summaryrefslogtreecommitdiff
path: root/lib/libcrypto/rand/md_rand.c
blob: 6b158f034953ec1477834d985af6d38b8b42656d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/* crypto/rand/md_rand.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#define ENTROPY_NEEDED 16  /* require 128 bits = 16 bytes of randomness */

#ifndef MD_RAND_DEBUG
# ifndef NDEBUG
#   define NDEBUG
# endif
#endif

#include <assert.h>
#include <stdio.h>
#include <time.h>
#include <string.h>

#include "openssl/e_os.h"

#include <openssl/crypto.h>
#include <openssl/err.h>

#if !defined(USE_MD5_RAND) && !defined(USE_SHA1_RAND) && !defined(USE_MDC2_RAND) && !defined(USE_MD2_RAND)
#if !defined(NO_SHA) && !defined(NO_SHA1)
#define USE_SHA1_RAND
#elif !defined(NO_MD5)
#define USE_MD5_RAND
#elif !defined(NO_MDC2) && !defined(NO_DES)
#define USE_MDC2_RAND
#elif !defined(NO_MD2)
#define USE_MD2_RAND
#else
#error No message digest algorithm available
#endif
#endif

/* Changed how the state buffer used.  I now attempt to 'wrap' such
 * that I don't run over the same locations the next time  go through
 * the 1023 bytes - many thanks to
 * Robert J. LeBlanc <rjl@renaissoft.com> for his comments
 */

#if defined(USE_MD5_RAND)
#include <openssl/md5.h>
#define MD_DIGEST_LENGTH	MD5_DIGEST_LENGTH
#define MD_CTX			MD5_CTX
#define MD_Init(a)		MD5_Init(a)
#define MD_Update(a,b,c)	MD5_Update(a,b,c)
#define	MD_Final(a,b)		MD5_Final(a,b)
#define	MD(a,b,c)		MD5(a,b,c)
#elif defined(USE_SHA1_RAND)
#include <openssl/sha.h>
#define MD_DIGEST_LENGTH	SHA_DIGEST_LENGTH
#define MD_CTX			SHA_CTX
#define MD_Init(a)		SHA1_Init(a)
#define MD_Update(a,b,c)	SHA1_Update(a,b,c)
#define	MD_Final(a,b)		SHA1_Final(a,b)
#define	MD(a,b,c)		SHA1(a,b,c)
#elif defined(USE_MDC2_RAND)
#include <openssl/mdc2.h>
#define MD_DIGEST_LENGTH	MDC2_DIGEST_LENGTH
#define MD_CTX			MDC2_CTX
#define MD_Init(a)		MDC2_Init(a)
#define MD_Update(a,b,c)	MDC2_Update(a,b,c)
#define	MD_Final(a,b)		MDC2_Final(a,b)
#define	MD(a,b,c)		MDC2(a,b,c)
#elif defined(USE_MD2_RAND)
#include <openssl/md2.h>
#define MD_DIGEST_LENGTH	MD2_DIGEST_LENGTH
#define MD_CTX			MD2_CTX
#define MD_Init(a)		MD2_Init(a)
#define MD_Update(a,b,c)	MD2_Update(a,b,c)
#define	MD_Final(a,b)		MD2_Final(a,b)
#define	MD(a,b,c)		MD2(a,b,c)
#endif

#include <openssl/rand.h>

/* #define NORAND	1 */
/* #define PREDICT	1 */

#define STATE_SIZE	1023
static int state_num=0,state_index=0;
static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
static unsigned char md[MD_DIGEST_LENGTH];
static long md_count[2]={0,0};
static double entropy=0;
static int initialized=0;

const char *RAND_version="RAND" OPENSSL_VERSION_PTEXT;

static void ssleay_rand_cleanup(void);
static void ssleay_rand_seed(const void *buf, int num);
static void ssleay_rand_add(const void *buf, int num, double add_entropy);
static int ssleay_rand_bytes(unsigned char *buf, int num);
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);

RAND_METHOD rand_ssleay_meth={
	ssleay_rand_seed,
	ssleay_rand_bytes,
	ssleay_rand_cleanup,
	ssleay_rand_add,
	ssleay_rand_pseudo_bytes,
	}; 

RAND_METHOD *RAND_SSLeay(void)
	{
	return(&rand_ssleay_meth);
	}

static void ssleay_rand_cleanup(void)
	{
	memset(state,0,sizeof(state));
	state_num=0;
	state_index=0;
	memset(md,0,MD_DIGEST_LENGTH);
	md_count[0]=0;
	md_count[1]=0;
	entropy=0;
	}

static void ssleay_rand_add(const void *buf, int num, double add)
	{
	int i,j,k,st_idx;
	long md_c[2];
	unsigned char local_md[MD_DIGEST_LENGTH];
	MD_CTX m;

#ifdef NORAND
	return;
#endif

	/*
	 * (Based on the rand(3) manpage)
	 *
	 * The input is chopped up into units of 20 bytes (or less for
	 * the last block).  Each of these blocks is run through the hash
	 * function as follows:  The data passed to the hash function
	 * is the current 'md', the same number of bytes from the 'state'
	 * (the location determined by in incremented looping index) as
	 * the current 'block', the new key data 'block', and 'count'
	 * (which is incremented after each use).
	 * The result of this is kept in 'md' and also xored into the
	 * 'state' at the same locations that were used as input into the
         * hash function.
	 */

	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
	st_idx=state_index;

	/* use our own copies of the counters so that even
	 * if a concurrent thread seeds with exactly the
	 * same data and uses the same subarray there's _some_
	 * difference */
	md_c[0] = md_count[0];
	md_c[1] = md_count[1];

	memcpy(local_md, md, sizeof md);

	/* state_index <= state_num <= STATE_SIZE */
	state_index += num;
	if (state_index >= STATE_SIZE)
		{
		state_index%=STATE_SIZE;
		state_num=STATE_SIZE;
		}
	else if (state_num < STATE_SIZE)	
		{
		if (state_index > state_num)
			state_num=state_index;
		}
	/* state_index <= state_num <= STATE_SIZE */

	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
	 * are what we will use now, but other threads may use them
	 * as well */

	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);

	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
		{
		j=(num-i);
		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;

		MD_Init(&m);
		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
		k=(st_idx+j)-STATE_SIZE;
		if (k > 0)
			{
			MD_Update(&m,&(state[st_idx]),j-k);
			MD_Update(&m,&(state[0]),k);
			}
		else
			MD_Update(&m,&(state[st_idx]),j);
			
		MD_Update(&m,buf,j);
		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
		MD_Final(local_md,&m);
		md_c[1]++;

		buf=(const char *)buf + j;

		for (k=0; k<j; k++)
			{
			/* Parallel threads may interfere with this,
			 * but always each byte of the new state is
			 * the XOR of some previous value of its
			 * and local_md (itermediate values may be lost).
			 * Alway using locking could hurt performance more
			 * than necessary given that conflicts occur only
			 * when the total seeding is longer than the random
			 * state. */
			state[st_idx++]^=local_md[k];
			if (st_idx >= STATE_SIZE)
				st_idx=0;
			}
		}
	memset((char *)&m,0,sizeof(m));

	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
	/* Don't just copy back local_md into md -- this could mean that
	 * other thread's seeding remains without effect (except for
	 * the incremented counter).  By XORing it we keep at least as
	 * much entropy as fits into md. */
	for (k = 0; k < sizeof md; k++)
		{
		md[k] ^= local_md[k];
		}
	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
	    entropy += add;
	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
	
#ifndef THREADS	
	assert(md_c[1] == md_count[1]);
#endif
	}

static void ssleay_rand_seed(const void *buf, int num)
	{
	ssleay_rand_add(buf, num, num);
	}

static void ssleay_rand_initialize(void)
	{
	unsigned long l;
#ifndef GETPID_IS_MEANINGLESS
	pid_t curr_pid = getpid();
#endif
#ifdef DEVRANDOM
	FILE *fh;
#endif

	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
	/* put in some default random data, we need more than just this */
#ifndef GETPID_IS_MEANINGLESS
	l=curr_pid;
	RAND_add(&l,sizeof(l),0);
	l=getuid();
	RAND_add(&l,sizeof(l),0);
#endif
	l=time(NULL);
	RAND_add(&l,sizeof(l),0);

#ifdef DEVRANDOM
	/* Use a random entropy pool device. Linux, FreeBSD and OpenBSD
	 * have this. Use /dev/urandom if you can as /dev/random may block
	 * if it runs out of random entries.  */

	if ((fh = fopen(DEVRANDOM, "r")) != NULL)
		{
		unsigned char tmpbuf[ENTROPY_NEEDED];
		int n;
		
		setvbuf(fh, NULL, _IONBF, 0);
		n=fread((unsigned char *)tmpbuf,1,ENTROPY_NEEDED,fh);
		fclose(fh);
		RAND_add(tmpbuf,sizeof tmpbuf,n);
		memset(tmpbuf,0,n);
		}
#endif
#ifdef PURIFY
	memset(state,0,STATE_SIZE);
	memset(md,0,MD_DIGEST_LENGTH);
#endif
	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
	initialized=1;
	}

static int ssleay_rand_bytes(unsigned char *buf, int num)
	{
	int i,j,k,st_num,st_idx;
	int ok;
	long md_c[2];
	unsigned char local_md[MD_DIGEST_LENGTH];
	MD_CTX m;
#ifndef GETPID_IS_MEANINGLESS
	pid_t curr_pid = getpid();
#endif

#ifdef PREDICT
	{
	static unsigned char val=0;

	for (i=0; i<num; i++)
		buf[i]=val++;
	return(1);
	}
#endif

	/*
	 * (Based on the rand(3) manpage:)
	 *
	 * For each group of 10 bytes (or less), we do the following:
	 *
	 * Input into the hash function the top 10 bytes from the
	 * local 'md' (which is initialized from the global 'md'
	 * before any bytes are generated), the bytes that are
	 * to be overwritten by the random bytes, and bytes from the
	 * 'state' (incrementing looping index).  From this digest output
	 * (which is kept in 'md'), the top (up to) 10 bytes are
	 * returned to the caller and the bottom (up to) 10 bytes are xored
	 * into the 'state'.
	 * Finally, after we have finished 'num' random bytes for the
	 * caller, 'count' (which is incremented) and the local and global 'md'
	 * are fed into the hash function and the results are kept in the
	 * global 'md'.
	 */

	CRYPTO_w_lock(CRYPTO_LOCK_RAND);

	if (!initialized)
		ssleay_rand_initialize();

	ok = (entropy >= ENTROPY_NEEDED);
	if (!ok)
		{
		/* If the PRNG state is not yet unpredictable, then seeing
		 * the PRNG output may help attackers to determine the new
		 * state; thus we have to decrease the entropy estimate.
		 * Once we've had enough initial seeding we don't bother to
		 * adjust the entropy count, though, because we're not ambitious
		 * to provide *information-theoretic* randomness.
		 */
		entropy -= num;
		if (entropy < 0)
			entropy = 0;
		}

	st_idx=state_index;
	st_num=state_num;
	md_c[0] = md_count[0];
	md_c[1] = md_count[1];
	memcpy(local_md, md, sizeof md);

	state_index+=num;
	if (state_index > state_num)
		state_index %= state_num;

	/* state[st_idx], ..., state[(st_idx + num - 1) % st_num]
	 * are now ours (but other threads may use them too) */

	md_count[0] += 1;
	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

	while (num > 0)
		{
		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
		num-=j;
		MD_Init(&m);
#ifndef GETPID_IS_MEANINGLESS
		if (curr_pid) /* just in the first iteration to save time */
			{
			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
			curr_pid = 0;
			}
#endif
		MD_Update(&m,&(local_md[MD_DIGEST_LENGTH/2]),MD_DIGEST_LENGTH/2);
		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
#ifndef PURIFY
		MD_Update(&m,buf,j); /* purify complains */
#endif
		k=(st_idx+j)-st_num;
		if (k > 0)
			{
			MD_Update(&m,&(state[st_idx]),j-k);
			MD_Update(&m,&(state[0]),k);
			}
		else
			MD_Update(&m,&(state[st_idx]),j);
		MD_Final(local_md,&m);

		for (i=0; i<j; i++)
			{
			state[st_idx++]^=local_md[i]; /* may compete with other threads */
			*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
			if (st_idx >= st_num)
				st_idx=0;
			}
		}

	MD_Init(&m);
	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
	MD_Update(&m,md,MD_DIGEST_LENGTH);
	MD_Final(md,&m);
	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);

	memset(&m,0,sizeof(m));
	if (ok)
		return(1);
	else
		{
		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
		return(0);
		}
	}

/* pseudo-random bytes that are guaranteed to be unique but not
   unpredictable */
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) 
	{
	int ret, err;

	ret = RAND_bytes(buf, num);
	if (ret == 0)
		{
		err = ERR_peek_error();
		if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
		    ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
			(void)ERR_get_error();
		}
	return (ret);
	}

int RAND_status(void)
	{
	if (!initialized)
		ssleay_rand_initialize();
	return (entropy >= ENTROPY_NEEDED);
	}

#ifdef WINDOWS
#include <windows.h>
#include <openssl/rand.h>

/*****************************************************************************
 * Initialisation function for the SSL random generator.  Takes the contents
 * of the screen as random seed.
 *
 * Created 960901 by Gertjan van Oosten, gertjan@West.NL, West Consulting B.V.
 *
 * Code adapted from
 * <URL:http://www.microsoft.com/kb/developr/win_dk/q97193.htm>;
 * the original copyright message is:
 *
 *   (C) Copyright Microsoft Corp. 1993.  All rights reserved.
 *
 *   You have a royalty-free right to use, modify, reproduce and
 *   distribute the Sample Files (and/or any modified version) in
 *   any way you find useful, provided that you agree that
 *   Microsoft has no warranty obligations or liability for any
 *   Sample Application Files which are modified.
 */
/*
 * I have modified the loading of bytes via RAND_seed() mechanism since
 * the original would have been very very CPU intensive since RAND_seed()
 * does an MD5 per 16 bytes of input.  The cost to digest 16 bytes is the same
 * as that to digest 56 bytes.  So under the old system, a screen of
 * 1024*768*256 would have been CPU cost of approximately 49,000 56 byte MD5
 * digests or digesting 2.7 mbytes.  What I have put in place would
 * be 48 16k MD5 digests, or effectively 48*16+48 MD5 bytes or 816 kbytes
 * or about 3.5 times as much.
 * - eric 
 */
void RAND_screen(void)
{
  HDC		hScrDC;		/* screen DC */
  HDC		hMemDC;		/* memory DC */
  HBITMAP	hBitmap;	/* handle for our bitmap */
  HBITMAP	hOldBitmap;	/* handle for previous bitmap */
  BITMAP	bm;		/* bitmap properties */
  unsigned int	size;		/* size of bitmap */
  char		*bmbits;	/* contents of bitmap */
  int		w;		/* screen width */
  int		h;		/* screen height */
  int		y;		/* y-coordinate of screen lines to grab */
  int		n = 16;		/* number of screen lines to grab at a time */

  /* Create a screen DC and a memory DC compatible to screen DC */
  hScrDC = CreateDC("DISPLAY", NULL, NULL, NULL);
  hMemDC = CreateCompatibleDC(hScrDC);

  /* Get screen resolution */
  w = GetDeviceCaps(hScrDC, HORZRES);
  h = GetDeviceCaps(hScrDC, VERTRES);

  /* Create a bitmap compatible with the screen DC */
  hBitmap = CreateCompatibleBitmap(hScrDC, w, n);

  /* Select new bitmap into memory DC */
  hOldBitmap = SelectObject(hMemDC, hBitmap);

  /* Get bitmap properties */
  GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm);
  size = (unsigned int)bm.bmWidthBytes * bm.bmHeight * bm.bmPlanes;

  bmbits = Malloc(size);
  if (bmbits) {
    /* Now go through the whole screen, repeatedly grabbing n lines */
    for (y = 0; y < h-n; y += n)
    	{
	unsigned char md[MD_DIGEST_LENGTH];

	/* Bitblt screen DC to memory DC */
	BitBlt(hMemDC, 0, 0, w, n, hScrDC, 0, y, SRCCOPY);

	/* Copy bitmap bits from memory DC to bmbits */
	GetBitmapBits(hBitmap, size, bmbits);

	/* Get the MD5 of the bitmap */
	MD(bmbits,size,md);

	/* Seed the random generator with the MD5 digest */
	RAND_seed(md, MD_DIGEST_LENGTH);
	}

    Free(bmbits);
  }

  /* Select old bitmap back into memory DC */
  hBitmap = SelectObject(hMemDC, hOldBitmap);

  /* Clean up */
  DeleteObject(hBitmap);
  DeleteDC(hMemDC);
  DeleteDC(hScrDC);
}
#endif