1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
|
.Dd $Mdocdate: November 12 2015 $
.Dt BN_DUMP 3
.Os
.Sh NAME
.Nm bn_mul_words ,
.Nm bn_mul_add_words ,
.Nm bn_sqr_words ,
.Nm bn_div_words ,
.Nm bn_add_words ,
.Nm bn_sub_words ,
.Nm bn_mul_comba4 ,
.Nm bn_mul_comba8 ,
.Nm bn_sqr_comba4 ,
.Nm bn_sqr_comba8 ,
.Nm bn_cmp_words ,
.Nm bn_mul_normal ,
.Nm bn_mul_low_normal ,
.Nm bn_mul_recursive ,
.Nm bn_mul_part_recursive ,
.Nm bn_mul_low_recursive ,
.Nm bn_mul_high ,
.Nm bn_sqr_normal ,
.Nm bn_sqr_recursive ,
.Nm bn_expand ,
.Nm bn_wexpand ,
.Nm bn_expand2 ,
.Nm bn_fix_top ,
.Nm bn_check_top ,
.Nm bn_print ,
.Nm bn_dump ,
.Nm bn_set_max ,
.Nm bn_set_high ,
.Nm bn_set_low ,
.Nm sqr
.Nd BIGNUM library internal functions
.Sh SYNOPSIS
.In openssl/bn.h
.Ft BN_ULONG
.Fo bn_mul_words
.Fa "BN_ULONG *rp"
.Fa "BN_ULONG *ap"
.Fa "int num"
.Fa "BN_ULONG w"
.Fc
.Ft BN_ULONG
.Fo bn_mul_add_words
.Fa "BN_ULONG *rp"
.Fa "BN_ULONG *ap"
.Fa "int num"
.Fa "BN_ULONG w"
.Fc
.Ft void
.Fo bn_sqr_words
.Fa "BN_ULONG *rp"
.Fa "BN_ULONG *ap"
.Fa "int num"
.Fc
.Ft BN_ULONG
.Fo bn_div_words
.Fa "BN_ULONG h"
.Fa "BN_ULONG l"
.Fa "BN_ULONG d"
.Fc
.Ft BN_ULONG
.Fo bn_add_words
.Fa "BN_ULONG *rp"
.Fa "BN_ULONG *ap"
.Fa "BN_ULONG *bp"
.Fa "int num"
.Fc
.Ft BN_ULONG
.Fo bn_sub_words
.Fa "BN_ULONG *rp"
.Fa "BN_ULONG *ap"
.Fa "BN_ULONG *bp"
.Fa "int num"
.Fc
.Ft void
.Fo bn_mul_comba4
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fc
.Ft void
.Fo bn_mul_comba8
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fc
.Ft void
.Fo bn_sqr_comba4
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fc
.Ft void
.Fo bn_sqr_comba8
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fc
.Ft int
.Fo bn_cmp_words
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fa "int n"
.Fc
.Ft void
.Fo bn_mul_normal
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "int na"
.Fa "BN_ULONG *b"
.Fa "int nb"
.Fc
.Ft void
.Fo bn_mul_low_normal
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fa "int n"
.Fc
.Ft void
.Fo bn_mul_recursive
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fa "int n2"
.Fa "int dna"
.Fa "int dnb"
.Fa "BN_ULONG *tmp"
.Fc
.Ft void
.Fo bn_mul_part_recursive
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fa "int n"
.Fa "int tna"
.Fa "int tnb"
.Fa "BN_ULONG *tmp"
.Fc
.Ft void
.Fo bn_mul_low_recursive
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fa "int n2"
.Fa "BN_ULONG *tmp"
.Fc
.Ft void
.Fo bn_mul_high
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "BN_ULONG *b"
.Fa "BN_ULONG *l"
.Fa "int n2"
.Fa "BN_ULONG *tmp"
.Fc
.Ft void
.Fo bn_sqr_normal
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "int n"
.Fa "BN_ULONG *tmp"
.Fc
.Ft void
.Fo bn_sqr_recursive
.Fa "BN_ULONG *r"
.Fa "BN_ULONG *a"
.Fa "int n2"
.Fa "BN_ULONG *tmp"
.Fc
.Ft void
.Fo mul
.Fa "BN_ULONG r"
.Fa "BN_ULONG a"
.Fa "BN_ULONG w"
.Fa "BN_ULONG c"
.Fc
.Ft void
.Fo mul_add
.Fa "BN_ULONG r"
.Fa "BN_ULONG a"
.Fa "BN_ULONG w"
.Fa "BN_ULONG c"
.Fc
.Ft void
.Fo sqr
.Fa "BN_ULONG r0"
.Fa "BN_ULONG r1"
.Fa "BN_ULONG a"
.Fc
.Ft BIGNUM *
.Fo bn_expand
.Fa "BIGNUM *a"
.Fa "int bits"
.Fc
.Ft BIGNUM *
.Fo bn_wexpand
.Fa "BIGNUM *a"
.Fa "int n"
.Fc
.Ft BIGNUM *
.Fo bn_expand2
.Fa "BIGNUM *a"
.Fa "int n"
.Fc
.Ft void
.Fo bn_fix_top
.Fa "BIGNUM *a"
.Fc
.Ft void
.Fo bn_check_top
.Fa "BIGNUM *a"
.Fc
.Ft void
.Fo bn_print
.Fa "BIGNUM *a"
.Fc
.Ft void
.Fo bn_dump
.Fa "BN_ULONG *d"
.Fa "int n"
.Fc
.Ft void
.Fo bn_set_max
.Fa "BIGNUM *a"
.Fc
.Ft void
.Fo bn_set_high
.Fa "BIGNUM *r"
.Fa "BIGNUM *a"
.Fa "int n"
.Fc
.Ft void
.Fo bn_set_low
.Fa "BIGNUM *r"
.Fa "BIGNUM *a"
.Fa "int n"
.Fc
.Sh DESCRIPTION
This page documents the internal functions used by the OpenSSL
.Vt BIGNUM
implementation.
They are described here to facilitate debugging and extending the
library.
They are
.Em not
to be used by applications.
.Ss The BIGNUM structure
.Bd -literal
typedef struct bignum_st BIGNUM;
struct bignum_st {
BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
int top; /* Index of last used d +1. */
/* The next are internal book keeping for bn_expand. */
int dmax; /* Size of the d array. */
int neg; /* one if the number is negative */
int flags;
};
.Ed
.Pp
The integer value is stored in
.Fa d ,
a
.Xr malloc 3 Ap ed
array of words
.Pq Vt BN_ULONG ,
least significant word first.
A
.Vt BN_ULONG
can be either 16, 32 or 64 bits in size, depending on the 'number of
bits'
.Pq Dv BITS2
specified in
.In openssl/bn.h .
.Pp
.Fa dmax
is the size of the
.Fa d
array that has been allocated.
.Fa top
is the number of words being used, so for a value of 4, bn.d[0]=4 and
bn.top=1.
.Fa neg
is 1 if the number is negative.
When a
.Vt BIGNUM
is 0, the
.Fa d
field can be
.Dv NULL
and
.Fa top
== 0.
.Pp
.Fa flags
is a bit field of flags which are defined in
.In openssl/bn.h .
The flags begin with
.Dv BN_FLG_ .
The macros
.Fn BN_set_flags b n
and
.Fn BN_get_flags b n
exist to enable or fetch flag(s)
.Fa n
from a
.Vt BIGNUM
structure
.Fa b .
.Pp
Various routines in this library require the use of temporary
.Vt BIGNUM
variables during their execution.
Since dynamic memory allocation to create
.Vt BIGNUM Ns s
is rather expensive when used in conjunction with repeated subroutine
calls, the
.Vt BN_CTX
structure is used.
This structure contains BN_CTX_NUM
.Vt BIGNUM Ns s,
see
.Xr BN_CTX_start 3 .
.Ss Low-level arithmetic operations
These functions are implemented in C and for several platforms in
assembly language:
.Pp
.Fn bn_mul_words rp ap num w
operates on the
.Fa num
word arrays
.Fa rp
and
.Fa ap .
It computes
.Fa ap
*
.Fa w ,
places the result in
.Fa rp ,
and returns the high word (carry).
.Pp
.Fn bn_mul_add_words rp ap num w
operates on the
.Fa num
word arrays
.Fa rp
and
.Fa ap .
It computes
.Fa ap
*
.Fa w
+
.Fa rp ,
places the result in
.Fa rp ,
and returns the high word (carry).
.Pp
.Fn bn_sqr_words rp ap num
operates on the
.Fa num
word array
.Fa ap
and the
.Pf 2* Fa num
word array
.Fa ap .
It computes
.Fa ap
*
.Fa ap
word-wise, and places the low and high bytes of the result in
.Fa rp .
.Pp
.Fn bn_div_words h l d
divides the two word number
.Pq Fa h , Fa l
by
.Fa d
and returns the result.
.Pp
.Fn bn_add_words rp ap bp num
operates on the
.Fa num
word arrays
.Fa ap ,
.Fa bp
and
.Fa rp .
It computes
.Fa ap
+
.Fa bp ,
places the result in
.Fa rp ,
and returns the high word (carry).
.Pp
.Fn bn_sub_words rp ap bp num
operates on the
.Fa num
word arrays
.Fa ap ,
.Fa bp
and
.Fa rp .
It computes
.Fa ap
-
.Fa bp ,
places the result in
.Fa rp ,
and returns the carry (1 if
.Fa bp
\(ra
.Fa ap ,
0 otherwise).
.Pp
.Fn bn_mul_comba4 r a b
operates on the 4 word arrays
.Fa a
and
.Fa b
and the 8 word array
.Fa r .
It computes
.Fa a Ns * Ns Fa b
and places the result in
.Fa r .
.Pp
.Fn bn_mul_comba8 r a b
operates on the 8 word arrays
.Fa a
and
.Fa b
and the 16 word array
.Fa r .
It computes
.Fa a Ns * Ns Fa b
and places the result in
.Fa r .
.Pp
.Fn bn_sqr_comba4 r a b
operates on the 4 word arrays
.Fa a
and
.Fa b
and the 8 word array
.Fa r .
.Pp
.Fn bn_sqr_comba8 r a b
operates on the 8 word arrays
.Fa a
and
.Fa b
and the 16 word array
.Fa r .
.Pp
The following functions are implemented in C:
.Pp
.Fn bn_cmp_words a b n
operates on the
.Fa n
word arrays
.Fa a
and
.Fa b .
It returns 1, 0 and -1 if
.Fa a
is greater than, equal and less than
.Fa b .
.Pp
.Fn bn_mul_normal r a na b nb
operates on the
.Fa na
word array
.Fa a ,
the
.Fa nb
word array
.Fa b
and the
.Fa na Ns + Ns Fa nb
word array
.Fa r .
It computes
.Fa a Ns * Ns Fa b
and places the result in
.Fa r .
.Pp
.Fn bn_mul_low_normal r a b n
operates on the
.Fa n
word arrays
.Fa r ,
.Fa a
and
.Fa b .
It computes the
.Fa n
low words of
.Fa a Ns * Ns Fa b
and places the result in
.Fa r .
.Pp
.Fn bn_mul_recursive r a b n2 dna dnb t
operates on the word arrays
.Fa a
and
.Fa b
of length
.Fa n2 Ns + Ns Fa dna
and
.Fa n2 Ns + Ns Fa dnb
.Pf ( Fa dna
and
.Fa dnb
are currently allowed to be 0 or negative) and the
.Pf 2* Fa n2
word arrays
.Fa r
and
.Sy t .
.Fa n2
must be a power of 2.
It computes
.Fa a Ns * Ns Fa b
and places the result in
.Fa r .
.Pp
.Fn bn_mul_part_recursive r a b n tna tnb tmp
operates on the word arrays
.Fa a
and
.Fa b
of length
.Fa n Ns + Ns Fa tna
and
.Fa n Ns + Ns Fa tnb
and the
.Pf 4* Fa n
word arrays
.Fa r
and
.Fa tmp .
.Pp
.Fn bn_mul_low_recursive r a b n2 tmp
operates on the
.Fa n2
word arrays
.Fa r
and
.Fa tmp
and the
.Fa n2 Ns /2
word arrays
.Fa a
and
.Fa b .
.Pp
.Fn bn_mul_high r a b l n2 tmp
operates on the
.Fa n2
word arrays
.Fa r ,
.Fa a ,
.Fa b
and
.Fa l
(?) and the
.Pf 3* Fa n2
word array
.Fa tmp .
.Pp
.Xr BN_mul 3
calls
.Fn bn_mul_normal ,
or an optimized implementation if the factors have the same size:
.Fn bn_mul_comba8
is used if they are 8 words long,
.Fn bn_mul_recursive
if they are larger than
.Dv BN_MULL_SIZE_NORMAL
and the size is an exact multiple of the word size, and
.Fn bn_mul_part_recursive
for others that are larger than
.Dv BN_MULL_SIZE_NORMAL .
.Pp
.Fn bn_sqr_normal r a n tmp
operates on the
.Fa n
word array
.Fa a
and the
.Pf 2* Fa n
word arrays
.Fa tmp
and
.Fa r .
.Pp
The implementations use the following macros which, depending on the
architecture, may use
.Vt long long
C operations or inline assembler.
They are defined in
.Pa bn_lcl.h .
.Pp
.Fn mul r a w c
computes
.Fa w Ns * Ns Fa a Ns + Ns Fa c
and places the low word of the result in
.Fa r
and the high word in
.Fa c .
.Pp
.Fn mul_add r a w c
computes
.Fa w Ns * Ns Fa a Ns + Ns Fa r Ns + Ns Fa c
and places the low word of the result in
.Fa r
and the high word in
.Fa c .
.Pp
.Fn sqr r0 r1 a
computes
.Fa a Ns * Ns Fa a
and places the low word of the result in
.Fa r0
and the high word in
.Fa r1 .
.Ss Size changes
.Fn bn_expand
ensures that
.Fa b
has enough space for a
.Fa bits
bit number.
.Fn bn_wexpand
ensures that
.Fa b
has enough space for an
.Fa n
word number.
If the number has to be expanded, both macros call
.Fn bn_expand2 ,
which allocates a new
.Fa d
array and copies the data.
They return
.Dv NULL
on error,
.Fa b
otherwise.
.Pp
The
.Fn bn_fix_top
macro reduces
.Fa a Ns -> Ns Fa top
to point to the most significant non-zero word plus one when
.Fa a
has shrunk.
.Ss Debugging
.Fn bn_check_top
verifies that
.Ql ((a)-\(ratop \(ra= 0 && (a)-\(ratop \(la= (a)-\(radmax) .
A violation will cause the program to abort.
.Pp
.Fn bn_print
prints
.Fa a
to
.Dv stderr .
.Fn bn_dump
prints
.Fa n
words at
.Fa d
(in reverse order, i.e.
most significant word first) to
.Dv stderr .
.Pp
.Fn bn_set_max
makes
.Fa a
a static number with a
.Fa dmax
of its current size.
This is used by
.Fn bn_set_low
and
.Fn bn_set_high
to make
.Fa r
a read-only
.Vt BIGNUM
that contains the
.Fa n
low or high words of
.Fa a .
.Pp
If
.Dv BN_DEBUG
is not defined,
.Fn bn_check_top ,
.Fn bn_print ,
.Fn bn_dump
and
.Fn bn_set_max
are defined as empty macros.
.Sh SEE ALSO
.Xr bn 3
|