summaryrefslogtreecommitdiff
path: root/lib/libcrypto/sha/asm/sha512-sse2.pl
blob: 10902bf673d58891478000d7a0e27e5b2cdc7a9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. Rights for redistribution and usage in source and binary
# forms are granted according to the OpenSSL license.
# ====================================================================
#
# SHA512_Transform_SSE2.
#
# As the name suggests, this is an IA-32 SSE2 implementation of
# SHA512_Transform. Motivating factor for the undertaken effort was that
# SHA512 was observed to *consistently* perform *significantly* poorer
# than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit
# platforms on the other hand SHA512 tend to outperform SHA256 [~50%
# seem to be common improvement factor]. All this is perfectly natural,
# as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially
# a 64-bit instruction set? Is it rich enough to implement SHA512?
# If answer was "no," then you wouldn't have been reading this...
#
# Throughput performance in MBps (larger is better):
#
#		2.4GHz P4	1.4GHz AMD32	1.4GHz AMD64(*)
# SHA256/gcc(*)	54		43		59
# SHA512/gcc	17		23		92
# SHA512/sse2	61(**)		57(**)
# SHA512/icc	26		28
# SHA256/icc(*)	65		54
#
# (*)	AMD64 and SHA256 numbers are presented mostly for amusement or
#	reference purposes.
# (**)	I.e. it gives ~2-3x speed-up if compared with compiler generated
#	code. One can argue that hand-coded *non*-SSE2 implementation
#	would perform better than compiler generated one as well, and
#	that comparison is therefore not exactly fair. Well, as SHA512
#	puts enormous pressure on IA-32 GP register bank, I reckon that
#	hand-coded version wouldn't perform significantly better than
#	one compiled with icc, ~20% perhaps... So that this code would
#	still outperform it with distinguishing marginal. But feel free
#	to prove me wrong:-)
#						<appro@fy.chalmers.se>
push(@INC,"perlasm","../../perlasm");
require "x86asm.pl";

&asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386");

$K512="esi";	# K512[80] table, found at the end...
#$W512="esp";	# $W512 is not just W512[16]: it comprises *two* copies
		# of W512[16] and a copy of A-H variables...
$W512_SZ=8*(16+16+8);	# see above...
#$Kidx="ebx";	# index in K512 table, advances from 0 to 80...
$Widx="edx";	# index in W512, wraps around at 16...
$data="edi";	# 16 qwords of input data...
$A="mm0";	# B-D and
$E="mm1";	# F-H are allocated dynamically...
$Aoff=256+0;	# A-H offsets relative to $W512...
$Boff=256+8;
$Coff=256+16;
$Doff=256+24;
$Eoff=256+32;
$Foff=256+40;
$Goff=256+48;
$Hoff=256+56;

sub SHA2_ROUND()
{ local ($kidx,$widx)=@_;

	# One can argue that one could reorder instructions for better
	# performance. Well, I tried and it doesn't seem to make any
	# noticeable difference. Modern out-of-order execution cores
	# reorder instructions to their liking in either case and they
	# apparently do decent job. So we can keep the code more
	# readable/regular/comprehensible:-)

	# I adhere to 64-bit %mmX registers in order to avoid/not care
	# about #GP exceptions on misaligned 128-bit access, most
	# notably in paddq with memory operand. Not to mention that
	# SSE2 intructions operating on %mmX can be scheduled every
	# cycle [and not every second one if operating on %xmmN].

	&movq	("mm4",&QWP($Foff,$W512));	# load f
	&movq	("mm5",&QWP($Goff,$W512));	# load g
	&movq	("mm6",&QWP($Hoff,$W512));	# load h

	&movq	("mm2",$E);			# %mm2 is sliding right
	&movq	("mm3",$E);			# %mm3 is sliding left
	&psrlq	("mm2",14);
	&psllq	("mm3",23);
	&movq	("mm7","mm2");			# %mm7 is T1
	&pxor	("mm7","mm3");
	&psrlq	("mm2",4);
	&psllq	("mm3",23);
	&pxor	("mm7","mm2");
	&pxor	("mm7","mm3");
	&psrlq	("mm2",23);
	&psllq	("mm3",4);
	&pxor	("mm7","mm2");
	&pxor	("mm7","mm3");			# T1=Sigma1_512(e)

	&movq	(&QWP($Foff,$W512),$E);		# f = e
	&movq	(&QWP($Goff,$W512),"mm4");	# g = f
	&movq	(&QWP($Hoff,$W512),"mm5");	# h = g

	&pxor	("mm4","mm5");			# f^=g
	&pand	("mm4",$E);			# f&=e
	&pxor	("mm4","mm5");			# f^=g
	&paddq	("mm7","mm4");			# T1+=Ch(e,f,g)

	&movq	("mm2",&QWP($Boff,$W512));	# load b
	&movq	("mm3",&QWP($Coff,$W512));	# load c
	&movq	($E,&QWP($Doff,$W512));		# e = d

	&paddq	("mm7","mm6");			# T1+=h
	&paddq	("mm7",&QWP(0,$K512,$kidx,8));	# T1+=K512[i]
	&paddq	("mm7",&QWP(0,$W512,$widx,8));	# T1+=W512[i]
	&paddq	($E,"mm7");			# e += T1

	&movq	("mm4",$A);			# %mm4 is sliding right
	&movq	("mm5",$A);			# %mm5 is sliding left
	&psrlq	("mm4",28);
	&psllq	("mm5",25);
	&movq	("mm6","mm4");			# %mm6 is T2
	&pxor	("mm6","mm5");
	&psrlq	("mm4",6);
	&psllq	("mm5",5);
	&pxor	("mm6","mm4");
	&pxor	("mm6","mm5");
	&psrlq	("mm4",5);
	&psllq	("mm5",6);
	&pxor	("mm6","mm4");
	&pxor	("mm6","mm5");			# T2=Sigma0_512(a)

	&movq	(&QWP($Boff,$W512),$A);		# b = a
	&movq	(&QWP($Coff,$W512),"mm2");	# c = b
	&movq	(&QWP($Doff,$W512),"mm3");	# d = c

	&movq	("mm4",$A);			# %mm4=a
	&por	($A,"mm3");			# a=a|c
	&pand	("mm4","mm3");			# %mm4=a&c
	&pand	($A,"mm2");			# a=(a|c)&b
	&por	("mm4",$A);			# %mm4=(a&c)|((a|c)&b)
	&paddq	("mm6","mm4");			# T2+=Maj(a,b,c)

	&movq	($A,"mm7");			# a=T1
	&paddq	($A,"mm6");			# a+=T2
}

$func="sha512_block_sse2";

&function_begin_B($func);
	if (0) {# Caller is expected to check if it's appropriate to
		# call this routine. Below 3 lines are retained for
		# debugging purposes...
		&picmeup("eax","OPENSSL_ia32cap");
		&bt	(&DWP(0,"eax"),26);
		&jnc	("SHA512_Transform");
	}

	&push	("ebp");
	&mov	("ebp","esp");
	&push	("ebx");
	&push	("esi");
	&push	("edi");

	&mov	($Widx,&DWP(8,"ebp"));		# A-H state, 1st arg
	&mov	($data,&DWP(12,"ebp"));		# input data, 2nd arg
	&call	(&label("pic_point"));		# make it PIC!
&set_label("pic_point");
	&blindpop($K512);
	&lea	($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512));

	$W512 = "esp";			# start using %esp as W512
	&sub	($W512,$W512_SZ);
	&and	($W512,-16);		# ensure 128-bit alignment

	# make private copy of A-H
	#     v assume the worst and stick to unaligned load
	&movdqu	("xmm0",&QWP(0,$Widx));
	&movdqu	("xmm1",&QWP(16,$Widx));
	&movdqu	("xmm2",&QWP(32,$Widx));
	&movdqu	("xmm3",&QWP(48,$Widx));

&align(8);
&set_label("_chunk_loop");

	&movdqa	(&QWP($Aoff,$W512),"xmm0");	# a,b
	&movdqa	(&QWP($Coff,$W512),"xmm1");	# c,d
	&movdqa	(&QWP($Eoff,$W512),"xmm2");	# e,f
	&movdqa	(&QWP($Goff,$W512),"xmm3");	# g,h

	&xor	($Widx,$Widx);

	&movdq2q($A,"xmm0");			# load a
	&movdq2q($E,"xmm2");			# load e

	# Why aren't loops unrolled? It makes sense to unroll if
	# execution time for loop body is comparable with branch
	# penalties and/or if whole data-set resides in register bank.
	# Neither is case here... Well, it would be possible to
	# eliminate few store operations, but it would hardly affect
	# so to say stop-watch performance, as there is a lot of
	# available memory slots to fill. It will only relieve some
	# pressure off memory bus...

	# flip input stream byte order...
	&mov	("eax",&DWP(0,$data,$Widx,8));
	&mov	("ebx",&DWP(4,$data,$Widx,8));
	&bswap	("eax");
	&bswap	("ebx");
	&mov	(&DWP(0,$W512,$Widx,8),"ebx");		# W512[i]
	&mov	(&DWP(4,$W512,$Widx,8),"eax");
	&mov	(&DWP(128+0,$W512,$Widx,8),"ebx");	# copy of W512[i]
	&mov	(&DWP(128+4,$W512,$Widx,8),"eax");

&align(8);
&set_label("_1st_loop");		# 0-15
	# flip input stream byte order...
	&mov	("eax",&DWP(0+8,$data,$Widx,8));
	&mov	("ebx",&DWP(4+8,$data,$Widx,8));
	&bswap	("eax");
	&bswap	("ebx");
	&mov	(&DWP(0+8,$W512,$Widx,8),"ebx");	# W512[i]
	&mov	(&DWP(4+8,$W512,$Widx,8),"eax");
	&mov	(&DWP(128+0+8,$W512,$Widx,8),"ebx");	# copy of W512[i]
	&mov	(&DWP(128+4+8,$W512,$Widx,8),"eax");
&set_label("_1st_looplet");
	&SHA2_ROUND($Widx,$Widx); &inc($Widx);

&cmp	($Widx,15)
&jl	(&label("_1st_loop"));
&je	(&label("_1st_looplet"));	# playing similar trick on 2nd loop
					# does not improve performance...

	$Kidx = "ebx";			# start using %ebx as Kidx
	&mov	($Kidx,$Widx);

&align(8);
&set_label("_2nd_loop");		# 16-79
	&and($Widx,0xf);

	# 128-bit fragment! I update W512[i] and W512[i+1] in
	# parallel:-) Note that I refer to W512[(i&0xf)+N] and not to
	# W512[(i+N)&0xf]! This is exactly what I maintain the second
	# copy of W512[16] for...
	&movdqu	("xmm0",&QWP(8*1,$W512,$Widx,8));	# s0=W512[i+1]
	&movdqa	("xmm2","xmm0");		# %xmm2 is sliding right
	&movdqa	("xmm3","xmm0");		# %xmm3 is sliding left
	&psrlq	("xmm2",1);
	&psllq	("xmm3",56);
	&movdqa	("xmm0","xmm2");
	&pxor	("xmm0","xmm3");
	&psrlq	("xmm2",6);
	&psllq	("xmm3",7);
	&pxor	("xmm0","xmm2");
	&pxor	("xmm0","xmm3");
	&psrlq	("xmm2",1);
	&pxor	("xmm0","xmm2");		# s0 = sigma0_512(s0);

	&movdqa	("xmm1",&QWP(8*14,$W512,$Widx,8));	# s1=W512[i+14]
	&movdqa	("xmm4","xmm1");		# %xmm4 is sliding right
	&movdqa	("xmm5","xmm1");		# %xmm5 is sliding left
	&psrlq	("xmm4",6);
	&psllq	("xmm5",3);
	&movdqa	("xmm1","xmm4");
	&pxor	("xmm1","xmm5");
	&psrlq	("xmm4",13);
	&psllq	("xmm5",42);
	&pxor	("xmm1","xmm4");
	&pxor	("xmm1","xmm5");
	&psrlq	("xmm4",42);
	&pxor	("xmm1","xmm4");		# s1 = sigma1_512(s1);

	#     + have to explictly load W512[i+9] as it's not 128-bit
	#     v	aligned and paddq would throw an exception...
	&movdqu	("xmm6",&QWP(8*9,$W512,$Widx,8));
	&paddq	("xmm0","xmm1");		# s0 += s1
	&paddq	("xmm0","xmm6");		# s0 += W512[i+9]
	&paddq	("xmm0",&QWP(0,$W512,$Widx,8));	# s0 += W512[i]

	&movdqa	(&QWP(0,$W512,$Widx,8),"xmm0");		# W512[i] = s0
	&movdqa	(&QWP(16*8,$W512,$Widx,8),"xmm0");	# copy of W512[i]

	# as the above fragment was 128-bit, we "owe" 2 rounds...
	&SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);
	&SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx);

&cmp	($Kidx,80);
&jl	(&label("_2nd_loop"));

	# update A-H state
	&mov	($Widx,&DWP(8,"ebp"));		# A-H state, 1st arg
	&movq	(&QWP($Aoff,$W512),$A);		# write out a
	&movq	(&QWP($Eoff,$W512),$E);		# write out e
	&movdqu	("xmm0",&QWP(0,$Widx));
	&movdqu	("xmm1",&QWP(16,$Widx));
	&movdqu	("xmm2",&QWP(32,$Widx));
	&movdqu	("xmm3",&QWP(48,$Widx));
	&paddq	("xmm0",&QWP($Aoff,$W512));	# 128-bit additions...
	&paddq	("xmm1",&QWP($Coff,$W512));
	&paddq	("xmm2",&QWP($Eoff,$W512));
	&paddq	("xmm3",&QWP($Goff,$W512));
	&movdqu	(&QWP(0,$Widx),"xmm0");
	&movdqu	(&QWP(16,$Widx),"xmm1");
	&movdqu	(&QWP(32,$Widx),"xmm2");
	&movdqu	(&QWP(48,$Widx),"xmm3");

&add	($data,16*8);				# advance input data pointer
&dec	(&DWP(16,"ebp"));			# decrement 3rd arg
&jnz	(&label("_chunk_loop"));

	# epilogue
	&emms	();	# required for at least ELF and Win32 ABIs
	&mov	("edi",&DWP(-12,"ebp"));
	&mov	("esi",&DWP(-8,"ebp"));
	&mov	("ebx",&DWP(-4,"ebp"));
	&leave	();
&ret	();

&align(64);
&set_label("K512");	# Yes! I keep it in the code segment!
	&data_word(0xd728ae22,0x428a2f98);	# u64
	&data_word(0x23ef65cd,0x71374491);	# u64
	&data_word(0xec4d3b2f,0xb5c0fbcf);	# u64
	&data_word(0x8189dbbc,0xe9b5dba5);	# u64
	&data_word(0xf348b538,0x3956c25b);	# u64
	&data_word(0xb605d019,0x59f111f1);	# u64
	&data_word(0xaf194f9b,0x923f82a4);	# u64
	&data_word(0xda6d8118,0xab1c5ed5);	# u64
	&data_word(0xa3030242,0xd807aa98);	# u64
	&data_word(0x45706fbe,0x12835b01);	# u64
	&data_word(0x4ee4b28c,0x243185be);	# u64
	&data_word(0xd5ffb4e2,0x550c7dc3);	# u64
	&data_word(0xf27b896f,0x72be5d74);	# u64
	&data_word(0x3b1696b1,0x80deb1fe);	# u64
	&data_word(0x25c71235,0x9bdc06a7);	# u64
	&data_word(0xcf692694,0xc19bf174);	# u64
	&data_word(0x9ef14ad2,0xe49b69c1);	# u64
	&data_word(0x384f25e3,0xefbe4786);	# u64
	&data_word(0x8b8cd5b5,0x0fc19dc6);	# u64
	&data_word(0x77ac9c65,0x240ca1cc);	# u64
	&data_word(0x592b0275,0x2de92c6f);	# u64
	&data_word(0x6ea6e483,0x4a7484aa);	# u64
	&data_word(0xbd41fbd4,0x5cb0a9dc);	# u64
	&data_word(0x831153b5,0x76f988da);	# u64
	&data_word(0xee66dfab,0x983e5152);	# u64
	&data_word(0x2db43210,0xa831c66d);	# u64
	&data_word(0x98fb213f,0xb00327c8);	# u64
	&data_word(0xbeef0ee4,0xbf597fc7);	# u64
	&data_word(0x3da88fc2,0xc6e00bf3);	# u64
	&data_word(0x930aa725,0xd5a79147);	# u64
	&data_word(0xe003826f,0x06ca6351);	# u64
	&data_word(0x0a0e6e70,0x14292967);	# u64
	&data_word(0x46d22ffc,0x27b70a85);	# u64
	&data_word(0x5c26c926,0x2e1b2138);	# u64
	&data_word(0x5ac42aed,0x4d2c6dfc);	# u64
	&data_word(0x9d95b3df,0x53380d13);	# u64
	&data_word(0x8baf63de,0x650a7354);	# u64
	&data_word(0x3c77b2a8,0x766a0abb);	# u64
	&data_word(0x47edaee6,0x81c2c92e);	# u64
	&data_word(0x1482353b,0x92722c85);	# u64
	&data_word(0x4cf10364,0xa2bfe8a1);	# u64
	&data_word(0xbc423001,0xa81a664b);	# u64
	&data_word(0xd0f89791,0xc24b8b70);	# u64
	&data_word(0x0654be30,0xc76c51a3);	# u64
	&data_word(0xd6ef5218,0xd192e819);	# u64
	&data_word(0x5565a910,0xd6990624);	# u64
	&data_word(0x5771202a,0xf40e3585);	# u64
	&data_word(0x32bbd1b8,0x106aa070);	# u64
	&data_word(0xb8d2d0c8,0x19a4c116);	# u64
	&data_word(0x5141ab53,0x1e376c08);	# u64
	&data_word(0xdf8eeb99,0x2748774c);	# u64
	&data_word(0xe19b48a8,0x34b0bcb5);	# u64
	&data_word(0xc5c95a63,0x391c0cb3);	# u64
	&data_word(0xe3418acb,0x4ed8aa4a);	# u64
	&data_word(0x7763e373,0x5b9cca4f);	# u64
	&data_word(0xd6b2b8a3,0x682e6ff3);	# u64
	&data_word(0x5defb2fc,0x748f82ee);	# u64
	&data_word(0x43172f60,0x78a5636f);	# u64
	&data_word(0xa1f0ab72,0x84c87814);	# u64
	&data_word(0x1a6439ec,0x8cc70208);	# u64
	&data_word(0x23631e28,0x90befffa);	# u64
	&data_word(0xde82bde9,0xa4506ceb);	# u64
	&data_word(0xb2c67915,0xbef9a3f7);	# u64
	&data_word(0xe372532b,0xc67178f2);	# u64
	&data_word(0xea26619c,0xca273ece);	# u64
	&data_word(0x21c0c207,0xd186b8c7);	# u64
	&data_word(0xcde0eb1e,0xeada7dd6);	# u64
	&data_word(0xee6ed178,0xf57d4f7f);	# u64
	&data_word(0x72176fba,0x06f067aa);	# u64
	&data_word(0xa2c898a6,0x0a637dc5);	# u64
	&data_word(0xbef90dae,0x113f9804);	# u64
	&data_word(0x131c471b,0x1b710b35);	# u64
	&data_word(0x23047d84,0x28db77f5);	# u64
	&data_word(0x40c72493,0x32caab7b);	# u64
	&data_word(0x15c9bebc,0x3c9ebe0a);	# u64
	&data_word(0x9c100d4c,0x431d67c4);	# u64
	&data_word(0xcb3e42b6,0x4cc5d4be);	# u64
	&data_word(0xfc657e2a,0x597f299c);	# u64
	&data_word(0x3ad6faec,0x5fcb6fab);	# u64
	&data_word(0x4a475817,0x6c44198c);	# u64

&function_end_B($func);

&asm_finish();