1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
/* $OpenBSD: kvm_proc.c,v 1.36 2008/06/26 05:42:05 ray Exp $ */
/* $NetBSD: kvm_proc.c,v 1.30 1999/03/24 05:50:50 mrg Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
* Copyright (c) 1989, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software developed by the Computer Systems
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
* BG 91-66 and contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
#else
static char *rcsid = "$OpenBSD: kvm_proc.c,v 1.36 2008/06/26 05:42:05 ray Exp $";
#endif
#endif /* LIBC_SCCS and not lint */
/*
* Proc traversal interface for kvm. ps and w are (probably) the exclusive
* users of this code, so we've factored it out into a separate module.
* Thus, we keep this grunge out of the other kvm applications (i.e.,
* most other applications are interested only in open/close/read/nlist).
*/
#define __need_process
#include <sys/param.h>
#include <sys/user.h>
#include <sys/proc.h>
#include <sys/exec.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <nlist.h>
#include <kvm.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_amap.h>
#include <machine/vmparam.h>
#include <machine/pmap.h>
#include <sys/sysctl.h>
#include <limits.h>
#include <db.h>
#include <paths.h>
#include "kvm_private.h"
/*
* Common info from kinfo_proc and kinfo_proc2 used by helper routines.
*/
struct miniproc {
struct vmspace *p_vmspace;
char p_stat;
struct proc *p_paddr;
pid_t p_pid;
};
/*
* Convert from struct proc and kinfo_proc{,2} to miniproc.
*/
#define PTOMINI(kp, p) \
do { \
(p)->p_stat = (kp)->p_stat; \
(p)->p_pid = (kp)->p_pid; \
(p)->p_paddr = NULL; \
(p)->p_vmspace = (kp)->p_vmspace; \
} while (/*CONSTCOND*/0);
#define KPTOMINI(kp, p) \
do { \
(p)->p_stat = (kp)->kp_proc.p_stat; \
(p)->p_pid = (kp)->kp_proc.p_pid; \
(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
} while (/*CONSTCOND*/0);
#define KP2TOMINI(kp, p) \
do { \
(p)->p_stat = (kp)->p_stat; \
(p)->p_pid = (kp)->p_pid; \
(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
} while (/*CONSTCOND*/0);
#define PTRTOINT64(foo) ((u_int64_t)(u_long)(foo))
#define KREAD(kd, addr, obj) \
(kvm_read(kd, addr, (void *)(obj), sizeof(*obj)) != sizeof(*obj))
ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, size_t);
static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, u_long *);
static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, char *, size_t);
static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
static char **kvm_doargv(kvm_t *, const struct miniproc *, int,
void (*)(struct ps_strings *, u_long *, int *));
static int kvm_proclist(kvm_t *, int, int, struct proc *,
struct kinfo_proc *, int);
static int proc_verify(kvm_t *, const struct miniproc *);
static void ps_str_a(struct ps_strings *, u_long *, int *);
static void ps_str_e(struct ps_strings *, u_long *, int *);
static char *
_kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
{
u_long addr, head, offset, slot;
struct vm_anon *anonp, anon;
struct vm_map_entry vme;
struct vm_amap amap;
struct vm_page pg;
if (kd->swapspc == 0) {
kd->swapspc = _kvm_malloc(kd, kd->nbpg);
if (kd->swapspc == 0)
return (0);
}
/*
* Look through the address map for the memory object
* that corresponds to the given virtual address.
* The header just has the entire valid range.
*/
head = (u_long)&p->p_vmspace->vm_map.header;
addr = head;
while (1) {
if (KREAD(kd, addr, &vme))
return (0);
if (va >= vme.start && va < vme.end &&
vme.aref.ar_amap != NULL)
break;
addr = (u_long)vme.next;
if (addr == head)
return (0);
}
/*
* we found the map entry, now to find the object...
*/
if (vme.aref.ar_amap == NULL)
return (NULL);
addr = (u_long)vme.aref.ar_amap;
if (KREAD(kd, addr, &amap))
return (NULL);
offset = va - vme.start;
slot = offset / kd->nbpg + vme.aref.ar_pageoff;
/* sanity-check slot number */
if (slot > amap.am_nslot)
return (NULL);
addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
if (KREAD(kd, addr, &anonp))
return (NULL);
addr = (u_long)anonp;
if (KREAD(kd, addr, &anon))
return (NULL);
addr = (u_long)anon.an_page;
if (addr) {
if (KREAD(kd, addr, &pg))
return (NULL);
if (_kvm_pread(kd, kd->pmfd, (void *)kd->swapspc,
(size_t)kd->nbpg, (off_t)pg.phys_addr) != kd->nbpg)
return (NULL);
} else {
if (_kvm_pread(kd, kd->swfd, (void *)kd->swapspc,
(size_t)kd->nbpg,
(off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
return (NULL);
}
/* Found the page. */
offset %= kd->nbpg;
*cnt = kd->nbpg - offset;
return (&kd->swapspc[offset]);
}
char *
_kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
{
struct miniproc mp;
PTOMINI(p, &mp);
return (_kvm_ureadm(kd, &mp, va, cnt));
}
/*
* Read proc's from memory file into buffer bp, which has space to hold
* at most maxcnt procs.
*/
static int
kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
struct kinfo_proc *bp, int maxcnt)
{
struct session sess;
struct eproc eproc;
struct proc proc;
struct process process;
struct pgrp pgrp;
struct tty tty;
int cnt = 0;
for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
if (KREAD(kd, (u_long)p, &proc)) {
_kvm_err(kd, kd->program, "can't read proc at %x", p);
return (-1);
}
if (KREAD(kd, (u_long)proc.p_p, &process)) {
_kvm_err(kd, kd->program, "can't read process at %x", proc.p_p);
return (-1);
}
if (KREAD(kd, (u_long)process.ps_cred, &eproc.e_pcred) == 0)
KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
&eproc.e_ucred);
switch (what) {
case KERN_PROC_PID:
if (proc.p_pid != (pid_t)arg)
continue;
break;
case KERN_PROC_UID:
if (eproc.e_ucred.cr_uid != (uid_t)arg)
continue;
break;
case KERN_PROC_RUID:
if (eproc.e_pcred.p_ruid != (uid_t)arg)
continue;
break;
case KERN_PROC_ALL:
if (proc.p_flag & P_SYSTEM)
continue;
break;
}
/*
* We're going to add another proc to the set. If this
* will overflow the buffer, assume the reason is because
* nprocs (or the proc list) is corrupt and declare an error.
*/
if (cnt >= maxcnt) {
_kvm_err(kd, kd->program, "nprocs corrupt");
return (-1);
}
/*
* gather eproc
*/
eproc.e_paddr = p;
if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
_kvm_err(kd, kd->program, "can't read pgrp at %x",
proc.p_pgrp);
return (-1);
}
eproc.e_sess = pgrp.pg_session;
eproc.e_pgid = pgrp.pg_id;
eproc.e_jobc = pgrp.pg_jobc;
if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
_kvm_err(kd, kd->program, "can't read session at %x",
pgrp.pg_session);
return (-1);
}
if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
_kvm_err(kd, kd->program,
"can't read tty at %x", sess.s_ttyp);
return (-1);
}
eproc.e_tdev = tty.t_dev;
eproc.e_tsess = tty.t_session;
if (tty.t_pgrp != NULL) {
if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
_kvm_err(kd, kd->program,
"can't read tpgrp at &x",
tty.t_pgrp);
return (-1);
}
eproc.e_tpgid = pgrp.pg_id;
} else
eproc.e_tpgid = -1;
} else
eproc.e_tdev = NODEV;
eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
if (sess.s_leader == p)
eproc.e_flag |= EPROC_SLEADER;
if (proc.p_wmesg)
(void)kvm_read(kd, (u_long)proc.p_wmesg,
eproc.e_wmesg, WMESGLEN);
(void)kvm_read(kd, (u_long)proc.p_vmspace,
&eproc.e_vm, sizeof(eproc.e_vm));
eproc.e_xsize = eproc.e_xrssize = 0;
eproc.e_xccount = eproc.e_xswrss = 0;
switch (what) {
case KERN_PROC_PGRP:
if (eproc.e_pgid != (pid_t)arg)
continue;
break;
case KERN_PROC_TTY:
if ((proc.p_flag & P_CONTROLT) == 0 ||
eproc.e_tdev != (dev_t)arg)
continue;
break;
}
bcopy(&proc, &bp->kp_proc, sizeof(proc));
bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
++bp;
++cnt;
}
return (cnt);
}
/*
* Build proc info array by reading in proc list from a crash dump.
* Return number of procs read. maxcnt is the max we will read.
*/
static int
kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
u_long a_zombproc, int maxcnt)
{
struct kinfo_proc *bp = kd->procbase;
struct proc *p;
int acnt, zcnt;
if (KREAD(kd, a_allproc, &p)) {
_kvm_err(kd, kd->program, "cannot read allproc");
return (-1);
}
acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
if (acnt < 0)
return (acnt);
if (KREAD(kd, a_zombproc, &p)) {
_kvm_err(kd, kd->program, "cannot read zombproc");
return (-1);
}
zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
if (zcnt < 0)
zcnt = 0;
return (acnt + zcnt);
}
struct kinfo_proc2 *
kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
{
int mib[6], st, nprocs;
struct user user;
size_t size;
if ((ssize_t)esize < 0)
return (NULL);
if (kd->procbase2 != NULL) {
free(kd->procbase2);
/*
* Clear this pointer in case this call fails. Otherwise,
* kvm_close() will free it again.
*/
kd->procbase2 = 0;
}
if (ISALIVE(kd)) {
size = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC2;
mib[2] = op;
mib[3] = arg;
mib[4] = esize;
mib[5] = 0;
st = sysctl(mib, 6, NULL, &size, NULL, 0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getproc2");
return (NULL);
}
mib[5] = size / esize;
kd->procbase2 = _kvm_malloc(kd, size);
if (kd->procbase2 == 0)
return (NULL);
st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getproc2");
return (NULL);
}
nprocs = size / esize;
} else {
struct kinfo_proc2 kp2, *kp2p;
struct kinfo_proc *kp;
char *kp2c;
int i;
kp = kvm_getprocs(kd, op, arg, &nprocs);
if (kp == NULL)
return (NULL);
kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
kp2c = (char *)kd->procbase2;
kp2p = &kp2;
for (i = 0; i < nprocs; i++, kp++) {
memset(kp2p, 0, sizeof(kp2));
kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
kp2p->p_addr = PTRTOINT64(kp->kp_proc.p_addr);
kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
kp2p->p_limit = PTRTOINT64(kp->kp_eproc.e_limit);
kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
kp2p->p_tsess = 0;
kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
kp2p->p_eflag = 0;
kp2p->p_exitsig = kp->kp_proc.p_exitsig;
kp2p->p_flag = kp->kp_proc.p_flag;
kp2p->p_pid = kp->kp_proc.p_pid;
kp2p->p_ppid = kp->kp_eproc.e_ppid;
#if 0
kp2p->p_sid = kp->kp_eproc.e_sid;
#else
kp2p->p_sid = -1; /* XXX */
#endif
kp2p->p__pgid = kp->kp_eproc.e_pgid;
kp2p->p_tpgid = -1;
kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
MIN(sizeof(kp2p->p_groups),
sizeof(kp->kp_eproc.e_ucred.cr_groups)));
kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
kp2p->p_jobc = kp->kp_eproc.e_jobc;
kp2p->p_tdev = kp->kp_eproc.e_tdev;
kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
kp2p->p_estcpu = kp->kp_proc.p_estcpu;
kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
kp2p->p_cpticks = kp->kp_proc.p_cpticks;
kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
kp2p->p_swtime = kp->kp_proc.p_swtime;
kp2p->p_slptime = kp->kp_proc.p_slptime;
kp2p->p_schedflags = 0;
kp2p->p_uticks = kp->kp_proc.p_uticks;
kp2p->p_sticks = kp->kp_proc.p_sticks;
kp2p->p_iticks = kp->kp_proc.p_iticks;
kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
kp2p->p_traceflag = kp->kp_proc.p_traceflag;
kp2p->p_holdcnt = 1;
kp2p->p_siglist = kp->kp_proc.p_siglist;
kp2p->p_sigmask = kp->kp_proc.p_sigmask;
kp2p->p_sigignore = kp->kp_proc.p_sigignore;
kp2p->p_sigcatch = kp->kp_proc.p_sigcatch;
kp2p->p_stat = kp->kp_proc.p_stat;
kp2p->p_priority = kp->kp_proc.p_priority;
kp2p->p_usrpri = kp->kp_proc.p_usrpri;
kp2p->p_nice = kp->kp_proc.p_nice;
kp2p->p_xstat = kp->kp_proc.p_xstat;
kp2p->p_acflag = kp->kp_proc.p_acflag;
strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
sizeof(kp2p->p_wmesg));
kp2p->p_wchan = PTRTOINT64(kp->kp_proc.p_wchan);
strncpy(kp2p->p_login, kp->kp_eproc.e_login,
sizeof(kp2p->p_login));
kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
kp2p->p_eflag = kp->kp_eproc.e_flag;
if (P_ZOMBIE(&kp->kp_proc) || kp->kp_proc.p_addr == NULL ||
KREAD(kd, (u_long)kp->kp_proc.p_addr, &user)) {
kp2p->p_uvalid = 0;
} else {
kp2p->p_uvalid = 1;
kp2p->p_ustart_sec = user.u_stats.p_start.tv_sec;
kp2p->p_ustart_usec = user.u_stats.p_start.tv_usec;
kp2p->p_uutime_sec = user.u_stats.p_ru.ru_utime.tv_sec;
kp2p->p_uutime_usec = user.u_stats.p_ru.ru_utime.tv_usec;
kp2p->p_ustime_sec = user.u_stats.p_ru.ru_stime.tv_sec;
kp2p->p_ustime_usec = user.u_stats.p_ru.ru_stime.tv_usec;
kp2p->p_uru_maxrss = user.u_stats.p_ru.ru_maxrss;
kp2p->p_uru_ixrss = user.u_stats.p_ru.ru_ixrss;
kp2p->p_uru_idrss = user.u_stats.p_ru.ru_idrss;
kp2p->p_uru_isrss = user.u_stats.p_ru.ru_isrss;
kp2p->p_uru_minflt = user.u_stats.p_ru.ru_minflt;
kp2p->p_uru_majflt = user.u_stats.p_ru.ru_majflt;
kp2p->p_uru_nswap = user.u_stats.p_ru.ru_nswap;
kp2p->p_uru_inblock = user.u_stats.p_ru.ru_inblock;
kp2p->p_uru_oublock = user.u_stats.p_ru.ru_oublock;
kp2p->p_uru_msgsnd = user.u_stats.p_ru.ru_msgsnd;
kp2p->p_uru_msgrcv = user.u_stats.p_ru.ru_msgrcv;
kp2p->p_uru_nsignals = user.u_stats.p_ru.ru_nsignals;
kp2p->p_uru_nvcsw = user.u_stats.p_ru.ru_nvcsw;
kp2p->p_uru_nivcsw = user.u_stats.p_ru.ru_nivcsw;
kp2p->p_uctime_sec =
user.u_stats.p_cru.ru_utime.tv_sec +
user.u_stats.p_cru.ru_stime.tv_sec;
kp2p->p_uctime_usec =
user.u_stats.p_cru.ru_utime.tv_usec +
user.u_stats.p_cru.ru_stime.tv_usec;
}
memcpy(kp2c, &kp2, esize);
kp2c += esize;
}
free(kd->procbase);
}
*cnt = nprocs;
return (kd->procbase2);
}
struct kinfo_proc *
kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
{
int mib[4], st, nprocs;
size_t size;
if (kd->procbase != 0) {
free((void *)kd->procbase);
/*
* Clear this pointer in case this call fails. Otherwise,
* kvm_close() will free it again.
*/
kd->procbase = 0;
}
if (ISALIVE(kd)) {
size = 0;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = op;
mib[3] = arg;
st = sysctl(mib, 4, NULL, &size, NULL, 0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getprocs");
return (0);
}
kd->procbase = _kvm_malloc(kd, size);
if (kd->procbase == 0)
return (0);
st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
if (st == -1) {
_kvm_syserr(kd, kd->program, "kvm_getprocs");
return (0);
}
if (size % sizeof(struct kinfo_proc) != 0) {
_kvm_err(kd, kd->program,
"proc size mismatch (%d total, %d chunks)",
size, sizeof(struct kinfo_proc));
return (0);
}
nprocs = size / sizeof(struct kinfo_proc);
} else {
struct nlist nl[4], *p;
memset(nl, 0, sizeof(nl));
nl[0].n_name = "_nprocs";
nl[1].n_name = "_allproc";
nl[2].n_name = "_zombproc";
nl[3].n_name = NULL;
if (kvm_nlist(kd, nl) != 0) {
for (p = nl; p->n_type != 0; ++p)
;
_kvm_err(kd, kd->program,
"%s: no such symbol", p->n_name);
return (0);
}
if (KREAD(kd, nl[0].n_value, &nprocs)) {
_kvm_err(kd, kd->program, "can't read nprocs");
return (0);
}
size = nprocs * sizeof(struct kinfo_proc);
kd->procbase = _kvm_malloc(kd, size);
if (kd->procbase == 0)
return (0);
nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
nl[2].n_value, nprocs);
#ifdef notdef
size = nprocs * sizeof(struct kinfo_proc);
(void)realloc(kd->procbase, size);
#endif
}
*cnt = nprocs;
return (kd->procbase);
}
void
_kvm_freeprocs(kvm_t *kd)
{
if (kd->procbase) {
free(kd->procbase);
kd->procbase = 0;
}
}
void *
_kvm_realloc(kvm_t *kd, void *p, size_t n)
{
void *np = (void *)realloc(p, n);
if (np == 0)
_kvm_err(kd, kd->program, "out of memory");
return (np);
}
/*
* Read in an argument vector from the user address space of process p.
* addr if the user-space base address of narg null-terminated contiguous
* strings. This is used to read in both the command arguments and
* environment strings. Read at most maxcnt characters of strings.
*/
static char **
kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
int maxcnt)
{
char *np, *cp, *ep, *ap, **argv;
u_long oaddr = -1;
int len, cc;
/*
* Check that there aren't an unreasonable number of agruments,
* and that the address is in user space.
*/
if (narg > ARG_MAX || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
return (0);
if (kd->argv == 0) {
/*
* Try to avoid reallocs.
*/
kd->argc = MAX(narg + 1, 32);
kd->argv = _kvm_malloc(kd, kd->argc *
sizeof(*kd->argv));
if (kd->argv == 0)
return (0);
} else if (narg + 1 > kd->argc) {
kd->argc = MAX(2 * kd->argc, narg + 1);
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
sizeof(*kd->argv));
if (kd->argv == 0)
return (0);
}
if (kd->argspc == 0) {
kd->argspc = _kvm_malloc(kd, kd->nbpg);
if (kd->argspc == 0)
return (0);
kd->arglen = kd->nbpg;
}
if (kd->argbuf == 0) {
kd->argbuf = _kvm_malloc(kd, kd->nbpg);
if (kd->argbuf == 0)
return (0);
}
cc = sizeof(char *) * narg;
if (kvm_ureadm(kd, p, addr, (char *)kd->argv, cc) != cc)
return (0);
ap = np = kd->argspc;
argv = kd->argv;
len = 0;
/*
* Loop over pages, filling in the argument vector.
*/
while (argv < kd->argv + narg && *argv != 0) {
addr = (u_long)*argv & ~(kd->nbpg - 1);
if (addr != oaddr) {
if (kvm_ureadm(kd, p, addr, kd->argbuf, kd->nbpg) !=
kd->nbpg)
return (0);
oaddr = addr;
}
addr = (u_long)*argv & (kd->nbpg - 1);
cp = kd->argbuf + addr;
cc = kd->nbpg - addr;
if (maxcnt > 0 && cc > maxcnt - len)
cc = maxcnt - len;
ep = memchr(cp, '\0', cc);
if (ep != 0)
cc = ep - cp + 1;
if (len + cc > kd->arglen) {
int off;
char **pp;
char *op = kd->argspc;
kd->arglen *= 2;
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
kd->arglen);
if (kd->argspc == 0)
return (0);
/*
* Adjust argv pointers in case realloc moved
* the string space.
*/
off = kd->argspc - op;
for (pp = kd->argv; pp < argv; pp++)
*pp += off;
ap += off;
np += off;
}
memcpy(np, cp, cc);
np += cc;
len += cc;
if (ep != 0) {
*argv++ = ap;
ap = np;
} else
*argv += cc;
if (maxcnt > 0 && len >= maxcnt) {
/*
* We're stopping prematurely. Terminate the
* current string.
*/
if (ep == 0) {
*np = '\0';
*argv++ = ap;
}
break;
}
}
/* Make sure argv is terminated. */
*argv = 0;
return (kd->argv);
}
static void
ps_str_a(struct ps_strings *p, u_long *addr, int *n)
{
*addr = (u_long)p->ps_argvstr;
*n = p->ps_nargvstr;
}
static void
ps_str_e(struct ps_strings *p, u_long *addr, int *n)
{
*addr = (u_long)p->ps_envstr;
*n = p->ps_nenvstr;
}
/*
* Determine if the proc indicated by p is still active.
* This test is not 100% foolproof in theory, but chances of
* being wrong are very low.
*/
static int
proc_verify(kvm_t *kd, const struct miniproc *p)
{
struct proc kernproc;
/*
* Just read in the whole proc. It's not that big relative
* to the cost of the read system call.
*/
if (kvm_read(kd, (u_long)p->p_paddr, &kernproc, sizeof(kernproc)) !=
sizeof(kernproc))
return (0);
return (p->p_pid == kernproc.p_pid &&
(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
}
static char **
kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
void (*info)(struct ps_strings *, u_long *, int *))
{
static struct ps_strings *ps;
struct ps_strings arginfo;
u_long addr;
char **ap;
int cnt;
if (ps == NULL) {
struct _ps_strings _ps;
int mib[2];
size_t len;
mib[0] = CTL_VM;
mib[1] = VM_PSSTRINGS;
len = sizeof(_ps);
sysctl(mib, 2, &_ps, &len, NULL, 0);
ps = (struct ps_strings *)_ps.val;
}
/*
* Pointers are stored at the top of the user stack.
*/
if (p->p_stat == SZOMB ||
kvm_ureadm(kd, p, (u_long)ps, (char *)&arginfo,
sizeof(arginfo)) != sizeof(arginfo))
return (0);
(*info)(&arginfo, &addr, &cnt);
if (cnt == 0)
return (0);
ap = kvm_argv(kd, p, addr, cnt, nchr);
/*
* For live kernels, make sure this process didn't go away.
*/
if (ap != 0 && ISALIVE(kd) && !proc_verify(kd, p))
ap = 0;
return (ap);
}
static char **
kvm_arg_sysctl(kvm_t *kd, pid_t pid, int nchr, int env)
{
size_t len, orglen;
int mib[4], ret;
char *buf;
orglen = env ? kd->nbpg : 8 * kd->nbpg; /* XXX - should be ARG_MAX */
if (kd->argbuf == NULL &&
(kd->argbuf = _kvm_malloc(kd, orglen)) == NULL)
return (NULL);
again:
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = (int)pid;
mib[3] = env ? KERN_PROC_ENV : KERN_PROC_ARGV;
len = orglen;
ret = (sysctl(mib, 4, kd->argbuf, &len, NULL, 0) < 0);
if (ret && errno == ENOMEM) {
orglen *= 2;
buf = _kvm_realloc(kd, kd->argbuf, orglen);
if (buf == NULL)
return (NULL);
kd->argbuf = buf;
goto again;
}
if (ret) {
free(kd->argbuf);
kd->argbuf = NULL;
_kvm_syserr(kd, kd->program, "kvm_arg_sysctl");
return (NULL);
}
#if 0
for (argv = (char **)kd->argbuf; *argv != NULL; argv++)
if (strlen(*argv) > nchr)
*argv[nchr] = '\0';
#endif
return (char **)(kd->argbuf);
}
/*
* Get the command args. This code is now machine independent.
*/
char **
kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
{
struct miniproc p;
if (ISALIVE(kd))
return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 0));
KPTOMINI(kp, &p);
return (kvm_doargv(kd, &p, nchr, ps_str_a));
}
char **
kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
{
struct miniproc p;
if (ISALIVE(kd))
return (kvm_arg_sysctl(kd, kp->kp_proc.p_pid, nchr, 1));
KPTOMINI(kp, &p);
return (kvm_doargv(kd, &p, nchr, ps_str_e));
}
char **
kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
{
struct miniproc p;
if (ISALIVE(kd))
return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 0));
KP2TOMINI(kp, &p);
return (kvm_doargv(kd, &p, nchr, ps_str_a));
}
char **
kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
{
struct miniproc p;
if (ISALIVE(kd))
return (kvm_arg_sysctl(kd, kp->p_pid, nchr, 1));
KP2TOMINI(kp, &p);
return (kvm_doargv(kd, &p, nchr, ps_str_e));
}
/*
* Read from user space. The user context is given by p.
*/
static ssize_t
kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, char *buf,
size_t len)
{
char *cp = buf;
while (len > 0) {
u_long cnt;
size_t cc;
char *dp;
dp = _kvm_ureadm(kd, p, uva, &cnt);
if (dp == 0) {
_kvm_err(kd, 0, "invalid address (%lx)", uva);
return (0);
}
cc = (size_t)MIN(cnt, len);
bcopy(dp, cp, cc);
cp += cc;
uva += cc;
len -= cc;
}
return (ssize_t)(cp - buf);
}
ssize_t
kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf,
size_t len)
{
struct miniproc mp;
PTOMINI(p, &mp);
return (kvm_ureadm(kd, &mp, uva, buf, len));
}
|