summaryrefslogtreecommitdiff
path: root/lib/libm/noieee_src/n_cabs.c
blob: d3dc5964cbbee782a1096fb14789fd8e579b72e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*	$OpenBSD: n_cabs.c,v 1.10 2008/07/17 15:36:28 martynas Exp $	*/
/*	$NetBSD: n_cabs.c,v 1.1 1995/10/10 23:36:39 ragge Exp $	*/
/*
 * Copyright (c) 1985, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#ifndef lint
static char sccsid[] = "@(#)cabs.c	8.1 (Berkeley) 6/4/93";
#endif /* not lint */

/* HYPOT(X,Y)
 * RETURN THE SQUARE ROOT OF X^2 + Y^2  WHERE Z=X+iY
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 11/28/84;
 * REVISED BY K.C. NG, 7/12/85.
 *
 * Required system supported functions :
 *	copysign(x,y)
 *	finite(x)
 *	scalbn(x,N)
 *	sqrt(x)
 *
 * Method :
 *	1. replace x by |x| and y by |y|, and swap x and
 *	   y if y > x (hence x is never smaller than y).
 *	2. Hypot(x,y) is computed by:
 *	   Case I, x/y > 2
 *
 *				       y
 *		hypot = x + -----------------------------
 *			 		    2
 *			    sqrt ( 1 + [x/y]  )  +  x/y
 *
 *	   Case II, x/y <= 2
 *				                   y
 *		hypot = x + --------------------------------------------------
 *				          		     2
 *				     			[x/y]   -  2
 *			   (sqrt(2)+1) + (x-y)/y + -----------------------------
 *			 		    			  2
 *			    			  sqrt ( 1 + [x/y]  )  + sqrt(2)
 *
 *
 *
 * Special cases:
 *	hypot(x,y) is INF if x or y is +INF or -INF; else
 *	hypot(x,y) is NAN if x or y is NAN.
 *
 * Accuracy:
 * 	hypot(x,y) returns the sqrt(x^2+y^2) with error less than 1 ulps (units
 *	in the last place). See Kahan's "Interval Arithmetic Options in the
 *	Proposed IEEE Floating Point Arithmetic Standard", Interval Mathematics
 *      1980, Edited by Karl L.E. Nickel, pp 99-128. (A faster but less accurate
 *	code follows in	comments.) In a test run with 500,000 random arguments
 *	on a VAX, the maximum observed error was .959 ulps.
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following constants.
 * The decimal values may be used, provided that the compiler will convert
 * from decimal to binary accurately enough to produce the hexadecimal values
 * shown.
 */

#include "math.h"
#include "mathimpl.h"

vc(r2p1hi, 2.4142135623730950345E0   ,8279,411a,ef32,99fc,   2, .9A827999FCEF32)
vc(r2p1lo, 1.4349369327986523769E-17 ,597d,2484,754b,89b3, -55, .84597D89B3754B)
vc(sqrt2,  1.4142135623730950622E0   ,04f3,40b5,de65,33f9,   1, .B504F333F9DE65)

ic(r2p1hi, 2.4142135623730949234E0   ,   1, 1.3504F333F9DE6)
ic(r2p1lo, 1.2537167179050217666E-16 , -53, 1.21165F626CDD5)
ic(sqrt2,  1.4142135623730951455E0   ,   0, 1.6A09E667F3BCD)

#ifdef vccast
#define	r2p1hi	vccast(r2p1hi)
#define	r2p1lo	vccast(r2p1lo)
#define	sqrt2	vccast(sqrt2)
#endif

double
hypot(double x, double y)
{
	static const double zero=0, one=1,
		      small=1.0E-18;	/* fl(1+small)==1 */
	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
	double t,r;
	int exp;

	if(finite(x))
	    if(finite(y))
	    {
		x=copysign(x,one);
		y=copysign(y,one);
		if(y > x)
		    { t=x; x=y; y=t; }
		if(x == zero) return(zero);
		if(y == zero) return(x);
		exp= logb(x);
		if (exp - (int)logb(y) > ibig) {
			if (one + small >= 1.0)	/* raise inexact flag */
				return(x);	/* return |x| */
		}

	    /* start computing sqrt(x^2 + y^2) */
		r=x-y;
		if(r>y) { 	/* x/y > 2 */
		    r=x/y;
		    r=r+sqrt(one+r*r); }
		else {		/* 1 <= x/y <= 2 */
		    r/=y; t=r*(r+2.0);
		    r+=t/(sqrt2+sqrt(2.0+t));
		    r+=r2p1lo; r+=r2p1hi; }

		r=y/r;
		return(x+r);

	    }

	    else if(isinf(y))		/* y is +-INF */
		     return(copysign(y,one));
	    else
		     return(y);		/* y is NaN and x is finite */

	else if(isinf(x))		/* x is +-INF */
	         return (copysign(x,one));
	else if(finite(y))
	         return(x);		/* x is NaN, y is finite */
	else if (isnan(y))
		return (y);
	else return(copysign(y,one));	/* y is INF */
}

/* CABS(Z)
 * RETURN THE ABSOLUTE VALUE OF THE COMPLEX NUMBER  Z = X + iY
 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
 * CODED IN C BY K.C. NG, 11/28/84.
 * REVISED BY K.C. NG, 7/12/85.
 *
 * Required kernel function :
 *	hypot(x,y)
 *
 * Method :
 *	cabs(z) = hypot(x,y) .
 */

struct complex { double x, y; };

double
cabs(struct complex z)
{
	return hypot(z.x,z.y);
}

double
z_abs(struct complex *z)
{
	return hypot(z->x,z->y);
}

/* A faster but less accurate version of cabs(x,y) */
#if 0
double
hypot(double x, double y)
{
	static const double zero=0, one=1;
		      small=1.0E-18;	/* fl(1+small)==1 */
	static const ibig=30;	/* fl(1+2**(2*ibig))==1 */
	double temp;
	int exp;

	if(finite(x))
	    if(finite(y))
	    {
		x=copysign(x,one);
		y=copysign(y,one);
		if(y > x)
		    { temp=x; x=y; y=temp; }
		if(x == zero) return(zero);
		if(y == zero) return(x);
		exp= logb(x);
		x=scalbn(x,-exp);
		if (exp - (int)logb(y) > ibig) {
			if (one + small >= 1.0)		/* raise inexact flag */
				return(scalbn(x,exp));	/* return |x| */
		}
		else y=scalbn(y,-exp);
		return(scalbn(sqrt(x*x+y*y),exp));
	    }

	    else if(isinf(y))		/* y is +-INF */
		     return(copysign(y,one));
	    else
		     return(y);		/* y is NaN and x is finite */

	else if(isinf(x))		/* x is +-INF */
	         return (copysign(x,one));
	else if(finite(y))
	         return(x);		/* x is NaN, y is finite */
	else if(isnan(y)) return(y);	/* x and y is NaN */
	else return(copysign(y,one));	/* y is INF */
}
#endif