1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
|
.\" $OpenBSD: EVP_EncryptInit.3,v 1.24 2018/09/12 06:35:38 djm Exp $
.\" full merge up to: OpenSSL 5211e094 Nov 11 14:39:11 2014 -0800
.\" selective merge up to: OpenSSL 16cfc2c9 Mar 8 22:30:28 2018 +0100
.\"
.\" This file was written by Dr. Stephen Henson <steve@openssl.org>
.\" and Richard Levitte <levitte@openssl.org>.
.\" Copyright (c) 2000-2002, 2005, 2012-2016 The OpenSSL Project.
.\" All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\"
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\"
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in
.\" the documentation and/or other materials provided with the
.\" distribution.
.\"
.\" 3. All advertising materials mentioning features or use of this
.\" software must display the following acknowledgment:
.\" "This product includes software developed by the OpenSSL Project
.\" for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
.\"
.\" 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
.\" endorse or promote products derived from this software without
.\" prior written permission. For written permission, please contact
.\" openssl-core@openssl.org.
.\"
.\" 5. Products derived from this software may not be called "OpenSSL"
.\" nor may "OpenSSL" appear in their names without prior written
.\" permission of the OpenSSL Project.
.\"
.\" 6. Redistributions of any form whatsoever must retain the following
.\" acknowledgment:
.\" "This product includes software developed by the OpenSSL Project
.\" for use in the OpenSSL Toolkit (http://www.openssl.org/)"
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
.\" EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
.\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
.\" ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
.\" SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
.\" NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
.\" LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
.\" STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
.\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
.\" OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.Dd $Mdocdate: September 12 2018 $
.Dt EVP_ENCRYPTINIT 3
.Os
.Sh NAME
.Nm EVP_CIPHER_CTX_new ,
.Nm EVP_CIPHER_CTX_reset ,
.Nm EVP_CIPHER_CTX_cleanup ,
.Nm EVP_CIPHER_CTX_init ,
.Nm EVP_CIPHER_CTX_free ,
.Nm EVP_EncryptInit_ex ,
.Nm EVP_EncryptUpdate ,
.Nm EVP_EncryptFinal_ex ,
.Nm EVP_DecryptInit_ex ,
.Nm EVP_DecryptUpdate ,
.Nm EVP_DecryptFinal_ex ,
.Nm EVP_CipherInit_ex ,
.Nm EVP_CipherUpdate ,
.Nm EVP_CipherFinal_ex ,
.Nm EVP_EncryptInit ,
.Nm EVP_EncryptFinal ,
.Nm EVP_DecryptInit ,
.Nm EVP_DecryptFinal ,
.Nm EVP_CipherInit ,
.Nm EVP_CipherFinal ,
.Nm EVP_CIPHER_CTX_set_padding ,
.Nm EVP_CIPHER_CTX_set_key_length ,
.Nm EVP_CIPHER_CTX_ctrl ,
.Nm EVP_CIPHER_CTX_rand_key ,
.Nm EVP_get_cipherbyname ,
.Nm EVP_get_cipherbynid ,
.Nm EVP_get_cipherbyobj ,
.Nm EVP_CIPHER_nid ,
.Nm EVP_CIPHER_block_size ,
.Nm EVP_CIPHER_key_length ,
.Nm EVP_CIPHER_iv_length ,
.Nm EVP_CIPHER_flags ,
.Nm EVP_CIPHER_mode ,
.Nm EVP_CIPHER_type ,
.Nm EVP_CIPHER_CTX_cipher ,
.Nm EVP_CIPHER_CTX_nid ,
.Nm EVP_CIPHER_CTX_block_size ,
.Nm EVP_CIPHER_CTX_key_length ,
.Nm EVP_CIPHER_CTX_iv_length ,
.Nm EVP_CIPHER_CTX_get_iv ,
.Nm EVP_CIPHER_CTX_set_iv ,
.Nm EVP_CIPHER_CTX_get_app_data ,
.Nm EVP_CIPHER_CTX_set_app_data ,
.Nm EVP_CIPHER_CTX_type ,
.Nm EVP_CIPHER_CTX_flags ,
.Nm EVP_CIPHER_CTX_mode ,
.Nm EVP_CIPHER_param_to_asn1 ,
.Nm EVP_CIPHER_asn1_to_param ,
.Nm EVP_enc_null ,
.Nm EVP_des_cbc ,
.Nm EVP_des_ecb ,
.Nm EVP_des_cfb ,
.Nm EVP_des_ofb ,
.Nm EVP_des_ede_cbc ,
.Nm EVP_des_ede ,
.Nm EVP_des_ede_ofb ,
.Nm EVP_des_ede_cfb ,
.Nm EVP_des_ede3_cbc ,
.Nm EVP_des_ede3 ,
.Nm EVP_des_ede3_ofb ,
.Nm EVP_des_ede3_cfb ,
.Nm EVP_desx_cbc ,
.Nm EVP_rc4 ,
.Nm EVP_rc4_40 ,
.Nm EVP_rc4_hmac_md5 ,
.Nm EVP_idea_cbc ,
.Nm EVP_idea_ecb ,
.Nm EVP_idea_cfb ,
.Nm EVP_idea_ofb ,
.Nm EVP_rc2_cbc ,
.Nm EVP_rc2_ecb ,
.Nm EVP_rc2_cfb ,
.Nm EVP_rc2_ofb ,
.Nm EVP_rc2_40_cbc ,
.Nm EVP_rc2_64_cbc ,
.Nm EVP_bf_cbc ,
.Nm EVP_bf_ecb ,
.Nm EVP_bf_cfb ,
.Nm EVP_bf_ofb ,
.Nm EVP_cast5_cbc ,
.Nm EVP_cast5_ecb ,
.Nm EVP_cast5_cfb ,
.Nm EVP_cast5_ofb ,
.Nm EVP_aes_128_cbc ,
.Nm EVP_aes_128_ecb ,
.Nm EVP_aes_128_cfb ,
.Nm EVP_aes_128_ofb ,
.Nm EVP_aes_192_cbc ,
.Nm EVP_aes_192_ecb ,
.Nm EVP_aes_192_cfb ,
.Nm EVP_aes_192_ofb ,
.Nm EVP_aes_256_cbc ,
.Nm EVP_aes_256_ecb ,
.Nm EVP_aes_256_cfb ,
.Nm EVP_aes_256_ofb ,
.Nm EVP_aes_128_gcm ,
.Nm EVP_aes_192_gcm ,
.Nm EVP_aes_256_gcm ,
.Nm EVP_aes_128_ccm ,
.Nm EVP_aes_192_ccm ,
.Nm EVP_aes_256_ccm ,
.Nm EVP_aes_128_cbc_hmac_sha1 ,
.Nm EVP_aes_256_cbc_hmac_sha1 ,
.Nm EVP_chacha20
.Nd EVP cipher routines
.Sh SYNOPSIS
.In openssl/evp.h
.Ft EVP_CIPHER_CTX *
.Fn EVP_CIPHER_CTX_new void
.Ft int
.Fo EVP_CIPHER_CTX_reset
.Fa "EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_cleanup
.Fa "EVP_CIPHER_CTX *ctx"
.Fc
.Ft void
.Fo EVP_CIPHER_CTX_init
.Fa "EVP_CIPHER_CTX *ctx"
.Fc
.Ft void
.Fo EVP_CIPHER_CTX_free
.Fa "EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_EncryptInit_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "ENGINE *impl"
.Fa "const unsigned char *key"
.Fa "const unsigned char *iv"
.Fc
.Ft int
.Fo EVP_EncryptUpdate
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fa "const unsigned char *in"
.Fa "int inl"
.Fc
.Ft int
.Fo EVP_EncryptFinal_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_DecryptInit_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "ENGINE *impl"
.Fa "const unsigned char *key"
.Fa "const unsigned char *iv"
.Fc
.Ft int
.Fo EVP_DecryptUpdate
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fa "const unsigned char *in"
.Fa "int inl"
.Fc
.Ft int
.Fo EVP_DecryptFinal_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_CipherInit_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "ENGINE *impl"
.Fa "const unsigned char *key"
.Fa "const unsigned char *iv"
.Fa "int enc"
.Fc
.Ft int
.Fo EVP_CipherUpdate
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fa "const unsigned char *in"
.Fa "int inl"
.Fc
.Ft int
.Fo EVP_CipherFinal_ex
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_EncryptInit
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "const unsigned char *key"
.Fa "const unsigned char *iv"
.Fc
.Ft int
.Fo EVP_EncryptFinal
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *out"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_DecryptInit
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "const unsigned char *key"
.Fa "const unsigned char *iv"
.Fc
.Ft int
.Fo EVP_DecryptFinal
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_CipherInit
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const EVP_CIPHER *type"
.Fa "const unsigned char *key"
.Fa "const unsigned char *iv"
.Fa "int enc"
.Fc
.Ft int
.Fo EVP_CipherFinal
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *outm"
.Fa "int *outl"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_set_padding
.Fa "EVP_CIPHER_CTX *x"
.Fa "int padding"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_set_key_length
.Fa "EVP_CIPHER_CTX *x"
.Fa "int keylen"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_ctrl
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "int type"
.Fa "int arg"
.Fa "void *ptr"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_rand_key
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "unsigned char *key"
.Fc
.Ft const EVP_CIPHER *
.Fo EVP_get_cipherbyname
.Fa "const char *name"
.Fc
.Ft const EVP_CIPHER *
.Fo EVP_get_cipherbynid
.Fa "int nid"
.Fc
.Ft const EVP_CIPHER *
.Fo EVP_get_cipherbyobj
.Fa "const ASN1_OBJECT *a"
.Fc
.Ft int
.Fo EVP_CIPHER_nid
.Fa "const EVP_CIPHER *e"
.Fc
.Ft int
.Fo EVP_CIPHER_block_size
.Fa "const EVP_CIPHER *e"
.Fc
.Ft int
.Fo EVP_CIPHER_key_length
.Fa "const EVP_CIPHER *e"
.Fc
.Ft int
.Fo EVP_CIPHER_iv_length
.Fa "const EVP_CIPHER *e"
.Fc
.Ft unsigned long
.Fo EVP_CIPHER_flags
.Fa "const EVP_CIPHER *e"
.Fc
.Ft unsigned long
.Fo EVP_CIPHER_mode
.Fa "const EVP_CIPHER *e"
.Fc
.Ft int
.Fo EVP_CIPHER_type
.Fa "const EVP_CIPHER *ctx"
.Fc
.Ft const EVP_CIPHER *
.Fo EVP_CIPHER_CTX_cipher
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_nid
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_block_size
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_key_length
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_iv_length
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_get_iv
.Fa "const EVP_CIPHER_CTX *ctx"
.Fa "u_char *iv"
.Fa "size_t len"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_set_iv
.Fa "EVP_CIPHER_CTX *ctx"
.Fa "const u_char *iv"
.Fa "size_t len"
.Fc
.Ft void *
.Fo EVP_CIPHER_CTX_get_app_data
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft void
.Fo EVP_CIPHER_CTX_set_app_data
.Fa "const EVP_CIPHER_CTX *ctx"
.Fa "void *data"
.Fc
.Ft int
.Fo EVP_CIPHER_CTX_type
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft unsigned long
.Fo EVP_CIPHER_CTX_flags
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft unsigned long
.Fo EVP_CIPHER_CTX_mode
.Fa "const EVP_CIPHER_CTX *ctx"
.Fc
.Ft int
.Fo EVP_CIPHER_param_to_asn1
.Fa "EVP_CIPHER_CTX *c"
.Fa "ASN1_TYPE *type"
.Fc
.Ft int
.Fo EVP_CIPHER_asn1_to_param
.Fa "EVP_CIPHER_CTX *c"
.Fa "ASN1_TYPE *type"
.Fc
.Sh DESCRIPTION
The EVP cipher routines are a high level interface to certain symmetric
ciphers.
.Pp
.Fn EVP_CIPHER_CTX_new
creates a new, empty cipher context.
.Pp
.Fn EVP_CIPHER_CTX_reset
clears all information from
.Fa ctx
and frees all allocated memory associated with it, except the
.Fa ctx
object itself, such that it can be reused for another series of calls to
.Fn EVP_CipherInit ,
.Fn EVP_CipherUpdate ,
and
.Fn EVP_CipherFinal .
It is also suitable for cipher contexts on the stack that were used
and are no longer needed.
.Fn EVP_CIPHER_CTX_cleanup
is a deprecated alias for
.Fn EVP_CIPHER_CTX_reset .
.Pp
.Fn EVP_CIPHER_CTX_init
is a deprecated function to clear a cipher context on the stack
before use.
Do not use it on a cipher context returned from
.Fn EVP_CIPHER_CTX_new
or one one that was already used.
.Pp
.Fn EVP_CIPHER_CTX_free
clears all information from
.Fa ctx
and frees all allocated memory associated with it, including
.Fa ctx
itself.
This function should be called after all operations using a cipher
are complete, so sensitive information does not remain in memory.
If
.Fa ctx
is a
.Dv NULL
pointer, no action occurs.
.Pp
.Fn EVP_EncryptInit_ex
sets up the cipher context
.Fa ctx
for encryption with cipher
.Fa type
from
.Vt ENGINE
.Fa impl .
If
.Fa ctx
points to an unused object on the stack, it must be initialized with
.Fn EVP_MD_CTX_init
before calling this function.
.Fa type
is normally supplied by a function such as
.Fn EVP_aes_256_cbc .
If
.Fa impl
is
.Dv NULL ,
then the default implementation is used.
.Fa key
is the symmetric key to use and
.Fa iv
is the IV to use (if necessary).
The actual number of bytes used for the
key and IV depends on the cipher.
It is possible to set all parameters to
.Dv NULL
except
.Fa type
in an initial call and supply the remaining parameters in subsequent
calls, all of which have
.Fa type
set to
.Dv NULL .
This is done when the default cipher parameters are not appropriate.
.Pp
.Fn EVP_EncryptUpdate
encrypts
.Fa inl
bytes from the buffer
.Fa in
and writes the encrypted version to
.Fa out .
This function can be called multiple times to encrypt successive blocks
of data.
The amount of data written depends on the block alignment of the
encrypted data: as a result the amount of data written may be anything
from zero bytes to (inl + cipher_block_size - 1) so
.Fa out
should contain sufficient room.
The actual number of bytes written is placed in
.Fa outl .
.Pp
If padding is enabled (the default) then
.Fn EVP_EncryptFinal_ex
encrypts the "final" data, that is any data that remains in a partial
block.
It uses NOTES (aka PKCS padding).
The encrypted final data is written to
.Fa out
which should have sufficient space for one cipher block.
The number of bytes written is placed in
.Fa outl .
After this function is called the encryption operation is finished and
no further calls to
.Fn EVP_EncryptUpdate
should be made.
.Pp
If padding is disabled then
.Fn EVP_EncryptFinal_ex
will not encrypt any more data and it will return an error if any data
remains in a partial block: that is if the total data length is not a
multiple of the block size.
.Pp
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptUpdate ,
and
.Fn EVP_DecryptFinal_ex
are the corresponding decryption operations.
.Fn EVP_DecryptFinal
will return an error code if padding is enabled and the final block is
not correctly formatted.
The parameters and restrictions are identical to the encryption
operations except that if padding is enabled the decrypted data buffer
.Fa out
passed to
.Fn EVP_DecryptUpdate
should have sufficient room for (inl + cipher_block_size) bytes
unless the cipher block size is 1 in which case
.Fa inl
bytes is sufficient.
.Pp
.Fn EVP_CipherInit_ex ,
.Fn EVP_CipherUpdate ,
and
.Fn EVP_CipherFinal_ex
are functions that can be used for decryption or encryption.
The operation performed depends on the value of the
.Fa enc
parameter.
It should be set to 1 for encryption, 0 for decryption and -1 to leave
the value unchanged (the actual value of
.Fa enc
being supplied in a previous call).
.Pp
.Fn EVP_EncryptInit ,
.Fn EVP_DecryptInit ,
and
.Fn EVP_CipherInit
are deprecated functions behaving like
.Fn EVP_EncryptInit_ex ,
.Fn EVP_DecryptInit_ex ,
and
.Fn EVP_CipherInit_ex
except that they always use the default cipher implementation
and that they require
.Fn EVP_CIPHER_CTX_reset
before they can be used on a context that was already used.
.Pp
.Fn EVP_EncryptFinal ,
.Fn EVP_DecryptFinal ,
and
.Fn EVP_CipherFinal
are identical to
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptFinal_ex ,
and
.Fn EVP_CipherFinal_ex .
In previous releases of OpenSSL, they also used to clean up the
.Fa ctx ,
but this is no longer done and
.Fn EVP_CIPHER_CTX_reset
or
.Fn EVP_CIPHER_CTX_free
must be called to free any context resources.
.Pp
.Fn EVP_get_cipherbyname ,
.Fn EVP_get_cipherbynid ,
and
.Fn EVP_get_cipherbyobj
return an
.Vt EVP_CIPHER
structure when passed a cipher name, a NID or an
.Vt ASN1_OBJECT
structure.
.Pp
.Fn EVP_CIPHER_nid
and
.Fn EVP_CIPHER_CTX_nid
return the NID of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX
structure.
The actual NID value is an internal value which may not have a
corresponding OBJECT IDENTIFIER.
.Pp
.Fn EVP_CIPHER_CTX_set_padding
enables or disables padding.
This function should be called after the context is set up for
encryption or decryption with
.Fn EVP_EncryptInit_ex ,
.Fn EVP_DecryptInit_ex ,
or
EVP_CipherInit_ex .
By default encryption operations are padded using standard block padding
and the padding is checked and removed when decrypting.
If the
.Fa padding
parameter is zero, then no padding is performed, the total amount of data
encrypted or decrypted must then be a multiple of the block size or an
error will occur.
.Pp
.Fn EVP_CIPHER_key_length
and
.Fn EVP_CIPHER_CTX_key_length
return the key length of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX
structure.
The constant
.Dv EVP_MAX_KEY_LENGTH
is the maximum key length for all ciphers.
Note: although
.Fn EVP_CIPHER_key_length
is fixed for a given cipher, the value of
.Fn EVP_CIPHER_CTX_key_length
may be different for variable key length ciphers.
.Pp
.Fn EVP_CIPHER_CTX_set_key_length
sets the key length of the cipher ctx.
If the cipher is a fixed length cipher, then attempting to set the key
length to any value other than the fixed value is an error.
.Pp
.Fn EVP_CIPHER_iv_length
and
.Fn EVP_CIPHER_CTX_iv_length
return the IV length of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX .
It will return zero if the cipher does not use an IV.
The constant
.Dv EVP_MAX_IV_LENGTH
is the maximum IV length for all ciphers.
.Pp
.Fn EVP_CIPHER_CTX_get_iv
and
.Fn EVP_CIPHER_CTX_set_iv
will respectively retrieve and set the IV for a
.Vt EVP_CIPHER_CTX .
In both cases, the specified IV length must exactly equal the expected
IV length for the context as returned by
.Fn EVP_CIPHER_CTX_iv_length .
.Pp
.Fn EVP_CIPHER_block_size
and
.Fn EVP_CIPHER_CTX_block_size
return the block size of a cipher when passed an
.Vt EVP_CIPHER
or
.Vt EVP_CIPHER_CTX
structure.
The constant
.Dv EVP_MAX_BLOCK_LENGTH
is also the maximum block length for all ciphers.
.Pp
.Fn EVP_CIPHER_type
and
.Fn EVP_CIPHER_CTX_type
return the type of the passed cipher or context.
This "type" is the actual NID of the cipher OBJECT IDENTIFIER as such it
ignores the cipher parameters and 40-bit RC2 and 128-bit RC2 have the
same NID.
If the cipher does not have an object identifier or does not
have ASN.1 support this function will return
.Dv NID_undef .
.Pp
.Fn EVP_CIPHER_CTX_cipher
returns the
.Vt EVP_CIPHER
structure when passed an
.Vt EVP_CIPHER_CTX
structure.
.Pp
.Fn EVP_CIPHER_mode
and
.Fn EVP_CIPHER_CTX_mode
return the block cipher mode:
.Dv EVP_CIPH_ECB_MODE ,
.Dv EVP_CIPH_CBC_MODE ,
.Dv EVP_CIPH_CFB_MODE ,
.Dv EVP_CIPH_OFB_MODE ,
.Dv EVP_CIPH_CTR_MODE ,
or
.Dv EVP_CIPH_XTS_MODE .
If the cipher is a stream cipher then
.Dv EVP_CIPH_STREAM_CIPHER
is returned.
.Pp
.Fn EVP_CIPHER_param_to_asn1
sets the ASN.1
.Vt AlgorithmIdentifier
parameter based on the passed cipher.
This will typically include any parameters and an IV.
The cipher IV (if any) must be set when this call is made.
This call should be made before the cipher is actually "used" (before any
.Fn EVP_EncryptUpdate
or
.Fn EVP_DecryptUpdate
calls, for example).
This function may fail if the cipher does not have any ASN.1 support.
.Pp
.Fn EVP_CIPHER_asn1_to_param
sets the cipher parameters based on an ASN.1
.Vt AlgorithmIdentifier
parameter.
The precise effect depends on the cipher.
In the case of RC2, for example, it will set the IV and effective
key length.
This function should be called after the base cipher type is set but
before the key is set.
For example
.Fn EVP_CipherInit
will be called with the IV and key set to
.Dv NULL ,
.Fn EVP_CIPHER_asn1_to_param
will be called and finally
.Fn EVP_CipherInit
again with all parameters except the key set to
.Dv NULL .
It is possible for this function to fail if the cipher does not
have any ASN.1 support or the parameters cannot be set (for example
the RC2 effective key length is not supported).
.Pp
.Fn EVP_CIPHER_CTX_ctrl
allows various cipher specific parameters to be determined and set.
Currently only the RC2 effective key length can be set.
.Pp
.Fn EVP_CIPHER_CTX_rand_key
generates a random key of the appropriate length based on the cipher
context.
The
.Vt EVP_CIPHER
can provide its own random key generation routine to support keys
of a specific form.
The
.Fa key
argument must point to a buffer at least as big as the value returned by
.Fn EVP_CIPHER_CTX_key_length .
.Pp
Where possible the EVP interface to symmetric ciphers should be
used in preference to the low level interfaces.
This is because the code then becomes transparent to the cipher used and
much more flexible.
.Pp
PKCS padding works by adding n padding bytes of value n to make the
total length of the encrypted data a multiple of the block size.
Padding is always added so if the data is already a multiple of the
block size n will equal the block size.
For example if the block size is 8 and 11 bytes are to be encrypted then
5 padding bytes of value 5 will be added.
.Pp
When decrypting the final block is checked to see if it has the correct
form.
.Pp
Although the decryption operation can produce an error if padding is
enabled, it is not a strong test that the input data or key is correct.
A random block has better than 1 in 256 chance of being of the correct
format and problems with the input data earlier on will not produce a
final decrypt error.
.Pp
If padding is disabled then the decryption operation will always succeed
if the total amount of data decrypted is a multiple of the block size.
.Pp
The functions
.Fn EVP_EncryptInit ,
.Fn EVP_EncryptFinal ,
.Fn EVP_DecryptInit ,
.Fn EVP_CipherInit ,
and
.Fn EVP_CipherFinal
are obsolete but are retained for compatibility with existing code.
New code should use
.Fn EVP_EncryptInit_ex ,
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptFinal_ex ,
.Fn EVP_CipherInit_ex ,
and
.Fn EVP_CipherFinal_ex
because they can reuse an existing context without allocating and
freeing it up on each call.
.Pp
.Fn EVP_get_cipherbynid
and
.Fn EVP_get_cipherbyobj
are implemented as macros.
.Sh RETURN VALUES
.Fn EVP_CIPHER_CTX_new
returns a pointer to a newly created
.Vt EVP_CIPHER_CTX
for success or
.Dv NULL
for failure.
.Pp
.Fn EVP_CIPHER_CTX_reset ,
.Fn EVP_CIPHER_CTX_cleanup ,
.Fn EVP_CIPHER_CTX_get_iv ,
.Fn EVP_CIPHER_CTX_set_iv ,
.Fn EVP_EncryptInit_ex ,
.Fn EVP_EncryptUpdate ,
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptUpdate ,
.Fn EVP_DecryptFinal_ex ,
.Fn EVP_CipherInit_ex ,
.Fn EVP_CipherUpdate ,
.Fn EVP_CipherFinal_ex ,
.Fn EVP_EncryptInit ,
.Fn EVP_EncryptFinal ,
.Fn EVP_DecryptInit ,
.Fn EVP_DecryptFinal ,
.Fn EVP_CipherInit ,
.Fn EVP_CipherFinal ,
.Fn EVP_CIPHER_CTX_set_key_length ,
and
.Fn EVP_CIPHER_CTX_rand_key
return 1 for success or 0 for failure.
.Pp
.Fn EVP_CIPHER_CTX_set_padding
always returns 1.
.Pp
.Fn EVP_get_cipherbyname ,
.Fn EVP_get_cipherbynid ,
and
.Fn EVP_get_cipherbyobj
return an
.Vt EVP_CIPHER
structure or
.Dv NULL
on error.
.Pp
.Fn EVP_CIPHER_nid
and
.Fn EVP_CIPHER_CTX_nid
return a NID.
.Pp
.Fn EVP_CIPHER_block_size
and
.Fn EVP_CIPHER_CTX_block_size
return the block size.
.Pp
.Fn EVP_CIPHER_key_length
and
.Fn EVP_CIPHER_CTX_key_length
return the key length.
.Pp
.Fn EVP_CIPHER_iv_length
and
.Fn EVP_CIPHER_CTX_iv_length
return the IV length or zero if the cipher does not use an IV.
.Pp
.Fn EVP_CIPHER_type
and
.Fn EVP_CIPHER_CTX_type
return the NID of the cipher's OBJECT IDENTIFIER or
.Dv NID_undef
if it has no defined OBJECT IDENTIFIER.
.Pp
.Fn EVP_CIPHER_CTX_cipher
returns an
.Vt EVP_CIPHER
structure.
.Pp
.Fn EVP_CIPHER_param_to_asn1
and
.Fn EVP_CIPHER_asn1_to_param
return greater than zero for success and zero or a negative number
for failure.
.Sh CIPHER LISTING
All algorithms have a fixed key length unless otherwise stated.
.Bl -tag -width Ds
.It Fn EVP_enc_null
Null cipher: does nothing.
.It Xo
.Fn EVP_aes_128_cbc ,
.Fn EVP_aes_128_ecb ,
.Fn EVP_aes_128_cfb ,
.Fn EVP_aes_128_ofb
.Xc
AES with a 128-bit key in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_aes_192_cbc ,
.Fn EVP_aes_192_ecb ,
.Fn EVP_aes_192_cfb ,
.Fn EVP_aes_192_ofb
.Xc
AES with a 192-bit key in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_aes_256_cbc ,
.Fn EVP_aes_256_ecb ,
.Fn EVP_aes_256_cfb ,
.Fn EVP_aes_256_ofb
.Xc
AES with a 256-bit key in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_des_cbc ,
.Fn EVP_des_ecb ,
.Fn EVP_des_cfb ,
.Fn EVP_des_ofb
.Xc
DES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_des_ede_cbc ,
.Fn EVP_des_ede ,
.Fn EVP_des_ede_ofb ,
.Fn EVP_des_ede_cfb
.Xc
Two key triple DES in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_des_ede3_cbc ,
.Fn EVP_des_ede3 ,
.Fn EVP_des_ede3_ofb ,
.Fn EVP_des_ede3_cfb
.Xc
Three key triple DES in CBC, ECB, CFB and OFB modes respectively.
.It Fn EVP_desx_cbc
DESX algorithm in CBC mode.
.It Fn EVP_rc4
RC4 stream cipher.
This is a variable key length cipher with default key length 128 bits.
.It Fn EVP_rc4_40
RC4 stream cipher with 40-bit key length.
This is obsolete and new code should use
.Fn EVP_rc4
and the
.Fn EVP_CIPHER_CTX_set_key_length
function.
.It Xo
.Fn EVP_idea_cbc ,
.Fn EVP_idea_ecb ,
.Fn EVP_idea_cfb ,
.Fn EVP_idea_ofb
.Xc
IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
.It Xo
.Fn EVP_rc2_cbc ,
.Fn EVP_rc2_ecb ,
.Fn EVP_rc2_cfb ,
.Fn EVP_rc2_ofb
.Xc
RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher with an additional parameter called
"effective key bits" or "effective key length".
By default both are set to 128 bits.
.It Xo
.Fn EVP_rc2_40_cbc ,
.Fn EVP_rc2_64_cbc
.Xc
RC2 algorithm in CBC mode with a default key length and effective key
length of 40 and 64 bits.
These are obsolete and new code should use
.Fn EVP_rc2_cbc ,
.Fn EVP_CIPHER_CTX_set_key_length ,
and
.Fn EVP_CIPHER_CTX_ctrl
to set the key length and effective key length.
.It Xo
.Fn EVP_bf_cbc ,
.Fn EVP_bf_ecb ,
.Fn EVP_bf_cfb ,
.Fn EVP_bf_ofb
.Xc
Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes
respectively.
This is a variable key length cipher.
.It Xo
.Fn EVP_cast5_cbc ,
.Fn EVP_cast5_ecb ,
.Fn EVP_cast5_cfb ,
.Fn EVP_cast5_ofb
.Xc
CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
This is a variable key length cipher.
.It Xo
.Fn EVP_aes_128_gcm ,
.Fn EVP_aes_192_gcm ,
.Fn EVP_aes_256_gcm
.Xc
AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively.
These ciphers require additional control operations to function
correctly: see the GCM mode section below for details.
.It Xo
.Fn EVP_aes_128_ccm ,
.Fn EVP_aes_192_ccm ,
.Fn EVP_aes_256_ccm
.Xc
AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys
respectively.
These ciphers require additional control operations to function
correctly: see CCM mode section below for details.
.It Fn EVP_chacha20
The ChaCha20 stream cipher.
The key length is 256 bits, the IV is 96 bits long.
.El
.Ss GCM mode
For GCM mode ciphers, the behaviour of the EVP interface
is subtly altered and several additional ctrl operations are
supported.
.Pp
To specify any additional authenticated data (AAD), a call to
.Fn EVP_CipherUpdate ,
.Fn EVP_EncryptUpdate ,
or
.Fn EVP_DecryptUpdate
should be made with the output parameter out set to
.Dv NULL .
.Pp
When decrypting, the return value of
.Fn EVP_DecryptFinal
or
.Fn EVP_CipherFinal
indicates if the operation was successful.
If it does not indicate success, the authentication operation has
failed and any output data MUST NOT be used as it is corrupted.
.Pp
The following ctrls are supported in GCM mode:
.Bl -tag -width Ds
.It Fn EVP_CIPHER_CTX_ctrl ctx EVP_CTRL_GCM_SET_IVLEN ivlen NULL
Sets the IV length: this call can only be made before specifying an IV.
If not called, a default IV length is used.
For GCM AES the default is 12, i.e. 96 bits.
.It Fn EVP_CIPHER_CTX_ctrl ctx EVP_CTRL_GCM_GET_TAG taglen tag
Writes
.Fa taglen
bytes of the tag value to the buffer indicated by
.Fa tag .
This call can only be made when encrypting data and after all data has
been processed, e.g. after an
.Fn EVP_EncryptFinal
call.
.It Fn EVP_CIPHER_CTX_ctrl ctx EVP_CTRL_GCM_SET_TAG taglen tag
Sets the expected tag to
.Fa taglen
bytes from
.Fa tag .
This call is only legal when decrypting data and must be made before
any data is processed, e.g. before any
.Fa EVP_DecryptUpdate
call.
.El
.Ss CCM mode
The behaviour of CCM mode ciphers is similar to GCM mode, but with
a few additional requirements and different ctrl values.
.Pp
Like GCM mode any additional authenticated data (AAD) is passed
by calling
.Fn EVP_CipherUpdate ,
.Fn EVP_EncryptUpdate ,
or
.Fn EVP_DecryptUpdate
with the output parameter out set to
.Dv NULL .
Additionally, the total
plaintext or ciphertext length MUST be passed to
.Fn EVP_CipherUpdate ,
.Fn EVP_EncryptUpdate ,
or
.Fn EVP_DecryptUpdate
with the output and input
parameters
.Pq Fa in No and Fa out
set to
.Dv NULL
and the length passed in the
.Fa inl
parameter.
.Pp
The following ctrls are supported in CCM mode:
.Bl -tag -width Ds
.It Fn EVP_CIPHER_CTX_ctrl ctx EVP_CTRL_CCM_SET_TAG taglen tag
This call is made to set the expected CCM tag value when decrypting or
the length of the tag (with the
.Fa tag
parameter set to
.Dv NULL )
when encrypting.
The tag length is often referred to as M.
If not set, a default value is used (12 for AES).
.It Fn EVP_CIPHER_CTX_ctrl ctx EVP_CTRL_CCM_SET_L ivlen NULL
Sets the CCM L value.
If not set, a default is used (8 for AES).
.It Fn EVP_CIPHER_CTX_ctrl ctx EVP_CTRL_CCM_SET_IVLEN ivlen NULL
Sets the CCM nonce (IV) length: this call can only be made before
specifying a nonce value.
The nonce length is given by 15 - L so it is 7 by default for AES.
.El
.Sh EXAMPLES
Encrypt a string using blowfish:
.Bd -literal -offset 3n
int
do_crypt(char *outfile)
{
unsigned char outbuf[1024];
int outlen, tmplen;
/*
* Bogus key and IV: we'd normally set these from
* another source.
*/
unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
unsigned char iv[] = {1,2,3,4,5,6,7,8};
const char intext[] = "Some Crypto Text";
EVP_CIPHER_CTX *ctx;
FILE *out;
ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, EVP_bf_cbc(), NULL, key, iv);
if (!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext,
strlen(intext))) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
/*
* Buffer passed to EVP_EncryptFinal() must be after data just
* encrypted to avoid overwriting it.
*/
if (!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen)) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
outlen += tmplen;
EVP_CIPHER_CTX_free(ctx);
/*
* Need binary mode for fopen because encrypted data is
* binary data. Also cannot use strlen() on it because
* it won't be NUL terminated and may contain embedded
* NULs.
*/
out = fopen(outfile, "wb");
if (out == NULL) {
/* Error */
return 0;
}
fwrite(outbuf, 1, outlen, out);
fclose(out);
return 1;
}
.Ed
.Pp
The ciphertext from the above example can be decrypted using the
.Xr openssl 1
utility with the command line:
.Bd -literal -offset indent
openssl bf -in cipher.bin -K 000102030405060708090A0B0C0D0E0F \e
-iv 0102030405060708 -d
.Ed
.Pp
General encryption, decryption function example using FILE I/O and AES128
with an 128-bit key:
.Bd -literal
int
do_crypt(FILE *in, FILE *out, int do_encrypt)
{
/* Allow enough space in output buffer for additional block */
unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
int inlen, outlen;
EVP_CIPHER_CTX *ctx;
/*
* Bogus key and IV: we'd normally set these from
* another source.
*/
unsigned char key[] = "0123456789abcdeF";
unsigned char iv[] = "1234567887654321";
ctx = EVP_CIPHER_CTX_new();
EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
do_encrypt);
EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);
for (;;) {
inlen = fread(inbuf, 1, 1024, in);
if (inlen <= 0)
break;
if (!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf,
inlen)) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
fwrite(outbuf, 1, outlen, out);
}
if (!EVP_CipherFinal_ex(ctx, outbuf, &outlen)) {
/* Error */
EVP_CIPHER_CTX_free(ctx);
return 0;
}
fwrite(outbuf, 1, outlen, out);
EVP_CIPHER_CTX_free(ctx);
return 1;
}
.Ed
.Sh SEE ALSO
.Xr evp 3
.Sh HISTORY
.Fn EVP_EncryptInit ,
.Fn EVP_EncryptUpdate ,
.Fn EVP_EncryptFinal ,
.Fn EVP_DecryptInit ,
.Fn EVP_DecryptUpdate ,
.Fn EVP_DecryptFinal ,
.Fn EVP_CipherInit ,
.Fn EVP_CipherUpdate ,
.Fn EVP_CipherFinal ,
.Fn EVP_get_cipherbyname ,
.Fn EVP_des_cbc ,
.Fn EVP_des_ecb ,
.Fn EVP_des_cfb ,
.Fn EVP_des_ofb ,
.Fn EVP_des_ede_cbc ,
.Fn EVP_des_ede ,
.Fn EVP_des_ede_ofb ,
.Fn EVP_des_ede_cfb ,
.Fn EVP_des_ede3_cbc ,
.Fn EVP_des_ede3 ,
.Fn EVP_des_ede3_ofb ,
.Fn EVP_des_ede3_cfb ,
.Fn EVP_rc4 ,
.Fn EVP_idea_cbc ,
.Fn EVP_idea_ecb ,
.Fn EVP_idea_cfb ,
and
.Fn EVP_idea_ofb
first appeared in SSLeay 0.5.1.
.Fn EVP_rc2_cbc ,
.Fn EVP_rc2_ecb ,
.Fn EVP_rc2_cfb ,
and
.Fn EVP_rc2_ofb
first appeared in SSLeay 0.5.2.
.Fn EVP_desx_cbc
first appeared in SSLeay 0.6.2.
.Fn EVP_CIPHER_block_size ,
.Fn EVP_CIPHER_key_length ,
.Fn EVP_CIPHER_iv_length ,
.Fn EVP_CIPHER_type ,
.Fn EVP_CIPHER_CTX_block_size ,
.Fn EVP_CIPHER_CTX_key_length ,
.Fn EVP_CIPHER_CTX_iv_length ,
and
.Fn EVP_CIPHER_CTX_type
first appeared in SSLeay 0.6.5.
.Fn EVP_bf_cbc ,
.Fn EVP_bf_ecb ,
.Fn EVP_bf_cfb ,
and
.Fn EVP_bf_ofb
first appeared in SSLeay 0.6.6.
.Fn EVP_CIPHER_CTX_cleanup ,
.Fn EVP_get_cipherbyobj ,
.Fn EVP_CIPHER_nid ,
.Fn EVP_CIPHER_CTX_cipher ,
.Fn EVP_CIPHER_CTX_nid ,
.Fn EVP_CIPHER_CTX_get_app_data ,
.Fn EVP_CIPHER_CTX_set_app_data ,
and
.Fn EVP_enc_null
first appeared in SSLeay 0.8.0.
.Fn EVP_get_cipherbynid
first appeared in SSLeay 0.8.1.
.Fn EVP_CIPHER_CTX_init ,
.Fn EVP_CIPHER_param_to_asn1 ,
and
.Fn EVP_CIPHER_asn1_to_param
first appeared in SSLeay 0.9.0.
All these functions have been available since
.Ox 2.4 .
.Pp
.Fn EVP_rc2_64_cbc
first appeared in SSL_eay 0.9.1.
.Fn EVP_CIPHER_CTX_type
first appeared in OpenSSL 0.9.3.
These functions have been available since
.Ox 2.6 .
.Pp
.Fn EVP_CIPHER_CTX_set_key_length ,
.Fn EVP_CIPHER_CTX_ctrl ,
.Fn EVP_CIPHER_flags ,
.Fn EVP_CIPHER_mode ,
.Fn EVP_CIPHER_CTX_flags ,
and
.Fn EVP_CIPHER_CTX_mode
first appeared in OpenSSL 0.9.6 and have been available since
.Ox 2.9 .
.Pp
.Fn EVP_EncryptInit_ex ,
.Fn EVP_EncryptFinal_ex ,
.Fn EVP_DecryptInit_ex ,
.Fn EVP_DecryptFinal_ex ,
.Fn EVP_CipherInit_ex ,
.Fn EVP_CipherFinal_ex ,
and
.Fn EVP_CIPHER_CTX_set_padding
first appeared in OpenSSL 0.9.7 and have been available since
.Ox 3.2 .
.Pp
.Fn EVP_CIPHER_CTX_rand_key
first appeared in OpenSSL 0.9.8.
.Fn EVP_CIPHER_CTX_new
and
.Fn EVP_CIPHER_CTX_free
first appeared in OpenSSL 0.9.8b.
These functions have been available since
.Ox 4.5 .
.Pp
.Fn EVP_rc4_hmac_md5 ,
.Fn EVP_aes_128_gcm ,
.Fn EVP_aes_192_gcm ,
.Fn EVP_aes_256_gcm ,
.Fn EVP_aes_128_ccm ,
.Fn EVP_aes_192_ccm ,
.Fn EVP_aes_256_ccm ,
.Fn EVP_aes_128_cbc_hmac_sha1 ,
and
.Fn EVP_aes_256_cbc_hmac_sha1
first appeared in OpenSSL 1.0.1 and have been available since
.Ox 5.3 .
.Pp
.Fn EVP_CIPHER_CTX_reset
first appeared in OpenSSL 1.1.0 and has been available since
.Ox 6.3 .
.Pp
.Fn EVP_CIPHER_CTX_get_iv
and
.Fn EVP_CIPHER_CTX_set_iv
first appeared in LibreSSL 2.8.1 and has been available since
.Ox 6.4 .
.Sh BUGS
.Dv EVP_MAX_KEY_LENGTH
and
.Dv EVP_MAX_IV_LENGTH
only refer to the internal ciphers with default key lengths.
If custom ciphers exceed these values the results are unpredictable.
This is because it has become standard practice to define a generic key
as a fixed unsigned char array containing
.Dv EVP_MAX_KEY_LENGTH
bytes.
.Pp
The ASN.1 code is incomplete (and sometimes inaccurate).
It has only been tested for certain common S/MIME ciphers
(RC2, DES, triple DES) in CBC mode.
|