1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/* $OpenBSD: n_atan2.S,v 1.10 2013/07/15 18:50:32 miod Exp $ */
/* $NetBSD: n_atan2.S,v 1.1 1995/10/10 23:40:25 ragge Exp $ */
/*
* Copyright (c) 1985, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)atan2.s 8.1 (Berkeley) 6/4/93
*/
#include <machine/asm.h>
/*
* ATAN2(Y,X)
* RETURN ARG (X+iY)
* VAX D FORMAT (56 BITS PRECISION)
* CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/16/85;
*
*
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
* 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
* is further reduced to one of the following intervals and the
* arctangent of y/x is evaluated by the corresponding formula:
*
* [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
* [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
* [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
* [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y )
*
* Special cases:
* Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
*
* ARG( NAN , (anything) ) is NaN;
* ARG( (anything), NaN ) is NaN;
* ARG(+(anything but NaN), +-0) is +-0 ;
* ARG(-(anything but NaN), +-0) is +-PI ;
* ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
* ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
* ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
* ARG( +INF,+-INF ) is +-PI/4 ;
* ARG( -INF,+-INF ) is +-3PI/4;
* ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
*
* Accuracy:
* atan2(y,x) returns the exact ARG(x+iy) nearly rounded.
*/
ENTRY(atan2f, 0)
cvtfd 8(%ap),-(%sp)
cvtfd 4(%ap),-(%sp)
calls $4,_C_LABEL(atan2)
cvtdf %r0,%r0
ret
STRONG_ALIAS(atan2l,atan2)
ENTRY(atan2, R2|R3|R4|R5|R6|R7|R8|R9|R10|R11)
movq 4(%ap),%r2 # r2 = y
movq 12(%ap),%r4 # r4 = x
bicw3 $0x7f,%r2,%r0
bicw3 $0x7f,%r4,%r1
cmpw %r0,$0x8000 # y is the reserved operand
jeql resop
cmpw %r1,$0x8000 # x is the reserved operand
jeql resop
subl2 $8,%sp
bicw3 $0x7fff,%r2,-4(%fp) # copy y sign bit to -4(fp)
bicw3 $0x7fff,%r4,-8(%fp) # copy x sign bit to -8(fp)
cmpd %r4,$0x4080 # x = 1.0 ?
bneq xnot1
movq %r2,%r0
bicw2 $0x8000,%r0 # t = |y|
movq %r0,%r2 # y = |y|
brb begin
xnot1:
bicw3 $0x807f,%r2,%r11 # yexp
jeql yeq0 # if y=0 goto yeq0
bicw3 $0x807f,%r4,%r10 # xexp
jeql pio2 # if x=0 goto pio2
subw2 %r10,%r11 # k = yexp - xexp
cmpw %r11,$0x2000 # k >= 64 (exp) ?
jgeq pio2 # atan2 = +-pi/2
divd3 %r4,%r2,%r0 # t = y/x never overflow
bicw2 $0x8000,%r0 # t > 0
bicw2 $0xff80,%r2 # clear the exponent of y
bicw2 $0xff80,%r4 # clear the exponent of x
bisw2 $0x4080,%r2 # normalize y to [1,2)
bisw2 $0x4080,%r4 # normalize x to [1,2)
subw2 %r11,%r4 # scale x so that yexp-xexp=k
begin:
cmpw %r0,$0x411c # t : 39/16
jgeq L50
addl3 $0x180,%r0,%r10 # 8*t
cvtrfl %r10,%r10 # [8*t] rounded to int
ashl $-1,%r10,%r10 # [8*t]/2
casel %r10,$0,$4
L1:
.word L20-L1
.word L20-L1
.word L30-L1
.word L40-L1
.word L40-L1
L10:
movq $0xb4d9940f985e407b,%r6 # Hi=.98279372324732906796d0
movq $0x21b1879a3bc2a2fc,%r8 # Lo=-.17092002525602665777d-17
subd3 %r4,%r2,%r0 # y-x
addw2 $0x80,%r0 # 2(y-x)
subd2 %r4,%r0 # 2(y-x)-x
addw2 $0x80,%r4 # 2x
movq %r2,%r10
addw2 $0x80,%r10 # 2y
addd2 %r10,%r2 # 3y
addd2 %r4,%r2 # 3y+2x
divd2 %r2,%r0 # (2y-3x)/(2x+3y)
brw L60
L20:
cmpw %r0,$0x3280 # t : 2**(-28)
jlss L80
clrq %r6 # Hi=r6=0, Lo=r8=0
clrq %r8
brw L60
L30:
movq $0xda7b2b0d63383fed,%r6 # Hi=.46364760900080611433d0
movq $0xf0ea17b2bf912295,%r8 # Lo=.10147340032515978826d-17
movq %r2,%r0
addw2 $0x80,%r0 # 2y
subd2 %r4,%r0 # 2y-x
addw2 $0x80,%r4 # 2x
addd2 %r2,%r4 # 2x+y
divd2 %r4,%r0 # (2y-x)/(2x+y)
brb L60
L50:
movq $0x68c2a2210fda40c9,%r6 # Hi=1.5707963267948966135d1
movq $0x06e0145c26332326,%r8 # Lo=.22517417741562176079d-17
cmpw %r0,$0x5100 # y : 2**57
bgeq L90
divd3 %r2,%r4,%r0
bisw2 $0x8000,%r0 # -x/y
brb L60
L40:
movq $0x68c2a2210fda4049,%r6 # Hi=.78539816339744830676d0
movq $0x06e0145c263322a6,%r8 # Lo=.11258708870781088040d-17
subd3 %r4,%r2,%r0 # y-x
addd2 %r4,%r2 # y+x
divd2 %r2,%r0 # (y-x)/(y+x)
L60:
movq %r0,%r10
muld2 %r0,%r0
polyd %r0,$12,ptable
muld2 %r10,%r0
subd2 %r0,%r8
addd3 %r8,%r10,%r0
addd2 %r6,%r0
L80:
movw -8(%fp),%r2
bneq pim
bisw2 -4(%fp),%r0 # return sign(y)*r0
ret
L90: # x >= 2**25
movq %r6,%r0
brb L80
pim:
subd3 %r0,$0x68c2a2210fda4149,%r0 # pi-t
bisw2 -4(%fp),%r0
ret
yeq0:
movw -8(%fp),%r2
beql zero # if sign(x)=1 return pi
movq $0x68c2a2210fda4149,%r0 # pi=3.1415926535897932270d1
ret
zero:
clrq %r0 # return 0
ret
pio2:
movq $0x68c2a2210fda40c9,%r0 # pi/2=1.5707963267948966135d1
bisw2 -4(%fp),%r0 # return sign(y)*pi/2
ret
resop:
movq $0x8000,%r0 # propagate the reserved operand
ret
.align 2
ptable:
.quad 0xb50f5ce96e7abd60
.quad 0x51e44a42c1073e02
.quad 0x3487e3289643be35
.quad 0xdb62066dffba3e54
.quad 0xcf8e2d5199abbe70
.quad 0x26f39cb884883e88
.quad 0x135117d18998be9d
.quad 0x602ce9742e883eba
.quad 0xa35ad0be8e38bee3
.quad 0xffac922249243f12
.quad 0x7f14ccccccccbf4c
.quad 0xaa8faaaaaaaa3faa
.quad 0x0000000000000000
|