft int
.Fo DES_key_sched
.Fa "const_DES_cblock *key"
.Fa "DES_key_schedule *schedule"
.Fc
.Ft int
.Fo DES_set_key_checked
.Fa "const_DES_cblock *key"
.Fa "DES_key_schedule *schedule"
.Fc
.Ft void
.Fo DES_set_key_unchecked
.Fa "const_DES_cblock *key"
.Fa "DES_key_schedule *schedule"
.Fc
.Ft void
.Fo DES_set_odd_parity
.Fa "DES_cblock *key"
.Fc
.Ft int
.Fo DES_is_weak_key
.Fa "const_DES_cblock *key"
.Fc
.Ft void
.Fo DES_ecb_encrypt
.Fa "const_DES_cblock *input"
.Fa "DES_cblock *output"
.Fa "DES_key_schedule *ks"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ecb2_encrypt
.Fa "const_DES_cblock *input"
.Fa "DES_cblock *output"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ecb3_encrypt
.Fa "const_DES_cblock *input"
.Fa "DES_cblock *output"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_key_schedule *ks3"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ncbc_encrypt
.Fa "const unsigned char *input"
.Fa "unsigned char *output"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_cfb_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "int numbits"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ofb_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "int numbits"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fc
.Ft void
.Fo DES_pcbc_encrypt
.Fa "const unsigned char *input"
.Fa "unsigned char *output"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_cfb64_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fa "int *num"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ofb64_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fa "int *num"
.Fc
.Ft void
.Fo DES_xcbc_encrypt
.Fa "const unsigned char *input"
.Fa "unsigned char *output"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "DES_cblock *ivec"
.Fa "const_DES_cblock *inw"
.Fa "const_DES_cblock *outw"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ede2_cbc_encrypt
.Fa "const unsigned char *input"
.Fa "unsigned char *output"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_cblock *ivec"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ede2_cfb64_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_cblock *ivec"
.Fa "int *num"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ede2_ofb64_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_cblock *ivec"
.Fa "int *num"
.Fc
.Ft void
.Fo DES_ede3_cbc_encrypt
.Fa "const unsigned char *input"
.Fa "unsigned char *output"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_key_schedule *ks3"
.Fa "DES_cblock *ivec"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ede3_cbcm_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_key_schedule *ks3"
.Fa "DES_cblock *ivec1"
.Fa "DES_cblock *ivec2"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ede3_cfb64_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_key_schedule *ks3"
.Fa "DES_cblock *ivec"
.Fa "int *num"
.Fa "int enc"
.Fc
.Ft void
.Fo DES_ede3_ofb64_encrypt
.Fa "const unsigned char *in"
.Fa "unsigned char *out"
.Fa "long length"
.Fa "DES_key_schedule *ks1"
.Fa "DES_key_schedule *ks2"
.Fa "DES_key_schedule *ks3"
.Fa "DES_cblock *ivec"
.Fa "int *num"
.Fc
.Ft DES_LONG
.Fo DES_cbc_cksum
.Fa "const unsigned char *input"
.Fa "DES_cblock *output"
.Fa "long length"
.Fa "DES_key_schedule *schedule"
.Fa "const_DES_cblock *ivec"
.Fc
.Ft DES_LONG
.Fo DES_quad_cksum
.Fa "const unsigned char *input"
.Fa "DES_cblock output[]"
.Fa "long length"
.Fa "int out_count"
.Fa "DES_cblock *seed"
.Fc
.Ft void
.Fo DES_string_to_key
.Fa "const char *str"
.Fa "DES_cblock *key"
.Fc
.Ft void
.Fo DES_string_to_2keys
.Fa "const char *str"
.Fa "DES_cblock *key1"
.Fa "DES_cblock *key2"
.Fc
.Ft char *
.Fo DES_fcrypt
.Fa "const char *buf"
.Fa "const char *salt"
.Fa "char *ret"
.Fc
.Ft char *
.Fo DES_crypt
.Fa "const char *buf"
.Fa "const char *salt"
.Fc
.Ft int
.Fo DES_enc_read
.Fa "int fd"
.Fa "void *buf"
.Fa "int len"
.Fa "DES_key_schedule *sched"
.Fa "DES_cblock *iv"
.Fc
.Ft int
.Fo DES_enc_write
.Fa "int fd"
.Fa "const void *buf"
.Fa "int len"
.Fa "DES_key_schedule *sched"
.Fa "DES_cblock *iv"
.Fc
.Sh DESCRIPTION
This library contains a fast implementation of the DES encryption
algorithm.
.Pp
There are two phases to the use of DES encryption.
The first is the generation of a
.Vt DES_key_schedule
from a key, the second is the actual encryption.
A DES key is of type
.Vt DES_cblock .
This type is consists of 8 bytes with odd parity.
The least significant bit in each byte is the parity bit.
The key schedule is an expanded form of the key; it is used to speed the
encryption process.
.Pp
.Fn DES_random_key
generates a random key in odd parity.
.Pp
Before a DES key can be used, it must be converted into the architecture
dependent
.Vt DES_key_schedule
via the
.Fn DES_set_key_checked
or
.Fn DES_set_key_unchecked
function.
.Pp
.Fn DES_set_key_checked
will check that the key passed is of odd parity and is not a week or
semi-weak key.
If the parity is wrong, then -1 is returned.
If the key is a weak key, then -2 is returned.
If an error is returned, the key schedule is not generated.
.Pp
.Fn DES_set_key
works like
.Fn DES_set_key_checked
if the
.Em DES_check_key
flag is non-zero, otherwise like
.Fn DES_set_key_unchecked .
These functions are available for compatibility; it is recommended to
use a function that does not depend on a global variable.
.Pp
.Fn DES_set_odd_parity
sets the parity of the passed
.Fa key
to odd.
.Pp
.Fn DES_is_weak_key
returns 1 is the passed key is a weak key, 0 if it is ok.
.Pp
The following routines mostly operate on an input and output stream of
.Vt DES_cblock Ns s.
.Pp
.Fn DES_ecb_encrypt
is the basic DES encryption routine that encrypts or decrypts a single
8-byte
.Vt DES_cblock
in electronic code book (ECB) mode.
It always transforms the input data, pointed to by
.Fa input ,
into the output data, pointed to by the
.Fa output
argument.
If the
.Fa enc
argument is non-zero
.Pq Dv DES_ENCRYPT ,
the
.Fa input
(cleartext) is encrypted in to the
.Fa output
(ciphertext) using the key_schedule specified by the
.Fa schedule
argument, previously set via
.Fn DES_set_key .
If
.Fa enc
is zero
.Pq Dv DES_DECRYPT ,
the
.Fa input
(now ciphertext) is decrypted into the
.Fa output
(now cleartext).
Input and output may overlap.
.Fn DES_ecb_encrypt
does not return a value.
.Pp
.Fn DES_ecb3_encrypt
encrypts/decrypts the
.Fa input
block by using three-key Triple-DES encryption in ECB mode.
This involves encrypting the input with
.Fa ks1 ,
decrypting with the key schedule
.Fa ks2 ,
and then encrypting with
.Fa ks3 .
This routine greatly reduces the chances of brute force breaking of DES
and has the advantage of if
.Fa ks1 ,
.Fa ks2 ,
and
.Fa ks3
are the same, it is equivalent to just encryption using ECB mode and
.Fa ks1
as the key.
.Pp
The macro
.Fn DES_ecb2_encrypt
is provided to perform two-key Triple-DES encryption by using
.Fa ks1
for the final encryption.
.Pp
.Fn DES_ncbc_encrypt
encrypts/decrypts using the cipher-block-chaining (CBC) mode of DES.
If the
.Fa enc
argument is non-zero, the routine cipher-block-chain encrypts the
cleartext data pointed to by the
.Fa input
argument into the ciphertext pointed to by the
.Fa output
argument, using the key schedule provided by the
.Fa schedule
argument, and initialization vector provided by the
.Fa ivec
argument.
If the
.Fa length
argument is not an integral multiple of eight bytes, the last block is
copied to a temporary area and zero filled.
The output is always an integral multiple of eight bytes.
.Pp
.Fn DES_xcbc_encrypt
is RSA's DESX mode of DES.
It uses
.Fa inw
and
.Fa outw
to 'whiten' the encryption.
.Fa inw
and
.Fa outw
are secret (unlike the iv) and are as such, part of the key.
So the key is sort of 24 bytes.
This is much better than CBC DES.
.Pp
.Fn DES_ede3_cbc_encrypt
implements outer triple CBC DES encryption with three keys.
This means that each DES operation inside the CBC mode is really an
.Qq Li C=E(ks3,D(ks2,E(ks1,M))) .
This mode is used by SSL.
.Pp
The
.Fn DES_ede2_cbc_encrypt
macro implements two-key Triple-DES by reusing
.Fa ks1
for the final encryption.
.Qq Li C=E(ks1,D(ks2,E(ks1,M))) .
This form of Triple-DES is used by the RSAREF library.
.Pp
.Fn DES_pcbc_encrypt
encrypt/decrypts using the propagating cipher block chaining mode used
by Kerberos v4.
Its parameters are the same as
.Fn DES_ncbc_encrypt .
.Pp
.Fn DES_cfb_encrypt
encrypt/decrypts using cipher feedback mode.
This method takes an array of characters as input and outputs and array
of characters.
It does not require any padding to 8 character groups.
Note: the
.Fa ivec
variable is changed and the new changed value needs to be passed to the
next call to this function.
Since this function runs a complete DES ECB encryption per
.Fa numbits ,
this function is only suggested for use when sending small numbers of
characters.
.Pp
.Fn DES_cfb64_encrypt
implements CFB mode of DES with 64bit feedback.
Why is this useful you ask?
Because this routine will allow you to encrypt an arbitrary number of
bytes, no 8 byte padding.
Each call to this routine will encrypt the input bytes to output and
then update ivec and num.
num contains 'how far' we are though ivec.
If this does not make much sense, read more about cfb mode of DES :-).
.Pp
.Fn DES_ede3_cfb64_encrypt
and
.Fn DES_ede2_cfb64_encrypt
is the same as
.Fn DES_cfb64_encrypt
except that Triple-DES is used.
.Pp
.Fn DES_ofb_encrypt
encrypts using output feedback mode.
This method takes an array of characters as input and outputs and array
of characters.
It does not require any padding to 8 character groups.
Note: the
.Fa ivec
variable is changed and the new changed value needs to be passed to the
next call to this function.
Since this function runs a complete DES ECB encryption per numbits, this
function is only suggested for use when sending small numbers of
characters.
.Pp
.Fn DES_ofb64_encrypt
is the same as
.Fn DES_cfb64_encrypt
using Output Feed Back mode.
.Pp
.Fn DES_ede3_ofb64_encrypt
and
.Fn DES_ede2_ofb64_encrypt
is the same as
.Fn DES_ofb64_encrypt ,
using Triple-DES.
.Pp
The following functions are included in the DES library for
compatibility with the MIT Kerberos library.
.Pp
.Fn DES_cbc_cksum
produces an 8 byte checksum based on the input stream (via CBC
encryption).
The last 4 bytes of the checksum are returned and the complete 8 bytes
are placed in
.Fa output .
This function is used by Kerberos v4.
Other applications should use
.Xr EVP_DigestInit 3
etc. instead.
.Pp
.Fn DES_quad_cksum
is a Kerberos v4 function.
It returns a 4 byte checksum from the input bytes.
The algorithm can be iterated over the input, depending on
.Fa out_count ,
1, 2, 3 or 4 times.
If
.Fa output
is
.Pf non- Dv NULL ,
the 8 bytes generated by each pass are written into
.Fa output .
.Pp
The following are DES-based transformations:
.Pp
.Fn DES_fcrypt
is a fast version of the Unix
.Xr crypt 3
function.
This version takes only a small amount of space relative to other
fast crypt implementations.
This is different to the normal crypt in that the third parameter is the
buffer that the return value is written into.
It needs to be at least 14 bytes long.
This function is thread safe, unlike the normal crypt.
.Pp
.Fn DES_crypt
is a faster replacement for the normal system
.Xr crypt 3 .
This function calls
.Fn DES_fcrypt
with a static array passed as the third parameter.
This emulates the normal non-thread safe semantics of
.Xr crypt 3 .
.Pp
.Fn DES_enc_write
writes
.Fa len
bytes to file descriptor
.Fa fd
from buffer
.Fa buf .
The data is encrypted via
.Em pcbc_encrypt
(default) using
.Fa sched
for the key and
.Fa iv
as a starting vector.
The actual data send down
.Fa fd
consists of 4 bytes (in network byte order) containing the length of the
following encrypted data.
The encrypted data then follows, padded with random data out to a
multiple of 8 bytes.
.Pp
.Fn DES_enc_read
is used to read
.Fa len
bytes from file descriptor
.Fa fd
into buffer
.Fa buf .
The data being read from
.Fa fd
is assumed to have come from
.Fn DES_enc_write
and is decrypted using
.Fa sched
for the key schedule and
.Fa iv
for the initial vector.
.Pp
.Sy Warning:
The data format used by
.Fn DES_enc_write
and
.Fn DES_enc_read
has a cryptographic weakness: When asked to write more than
.Dv MAXWRITE
bytes,
.Fn DES_enc_write
will split the data into several chunks that are all encrypted using the
same IV.
So don't use these functions unless you are sure you know what
you do (in which case you might not want to use them anyway).
They cannot handle non-blocking sockets.
.Fn DES_enc_read
uses an internal state and thus cannot be used on multiple files.
.Pp
.Em DES_rw_mode
is used to specify the encryption mode to use with
.Fn DES_enc_read .
If set to
.Dv DES_PCBC_MODE
(the default), DES_pcbc_encrypt is used.
If set to
.Dv DES_CBC_MODE
DES_cbc_encrypt is used.
.Sh SEE ALSO
.Xr crypt 3 ,
.Xr rand 3
.Pp
The
.Xr evp 3
library provides higher-level encryption functions.
.Sh STANDARDS
ANSI X3.106
.Pp
The DES library was initially written to be source code compatible
with the MIT Kerberos library.
.Sh HISTORY
In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
clashes with older versions of libdes.
.Pp
.Fn DES_set_key_checked
and
.Fn DES_set_key_unchecked
were added in OpenSSL 0.9.5.
.Pp
.Fn des_generate_random_block ,
.Fn des_init_random_number_generator ,
.Fn des_new_random_key ,
.Fn des_set_random_generator_seed ,
.Xr des_set_sequence_number ,
and
.Fn des_rand_data 3
are used in newer versions of Kerberos but are not implemented here.
.Pp
.Fn DES_random_key
generated cryptographically weak random data in SSLeay and in OpenSSL
prior version 0.9.5, as well as in the original MIT library.
.Sh AUTHORS
.An Eric Young Aq Mt eay@cryptsoft.com
.Sh CAVEATS
Single-key DES is insecure due to its short key size.
ECB mode is not suitable for most applications.
.Sh BUGS
.Xr DES_cbc_encrypt 3
does not modify
.Fa ivec ;
use
.Fn DES_ncbc_encrypt
instead.
.Pp
.Fn DES_cfb_encrypt
and
.Fn DES_ofb_encrypt
operates on input of 8 bits.
What this means is that if you set numbits to 12, and length to 2, the
first 12 bits will come from the 1st input byte and the low half of the
second input byte.
The second 12 bits will have the low 8 bits taken from the 3rd input
byte and the top 4 bits taken from the 4th input byte.
The same holds for output.
This function has been implemented this way because most people will be
using a multiple of 8 and because once you get into pulling bytes input
bytes apart things get ugly!
.Pp
.Fn DES_string_to_key
is available for backward compatibility with the MIT library.
New applications should use a cryptographic hash function.
The same applies for
.Fn DES_string_to_2key .
|