1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
.\" $OpenBSD: keynote.4,v 1.22 2002/05/01 08:03:30 mpech Exp $
.\"
.\" The author of this code is Angelos D. Keromytis (angelos@dsl.cis.upenn.edu)
.\"
.\" This code was written by Angelos D. Keromytis in Philadelphia, PA, USA,
.\" in April-May 1998
.\"
.\" Copyright (C) 1998, 1999 by Angelos D. Keromytis.
.\"
.\" Permission to use, copy, and modify this software with or without fee
.\" is hereby granted, provided that this entire notice is included in
.\" all copies of any software which is or includes a copy or
.\" modification of this software.
.\" You may use this code under the GNU public license if you so wish. Please
.\" contribute changes back to the author.
.\"
.\" THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
.\" IMPLIED WARRANTY. IN PARTICULAR, THE AUTHORS MAKES NO
.\" REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
.\" MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
.\" PURPOSE.
.\"
.Dd May 22, 1999
.Dt KEYNOTE 4
.\" .TH KeyNote 4 local
.Os
.Sh NAME
.Nm keynote
.Nd a trust-management system
.Sh SYNOPSIS
.Fd #include <sys/types.h>
.Fd #include <regex.h>
.Fd #include <keynote.h>
.Fd Link options: -lkeynote -lm -lcrypto
.Sh DESCRIPTION
For more details on
.Nm keynote ,
see RFC 2704.
.Pp
Details on the API, assertion syntax, and command-line tool are given in
the man pages listed at the end of this manual.
.Pp
Trust management, introduced in the PolicyMaker system, is a unified
approach to specifying and interpreting security policies,
credentials, and relationships; it allows direct authorization of
security-critical actions.
A trust-management system provides standard, general-purpose mechanisms
for specifying application security policies and credentials.
Trust-management credentials describe a specific delegation of trust
and subsume the role of public key certificates; unlike traditional
certificates, which bind keys to names, credentials can bind keys directly
to the authorization to perform specific tasks.
.Pp
A trust-management system has five basic components:
.Bl -bullet -offset "xxx"
.It
A language for describing
.Sq actions ,
which are operations with security consequences that are
to be controlled by the system.
.It
A mechanism for identifying
.Sq principals ,
which are entities that can be authorized to perform actions.
.It
A language for specifying application
.Sq policies ,
which govern the actions that principals are authorized to perform.
.It
A language for specifying
.Sq credentials ,
which allow principals to delegate authorization to other principals.
.It
A
.Sq compliance checker ,
which provides a service to applications for determining how an action
requested by principals should be handled, given a policy and a set
of credentials.
.El
.Pp
The trust-management approach has a number of advantages over other
mechanisms for specifying and controlling authorization, especially
when security policy is distributed over a network or is otherwise
decentralized.
.Pp
Trust management unifies the notions of security policy, credentials,
access control, and authorization.
An application that uses a trust-management system can simply ask the
compliance checker whether a requested action should be allowed.
Furthermore, policies and credentials are written in standard languages
that are shared by all trust-managed applications; the security configuration
mechanism for one application carries exactly the same syntactic and semantic
structure as that of another, even when the semantics of the applications
themselves are quite different.
.Pp
Trust-management policies are easy to distribute across networks, helping
to avoid the need for application-specific distributed policy configuration
mechanisms, access control lists, and certificate parsers and interpreters.
.Pp
For a general discussion of the use of trust management in distributed
system security, see the papers listed at the end of this manual.
.Pp
KeyNote is a simple and flexible trust-management system designed to
work well for a variety of large- and small- scale Internet-based
applications.
It provides a single, unified language for both local policies and
credentials.
KeyNote policies and credentials, called
.Sq assertions ,
contain predicates that describe the trusted actions permitted by
the holders of specific public keys.
KeyNote assertions are essentially small, highly-structured programs.
A signed assertion, which can be sent over an untrusted network, is also
called a
.Sq credential assertion .
Credential assertions, which also serve the role of certificates, have
the same syntax as policy assertions but are also signed by the principal
delegating the trust.
.Pp
In KeyNote:
.Bl -bullet -offset "xxx"
.It
Actions are specified as a collection of name-value pairs.
.It
Principal names can be any convenient string and can directly represent
cryptographic public keys.
.It
The same language is used for both policies and credentials.
.It
The policy and credential language is concise, highly expressive, human
readable and writable, and compatible with a variety of storage and
transmission media, including electronic mail.
.It
The compliance checker returns an application-configured
.Sq policy compliance value
that describes how a request should be handled by the application.
Policy compliance values are always positively derived from policy and
credentials, facilitating analysis of KeyNote-based systems.
.It
Compliance checking is efficient enough for high-performance and real-time
applications.
.El
.Pp
In KeyNote, the authority to perform trusted actions is associated
with one or more
.Sq principals .
A principal may be a physical entity, a process in an operating system,
a public key, or any other convenient abstraction.
KeyNote principals are identified by a string called a
.Sq Principal Identifier .
In some cases, a Principal Identifier will contain a cryptographic key
interpreted by the KeyNote system (e.g., for credential signature
verification).
In other cases, Principal Identifiers may have a structure that is opaque
to KeyNote.
.Pp
Principals perform two functions of concern to KeyNote: They request
.Sq actions
and they issue
.Sq assertions .
Actions are any trusted operations that an application places under
KeyNote control.
Assertions delegate the authorization to perform actions to other principals.
.Pp
Actions are described to the KeyNote compliance checker in terms of a
collection of name-value pairs called an
.Sq action attribute set .
The action attribute set is created by the invoking application.
Its structure and format are described in detail elsewhere of this document.
.Pp
KeyNote provides advice to applications on the interpretation of
policy with regard to specific requested actions.
Applications invoke the KeyNote compliance checker by issuing a
.Sq query
containing a proposed action attribute set and identifying the principal(s)
requesting it.
The KeyNote system determines and returns an appropriate
.Sq policy compliance value
from an ordered set of possible responses.
.Pp
The policy compliance value returned from a KeyNote query advises the
application how to process the requested action.
In the simplest case, the compliance value is Boolean (e.g.,
.Qq reject
or
.Qq approve ) .
Assertions can also be written to select from a range of possible
compliance values, when appropriate for the application (e.g.,
.Qq no access ,
.Qq restricted access ,
.Qq full access ) .
Applications can configure the relative ordering (from
.Sq weakest
to
.Sq strongest )
of compliance values at query time.
.Pp
Assertions are the basic programming unit for specifying policy and
delegating authority.
Assertions describe the conditions under which a principal authorizes actions
requested by other principals.
An assertion identifies the principal that made it, which other principals
are being authorized, and the conditions under which the authorization
applies.
The syntax of assertions is given
.Xr keynote 5 .
.Pp
A special principal, whose identifier is
.Qq POLICY ,
provides the root of trust in KeyNote.
.Qq POLICY
is therefore considered to be authorized to perform any action.
.Pp
Assertions issued by the
.Qq POLICY
principal are called
.Sq policy assertions
and are used to delegate authority to otherwise untrusted principals.
The KeyNote security policy of an application consists of a collection
of policy assertions.
.Pp
When a principal is identified by a public key, it can digitally sign
assertions and distribute them over untrusted networks for use by
other KeyNote compliance checkers.
These signed assertions are also called
.Sq credentials ,
and serve a role similar to that of traditional public key certificates.
Policies and credentials share the same syntax and are evaluated according
to the same semantics.
A principal can therefore convert its policy assertions into credentials
simply by digitally signing them.
.Pp
KeyNote is designed to encourage the creation of human-readable
policies and credentials that are amenable to transmission and storage
over a variety of media.
Its assertion syntax is inspired by the format of RFC822-style message
headers.
A KeyNote assertion contains a sequence of sections, called
.Sq fields ,
each of which specifying one aspect of the assertion's semantics.
Fields start with an identifier at the beginning of a line and continue
until the next field is encountered.
For example:
.Bd -literal
KeyNote-Version: 2
Comment: A simple, if contrived, email certificate for user mab
Local-Constants: ATT_CA_key = "RSA:acdfa1df1011bbac"
mab_key = "DSA:deadbeefcafe001a"
Authorizer: ATT_CA_key
Licensees: mab_key
Conditions: ((app_domain == "email") # valid for email only
&& (address == "mab@research.att.com"));
Signature: "RSA-SHA1:f00f2244"
.Ed
.Pp
For the exact meanings of all the fields, see the RFC reference at the
end of this manual, and/or
.Xr keynote 5 .
.Pp
KeyNote semantics resolve the relationship between an application's
policy and actions requested by other principals, as supported by
credentials.
The KeyNote compliance checker processes the assertions against the action
attribute set to determine the policy compliance value of a requested action.
These semantics are defined later in this document.
.Pp
An important principle in KeyNote's design is
.Sq assertion monotonicity ;
the policy compliance value of an action is always positively derived from
assertions made by trusted principals.
Removing an assertion never results in increasing the compliance value
returned by KeyNote for a given query.
The monotonicity property can simplify the design and analysis of complex
network-based security protocols; network failures that prevent the
transmission of credentials can never result in spurious authorization of
dangerous actions.
.Pp
Trusted actions to be evaluated by KeyNote are described by a collection of
name-value pairs called the
.Sq action attribute set .
Action attributes are the mechanism by which applications communicate
requests to KeyNote and are the primary objects on which KeyNote
assertions operate.
An action attribute set is passed to the KeyNote compliance checker with
each query.
.Pp
Each action attribute consists of a name and a value.
The semantics of the names and values are not interpreted by KeyNote itself;
they vary from application to application and must be agreed upon by the
writers of applications and the writers of the policies and credentials that
will be used by them.
.Pp
Action attribute names and values are represented by arbitrary-length
strings.
KeyNote guarantees support of attribute names and values up
to 2048 characters long.
Applications and assertions should therefore avoid depending on the use of
attributes with names or values longer than 2048 characters.
.Pp
Attribute values are inherently untyped and are represented as
character strings by default.
Attribute values may contain any non-NUL ASCII character.
Numeric attribute
values should first be converted to an ASCII text representation by the
invoking application, e.g., the value 1234.5 would be represented by
the string
.Qq 1234.5 .
.Pp
An
.Aq AttributeID
begins with an alphabetic or underscore character and can be followed
by any number of alphanumerics and underscores.
Attribute names are case sensitive.
.Pp
If an action attribute is not defined its value is considered to be
the empty string.
.Pp
Attribute names beginning with the
.Dq \_
character are reserved for use by the KeyNote runtime environment and
cannot be passed from applications as part of queries.
The following special attribute names are used:
.Bl -tag -width indent
.It _MIN_TRUST
Lowest-order (minimum) compliance value in query.
.It _MAX_TRUST
Highest-order (maximum) compliance value in query.
.It _VALUES
Linearly ordered set of compliance value in query.
.It _ACTION_AUTHORIZERS
Names of principals directly authorizing action in query.
Comma separated.
.El
.Pp
In addition, attributes with names of the form
.Qq \_ Ns Aq N ,
where
.Aq N
is an ASCII-encoded integer, are used by the regular expression matching
mechanism described in
.Xr keynote 5 .
.Pp
By convention, the name of the application domain over which action
attributes should be interpreted is given in the attribute named
.Qq app_domain .
The IANA (or some other suitable authority) will provide a registry
of reserved app_domain names.
The registry will list the names and meanings of each application's
attributes.
.Pp
The app_domain convention helps to ensure that credentials are
interpreted as they were intended.
An attribute with any given name may be used in many different application
domains but might have different meanings in each of them.
However, the use of a global registry is not always required for
small-scale, closed applications; the only requirement is that the
policies and credentials made available to the KeyNote compliance checker
interpret attributes according to the same semantics assumed by the
application that created them.
.Pp
For example, an email application might reserve the app_domain
.Qq RFC822-EMAIL
and might use the attributes named
.Qq address
(the mail address of a message's sender),
.Qq name
(the human name of the message sender), and any
.Qq organization
headers present (the organization name).
The values of these attributes would be derived in the obvious way from
the email message headers.
The public key of the message's signer would be given in the
.Qq _ACTION_AUTHORIZERS
attribute
.Sh QUERY SEMANTICS
The discussion in the following sections assume some familiarity with
assertion syntax.
Please refer to
.Xr keynote 5
for more details on the syntax.
.Sh QUERY PARAMETERS
A KeyNote query has four parameters:
.Bl -bullet -offset "xxx"
.It
The identifier of the principal(s) requesting the action.
.It
The action attribute set describing the action.
.It
The set of compliance values of interest to the application,
ordered from _MIN_TRUST to _MAX_TRUST
.It
The policy and credential assertions that should be included in
the evaluation.
.El
.Pp
The mechanism for passing these parameters to the KeyNote evaluator is
application dependent.
In particular, an evaluator might provide for some parameters to be passed
explicitly, while others are looked up externally (e.g., credentials might
be looked up in a network- based distribution system), while still others
might be requested from the application as needed by the evaluator,
through a
.Sq callback
mechanism (e.g., for attribute values that represent values from among
a very large namespace).
.Sh ACTION REQUESTER
At least one Principal must be identified in each query as the
.Sq requester
of the action.
Actions may be requested by several principals, each
considered to have individually requested it.
This allows policies that require multiple authorizations, e.g.,
.Sq two person control .
The set of authorizing principals is made available in the special
attribute
.Qq _ACTION_AUTHORIZERS ;
if several principals are authorizers, their identifiers are separated
with commas.
.Sh ORDERED COMPLIANCE VALUE SET
The set of compliance values of interest to an application (and their
relative ranking to one another) is determined by the invoking
application and passed to the KeyNote evaluator as a parameter of the
query.
In many applications, this will be Boolean, e.g., the ordered
sets {FALSE, TRUE} or {REJECT, APPROVE}.
Other applications may require a range of possible values, e.g.,
{No_Access, Limited_Access, Full_Access}.
Note that applications should
include in this set only compliance value names that are actually returned
by the assertions.
.Pp
The lowest-order and highest-order compliance value strings given in
the query are available in the special attributes named
.Qq _MIN_TRUST
and
.Qq _MAX_TRUST ,
respectively.
The complete set of query compliance values is made
available in ascending order (from _MIN_TRUST to _MAX_TRUST) in
the special attribute named
.Qq _VALUES .
Values are separated with commas; applications that use assertions
that make use of the _VALUES attribute should therefore avoid the
use of compliance value strings that themselves contain commas.
.Sh PRINCIPAL IDENTIFIER NORMALIZATION
Principal identifier comparisons among Cryptographic Principal
Identifiers (that represent keys) in the Authorizer and Licensees
fields or in an action's direct authorizers are performed after
normalizing them by conversion to a canonical form.
.Pp
Every cryptographic algorithm used in KeyNote defines a method for
converting keys to their canonical form and that specifies how the
comparison for equality of two keys is performed.
If the algorithm named in the identifier is unknown to KeyNote,
the identifier is treated as opaque.
.Pp
Opaque identifiers are compared as case sensitive strings.
.Pp
Notice that use of opaque identifiers in the Authorizer field requires
that the assertion's integrity be locally trusted (since it cannot be
cryptographically verified by the compliance checker).
.Sh POLICY COMPLIANCE VALUE CALCULATION
The Policy Compliance Value of a query is the Principal Compliance
Value of the principal named
.Qq POLICY .
.Sh PRINCIPAL COMPLIANCE VALUE
The Compliance Value of a principal
.Aq X
is the highest order (maximum) of:
.Bl -bullet -offset "xxx"
.It
the Direct Authorization Value of principal
.Aq X ;
and
.It
the Assertion Compliance Values of all assertions identifying
.Aq X
in the Authorizer field.
.El
.Sh DIRECT AUTHORIZATION VALUE
The Direct Authorization Value of a principal
.Aq X
is _MAX_TRUST if
.Aq X
is listed in the query as an authorizer of the action.
Otherwise, the Direct Authorization Value of
.Aq X
is _MIN_TRUST.
.Sh ASSERTION COMPLIANC VALUE
The Assertion Compliance Value of an assertion is the lowest order
(minimum) of the assertion's Conditions Compliance Value and its
Licensee Compliance Value.
.Sh CONDITIONS COMPLIANCE VALUE
The Conditions Compliance Value of an assertion is the highest-order
(maximum) value among all successful clauses listed in the conditions
section.
.Pp
If no clause's test succeeds or the Conditions field is empty, an
assertion's Conditions Compliance Value is considered to be the
_MIN_TRUST value, as described previously.
.Pp
If an assertion's Conditions field is missing entirely, its Conditions
Compliance Value is considered to be the _MAX_TRUST value, as defined
previously.
.Pp
The set of successful test clause values is calculated as follows:
.Pp
Recall from the grammar of the Conditions field (see
.Xr keynote 5
for more details) that each clause in the conditions section has two
logical parts: a `test' and an optional
.Sq value ,
which, if present, is separated from the test with the
.Qq \-\>
token.
The test subclause is a
predicate that either succeeds (evaluates to logical
.Sq true )
or fails (evaluates to logical
.Sq false ) .
The value subclause is a string
expression that evaluates to one value from the ordered set of
compliance values given with the query.
If the value subclause is missing, it is considered to be _MAX_TRUST.
That is, the clause
.Bd -literal
foo=="bar";
.Ed
.Pp
is equivalent to
.Bd -literal
foo=="bar" -> _MAX_TRUST;
.Ed
.Pp
If the value component of a clause is present, in the simplest case it
contains a string expression representing a possible compliance value.
For example, consider an assertion with the following Conditions
field:
.Bd -literal
Conditions:
@user_id == 0 -> "full_access"; # clause (1)
@user_id < 1000 -> "user_access"; # clause (2)
@user_id < 10000 -> "guest_access"; # clause (3)
user_name == "root" -> "full_access"; # clause (4)
.Ed
.Pp
Here, if the value of the
.Qq user_id
attribute is
.Qq 1073
and the
.Qq user_name
attribute is
.Qq root ,
the possible compliance value set would contain the values
.Qq guest_access
(by clause (3)) and
.Qq full_access
(by clause (4)).
If the ordered set of compliance values
given in the query (in ascending order) is
.Pf { Ns Qo no_access
.Qc ,
.Qq guest_access ,
.Qq user_access ,
.Qo full_access
.No Qc Ns },
the Conditions Compliance Value of the assertion would be
.Qq full_access
(because
.Qq full_access
has a higher-order value than
.Qq guest_access ) .
If the
.Qq user_id
attribute had the value
.Qq 19283
and the
.Qq user_name
attribute had the value
.Qq nobody ,
no clause would succeed and the Conditions Compliance Value would be
.Qq no_access ,
which is the lowest-order possible value (_MIN_TRUST).
.Pp
If a clause lists an explicit value, its value string must be named in
the query ordered compliance value set.
Values not named in the query
compliance value set are considered equivalent to _MIN_TRUST.
.Pp
The value component of a clause can also contain recursively-nested
clauses.
Recursively-nested clauses are evaluated only if their parent test is true.
That is,
.Bd -literal
a=="b" -> { b=="c" -> "value1";
d=="e" -> "value2";
true -> "value3"; } ;
.Ed
.Pp
is equivalent to
.Bd -literal
(a=="b") && (b=="c") -> "value1";
(a=="b") && (d=="e") -> "value2";
(a=="b") -> "value3";
.Ed
.Pp
Notice that string comparisons are case sensitive.
.Pp
A regular expression comparison
.Po
.Qq ~=
.Pc
is considered true if the left-hand-side string expression matches
the right-hand-side regular expression.
If the POSIX regular expression group matching scheme is
used, the number of groups matched is placed in the temporary meta-
attribute
.Qq _0
(dereferenced as _0), and each match is placed in
sequence in the temporary attributes (_1, _2, ..., _N).
These match-attributes' values are valid only within subsequent references
made within the same clause.
Regular expression evaluation is case sensitive.
.Pp
A runtime error occurring in the evaluation of a test, such as
division by zero or an invalid regular expression, causes the test to
be considered false. For example:
.Bd -literal
foo == "bar" -> {
@a == 1/0 -> "oneval"; # subclause 1
@a == 2 -> "anotherval"; # subclause 2
};
.Ed
.Pp
Here, subclause 1 triggers a runtime error.
Subclause 1 is therefore false (and has the value _MIN_TRUST).
Subclause 2, however, would be evaluated normally.
.Pp
An invalid
.Aq RegExpr
is considered a runtime error and causes the test
in which it occurs to be considered false.
.Sh LICENSEE COMPLIANCE VALUE
The Licensee Compliance Value of an assertion is calculated by
evaluating the expression in the Licensees field, based on the
Principal Compliance Value of the principals named there.
.Pp
If an assertion's Licensees field is empty, its Licensee Compliance
Value is considered to be _MIN_TRUST.
If an assertion's Licensees field is missing altogether, its Licensee
Compliance Value is considered to be _MAX_TRUST.
.Pp
For each principal named in the Licensees field, its Principal
Compliance Value is substituted for its name.
If no Principal Compliance Value can be found for some named principal,
its name is substituted with the _MIN_TRUST value.
.Pp
The licensees expression (see
.Xr keynote 5 )
is evaluated as follows:
.Bl -bullet -offset "xxx"
.It
A
.Qq (...)
expression has the value of the enclosed subexpression.
.It
A
.Qq \&\&
expression has the lower-order (minimum) of its two subexpression values.
.It
A
.Qq \|\|
expression has the higher-order (maximum) of its two subexpression values.
.It
A
.Qo
.Ao K
.No Ac Ns -of Ns Po Aq List
.Pc
.Qc
expression has the K-th highest order compliance value listed in
.Aq list .
Values that appear multiple times are counted with multiplicity.
For example, if K = 3 and the orders of the listed compliance values are
(0, 1, 2, 2, 3), the value of the expression is the compliance value of
order 2.
.El
.Pp
For example, consider the following Licensees field:
.Bd -literal
Licensees: ("alice" && "bob") || "eve"
.Ed
.Pp
If the Principal Compliance Value is
.Qq yes
for principal
.Qq alice ,
.Qq no
for principal
.Qq bob ,
and
.Qq no
for principal
.Qq eve ,
and
.Qq yes
is higher order than
.Qq no
in the query's Compliance Value Set, then the resulting Licensee Compliance
Value is
.Qq no .
.Pp
Observe that if there are exactly two possible compliance values
(e.g.,
.Qq false
and
.Qq true ) ,
the rules of Licensee Compliance Value resolution reduce exactly to standard
Boolean logic.
.Sh ASSERTION MANAGEMENT
Assertions may be either signed or unsigned.
Only signed assertions should be used as credentials or transmitted or
stored on untrusted media.
Unsigned assertions should be used only to specify policy and for assertions
whose integrity has already been verified as conforming
to local policy by some mechanism external to the KeyNote system
itself (e.g., X.509 certificates converted to KeyNote assertions by a
trusted conversion program).
.Pp
Implementations that permit signed credentials to be verified by the
KeyNote compliance checker generally provide two
.Sq channels
through which applications can make assertions available.
Unsigned, locally-trusted assertions are provided over a
.Sq trusted
interface, while signed credentials are provided over an
.Sq untrusted
interface.
The KeyNote compliance checker verifies correct signatures for all
assertions submitted over the untrusted interface.
The integrity of KeyNote evaluation requires that only assertions trusted
as reflecting local policy are submitted to KeyNote via the trusted interface.
.Pp
Note that applications that use KeyNote exclusively as a local policy
specification mechanism need use only trusted assertions.
Other applications might need only a small number of infrequently changed
trusted assertions to
.Sq bootstrap
a policy whose details are specified in signed credentials issued
by others and submitted over the untrusted interface.
.Sh EXAMPLES
A policy that delegates authority for the
.Qq SPEND
application domain to RSA key dab212 when the amount given in the
.Qq dollars
attribute is less than 10000.
.Bd -literal
Authorizer: "POLICY"
Licensees: "RSA:dab212" # the CFO's key
Conditions: (app_domain=="SPEND") && (@dollars < 10000);
.Ed
.Pp
RSA key dab212 delegates authorization to any two signers, from a
list, one of which must be DSA key feed1234 in the
.Qq SPEND
application when @dollars < 7500.
If the amount in @dollars is 2500 or greater, the request is approved
but logged.
.Bd -literal
KeyNote-Version: 2
Comment: This credential specifies a spending policy
Authorizer: "RSA:dab212" # the CFO
Licensees: "DSA:feed1234" && # The vice president
("RSA:abc123" || # middle manager #1
"DSA:bcd987" || # middle manager #2
"DSA:cde333" || # middle manager #3
"DSA:def975" || # middle manager #4
"DSA:978add") # middle manager #5
Conditions: (app_domain=="SPEND") # note nested clauses
-> { (@(dollars) < 2500)
-> _MAX_TRUST;
(@(dollars) < 7500)
-> "ApproveAndLog";
};
Signature: "RSA-SHA1:9867a1"
.Ed
.Pp
According to this policy, any two signers from the list of managers
will do if @(dollars) < 1000:
.Bd -literal
KeyNote-Version: 2
Authorizer: "POLICY"
Licensees: 2-of("DSA:feed1234", # The VP
"RSA:abc123", # Middle management clones
"DSA:bcd987",
"DSA:cde333",
"DSA:def975",
"DSA:978add")
Conditions: (app_domain=="SPEND") &&
(@(dollars) < 1000);
.Ed
.Pp
A credential from dab212 with a similar policy, but only one signer is
required if @(dollars) < 500.
A log entry is made if the amount is at least 100.
.Bd -literal
KeyNote-Version: 2
Comment: This one credential is equivalent to six separate
credentials, one for each VP and middle manager.
Individually, they can spend up to $500, but if
it's $100 or more, we log it.
Authorizer: "RSA:dab212" # From the CFO
Licensees: "DSA:feed1234" || # The VP
"RSA:abc123" || # The middle management clones
"DSA:bcd987" ||
"DSA:cde333" ||
"DSA:def975" ||
"DSA:978add"
Conditions: (app_domain="SPEND") # nested clauses
-> { (@(dollars) < 100) -> _MAX_TRUST;
(@(dollars) < 500) -> "ApproveAndLog";
};
Signature: "RSA-SHA1:186123"
.Ed
.Pp
Assume a query in which the ordered set of Compliance Values is
.Pf { Ns Qo Reject
.Qc ,
.Qq ApproveAndLog ,
.Qo Approve
.No Qc Ns }.
Under policies E and G, and
credentials F and H, the Policy Compliance Value is
.Qq Approve
(_MAX_TRUST) when:
.Bd -literal
_ACTION_AUTHORIZERS = "DSA:978add"
app_domain = "SPEND"
dollars = "45"
unmentioned_attribute = "whatever"
and
_ACTION_AUTHORIZERS = "RSA:abc123,DSA:cde333"
app_domain = "SPEND"
dollars = "550"
.Ed
.Pp
The following return "ApproveAndLog":
.Bd -literal
_ACTION_AUTHORIZERS = "DSA:feed1234,DSA:cde333"
app_domain = "SPEND"
dollars = "5500"
and
_ACTION_AUTHORIZERS = "DSA:cde333"
app_domain = "SPEND"
dollars = "150"
.Ed
.Pp
However, the following return "Reject" (_MIN_TRUST):
.Bd -literal
_ACTION_AUTHORIZERS = "DSA:def975"
app_domain = "SPEND"
dollars = "550"
and
_ACTION_AUTHORIZERS = "DSA:cde333,DSA:978add"
app_domain = "SPEND"
dollars = "5500"
.Ed
.Sh FILES
.Bl -tag -width libkeynote.a -compact
.It Pa keynote.h
.It Pa libkeynote.a
.El
.Sh SEE ALSO
.Xr keynote 1 ,
.Xr keynote 3 ,
.Xr keynote 5
.Rs
.%A M. Blaze
.%A J. Feigenbaum
.%A A. D. Keromytis
.%T "The KeyNote Trust-Management System, Version 2"
.%N RFC 2704
.%D 1999
.Re
.Rs
.%A M. Blaze
.%A J. Feigenbaum
.%A J. Lacy
.%T Decentralized Trust Management
.%J IEEE Conference on Privacy and Security
.%D 1996
.Re
.Rs
.%A M. Blaze
.%A J. Feigenbaum
.%A M. Strauss
.%T Compliance-Checking in the PolicyMaker Trust Management System
.%J Financial Crypto Conference
.%D 1998
.Re
.Sh AUTHORS
Angelos D. Keromytis
.Aq angelos@dsl.cis.upenn.edu
.Sh WEB PAGE
.Pa http://www.cis.upenn.edu/~keynote
.Sh BUGS
None that we know of.
If you find any, please report them at
.Bd -literal -offset indent -compact
keynote@research.att.com
.Ed
|