1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
/* $NetBSD: n_j0.c,v 1.1 1995/10/10 23:36:52 ragge Exp $ */
/*-
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef lint
static char sccsid[] = "@(#)j0.c 8.2 (Berkeley) 11/30/93";
#endif /* not lint */
/*
* 16 December 1992
* Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
*/
/*
* ====================================================
* Copyright (C) 1992 by Sun Microsystems, Inc.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* ******************* WARNING ********************
* This is an alpha version of SunPro's FDLIBM (Freely
* Distributable Math Library) for IEEE double precision
* arithmetic. FDLIBM is a basic math library written
* in C that runs on machines that conform to IEEE
* Standard 754/854. This alpha version is distributed
* for testing purpose. Those who use this software
* should report any bugs to
*
* fdlibm-comments@sunpro.eng.sun.com
*
* -- K.C. Ng, Oct 12, 1992
* ************************************************
*/
/* double j0(double x), y0(double x)
* Bessel function of the first and second kinds of order zero.
* Method -- j0(x):
* 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
* 2. Reduce x to |x| since j0(x)=j0(-x), and
* for x in (0,2)
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
* for x in (2,inf)
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* as follow:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (cos(x) + sin(x))
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j0(nan)= nan
* j0(0) = 1
* j0(inf) = 0
*
* Method -- y0(x):
* 1. For x<2.
* Since
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
* We use the following function to approximate y0,
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
* where
* U(z) = u0 + u1*z + ... + u6*z^6
* V(z) = 1 + v1*z + ... + v4*z^4
* with absolute approximation error bounded by 2**-72.
* Note: For tiny x, U/V = u0 and j0(x)~1, hence
* y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
* 2. For x>=2.
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
* by the method mentioned above.
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
*/
#include <math.h>
#include <float.h>
#include <errno.h>
#if defined(__vax__) || defined(tahoe)
#define _IEEE 0
#else
#define _IEEE 1
#define infnan(x) (0.0)
#endif
static double pzero(double), qzero(double);
static double
huge = 1e300,
zero = 0.0,
one = 1.0,
invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
tpi = 0.636619772367581343075535053490057448,
/* R0/S0 on [0, 2.00] */
r02 = 1.562499999999999408594634421055018003102e-0002,
r03 = -1.899792942388547334476601771991800712355e-0004,
r04 = 1.829540495327006565964161150603950916854e-0006,
r05 = -4.618326885321032060803075217804816988758e-0009,
s01 = 1.561910294648900170180789369288114642057e-0002,
s02 = 1.169267846633374484918570613449245536323e-0004,
s03 = 5.135465502073181376284426245689510134134e-0007,
s04 = 1.166140033337900097836930825478674320464e-0009;
double
j0(x)
double x;
{
double z, s,c,ss,cc,r,u,v;
if (!finite(x))
if (_IEEE) return one/(x*x);
else return (0);
x = fabs(x);
if (x >= 2.0) { /* |x| >= 2.0 */
s = sin(x);
c = cos(x);
ss = s-c;
cc = s+c;
if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
z = -cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if (_IEEE && x> 6.80564733841876927e+38) /* 2^129 */
z = (invsqrtpi*cc)/sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*cc-v*ss)/sqrt(x);
}
return z;
}
if (x < 1.220703125e-004) { /* |x| < 2**-13 */
if (huge+x > one) { /* raise inexact if x != 0 */
if (x < 7.450580596923828125e-009) /* |x|<2**-27 */
return one;
else return (one - 0.25*x*x);
}
}
z = x*x;
r = z*(r02+z*(r03+z*(r04+z*r05)));
s = one+z*(s01+z*(s02+z*(s03+z*s04)));
if (x < one) { /* |x| < 1.00 */
return (one + z*(-0.25+(r/s)));
} else {
u = 0.5*x;
return ((one+u)*(one-u)+z*(r/s));
}
}
static double
u00 = -7.380429510868722527422411862872999615628e-0002,
u01 = 1.766664525091811069896442906220827182707e-0001,
u02 = -1.381856719455968955440002438182885835344e-0002,
u03 = 3.474534320936836562092566861515617053954e-0004,
u04 = -3.814070537243641752631729276103284491172e-0006,
u05 = 1.955901370350229170025509706510038090009e-0008,
u06 = -3.982051941321034108350630097330144576337e-0011,
v01 = 1.273048348341237002944554656529224780561e-0002,
v02 = 7.600686273503532807462101309675806839635e-0005,
v03 = 2.591508518404578033173189144579208685163e-0007,
v04 = 4.411103113326754838596529339004302243157e-0010;
double
y0(x)
double x;
{
double z, s, c, ss, cc, u, v;
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
if (!finite(x))
if (_IEEE)
return (one/(x+x*x));
else
return (0);
if (x == 0)
if (_IEEE) return (-one/zero);
else return(infnan(-ERANGE));
if (x<0)
if (_IEEE) return (zero/zero);
else return (infnan(EDOM));
if (x >= 2.00) { /* |x| >= 2.0 */
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
* where x0 = x-pi/4
* Better formula:
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
* = 1/sqrt(2) * (sin(x) + cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
s = sin(x);
c = cos(x);
ss = s-c;
cc = s+c;
/*
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
*/
if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
z = -cos(x+x);
if ((s*c)<zero) cc = z/ss;
else ss = z/cc;
}
if (_IEEE && x > 6.80564733841876927e+38) /* > 2^129 */
z = (invsqrtpi*ss)/sqrt(x);
else {
u = pzero(x); v = qzero(x);
z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
}
return z;
}
if (x <= 7.450580596923828125e-009) { /* x < 2**-27 */
return (u00 + tpi*log(x));
}
z = x*x;
u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
v = one+z*(v01+z*(v02+z*(v03+z*v04)));
return (u/v + tpi*(j0(x)*log(x)));
}
/* The asymptotic expansions of pzero is
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
* For x >= 2, We approximate pzero by
* pzero(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
*/
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.0,
-7.031249999999003994151563066182798210142e-0002,
-8.081670412753498508883963849859423939871e+0000,
-2.570631056797048755890526455854482662510e+0002,
-2.485216410094288379417154382189125598962e+0003,
-5.253043804907295692946647153614119665649e+0003,
};
static double ps8[5] = {
1.165343646196681758075176077627332052048e+0002,
3.833744753641218451213253490882686307027e+0003,
4.059785726484725470626341023967186966531e+0004,
1.167529725643759169416844015694440325519e+0005,
4.762772841467309430100106254805711722972e+0004,
};
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-1.141254646918944974922813501362824060117e-0011,
-7.031249408735992804117367183001996028304e-0002,
-4.159610644705877925119684455252125760478e+0000,
-6.767476522651671942610538094335912346253e+0001,
-3.312312996491729755731871867397057689078e+0002,
-3.464333883656048910814187305901796723256e+0002,
};
static double ps5[5] = {
6.075393826923003305967637195319271932944e+0001,
1.051252305957045869801410979087427910437e+0003,
5.978970943338558182743915287887408780344e+0003,
9.625445143577745335793221135208591603029e+0003,
2.406058159229391070820491174867406875471e+0003,
};
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-2.547046017719519317420607587742992297519e-0009,
-7.031196163814817199050629727406231152464e-0002,
-2.409032215495295917537157371488126555072e+0000,
-2.196597747348830936268718293366935843223e+0001,
-5.807917047017375458527187341817239891940e+0001,
-3.144794705948885090518775074177485744176e+0001,
};
static double ps3[5] = {
3.585603380552097167919946472266854507059e+0001,
3.615139830503038919981567245265266294189e+0002,
1.193607837921115243628631691509851364715e+0003,
1.127996798569074250675414186814529958010e+0003,
1.735809308133357510239737333055228118910e+0002,
};
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-8.875343330325263874525704514800809730145e-0008,
-7.030309954836247756556445443331044338352e-0002,
-1.450738467809529910662233622603401167409e+0000,
-7.635696138235277739186371273434739292491e+0000,
-1.119316688603567398846655082201614524650e+0001,
-3.233645793513353260006821113608134669030e+0000,
};
static double ps2[5] = {
2.222029975320888079364901247548798910952e+0001,
1.362067942182152109590340823043813120940e+0002,
2.704702786580835044524562897256790293238e+0002,
1.538753942083203315263554770476850028583e+0002,
1.465761769482561965099880599279699314477e+0001,
};
static double pzero(x)
double x;
{
double *p,*q,z,r,s;
if (x >= 8.00) {p = pr8; q= ps8;}
else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
else if (x >= 2.00) {p = pr2; q= ps2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
return one+ r/s;
}
/* For x >= 8, the asymptotic expansions of qzero is
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
* We approximate pzero by
* qzero(x) = s*(-1.25 + (R/S))
* where R = qr0 + qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs0*s^2 + ... + qs5*s^12
* and
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
*/
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.0,
7.324218749999350414479738504551775297096e-0002,
1.176820646822526933903301695932765232456e+0001,
5.576733802564018422407734683549251364365e+0002,
8.859197207564685717547076568608235802317e+0003,
3.701462677768878501173055581933725704809e+0004,
};
static double qs8[6] = {
1.637760268956898345680262381842235272369e+0002,
8.098344946564498460163123708054674227492e+0003,
1.425382914191204905277585267143216379136e+0005,
8.033092571195144136565231198526081387047e+0005,
8.405015798190605130722042369969184811488e+0005,
-3.438992935378666373204500729736454421006e+0005,
};
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
1.840859635945155400568380711372759921179e-0011,
7.324217666126847411304688081129741939255e-0002,
5.835635089620569401157245917610984757296e+0000,
1.351115772864498375785526599119895942361e+0002,
1.027243765961641042977177679021711341529e+0003,
1.989977858646053872589042328678602481924e+0003,
};
static double qs5[6] = {
8.277661022365377058749454444343415524509e+0001,
2.077814164213929827140178285401017305309e+0003,
1.884728877857180787101956800212453218179e+0004,
5.675111228949473657576693406600265778689e+0004,
3.597675384251145011342454247417399490174e+0004,
-5.354342756019447546671440667961399442388e+0003,
};
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
4.377410140897386263955149197672576223054e-0009,
7.324111800429115152536250525131924283018e-0002,
3.344231375161707158666412987337679317358e+0000,
4.262184407454126175974453269277100206290e+0001,
1.708080913405656078640701512007621675724e+0002,
1.667339486966511691019925923456050558293e+0002,
};
static double qs3[6] = {
4.875887297245871932865584382810260676713e+0001,
7.096892210566060535416958362640184894280e+0002,
3.704148226201113687434290319905207398682e+0003,
6.460425167525689088321109036469797462086e+0003,
2.516333689203689683999196167394889715078e+0003,
-1.492474518361563818275130131510339371048e+0002,
};
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
1.504444448869832780257436041633206366087e-0007,
7.322342659630792930894554535717104926902e-0002,
1.998191740938159956838594407540292600331e+0000,
1.449560293478857407645853071687125850962e+0001,
3.166623175047815297062638132537957315395e+0001,
1.625270757109292688799540258329430963726e+0001,
};
static double qs2[6] = {
3.036558483552191922522729838478169383969e+0001,
2.693481186080498724211751445725708524507e+0002,
8.447837575953201460013136756723746023736e+0002,
8.829358451124885811233995083187666981299e+0002,
2.126663885117988324180482985363624996652e+0002,
-5.310954938826669402431816125780738924463e+0000,
};
static double qzero(x)
double x;
{
double *p,*q, s,r,z;
if (x >= 8.00) {p = qr8; q= qs8;}
else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
else if (x >= 2.00) {p = qr2; q= qs2;}
z = one/(x*x);
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
return (-.125 + r/s)/x;
}
|